
 

 

 

 

 

 

Predicting West Nile Virus Infection Risk from the 

Synergistic Effects of Rainfall and Temperature 
 

 

Journal: Journal of Medical Entomology 

Manuscript ID JME-2015-0246.R3 

Manuscript Type: Research Article 

Date Submitted by the Author: 16-Mar-2016 

Complete List of Authors: Shand, Lindsay; University of Illinois, Statistics 
Brown, William; University of Illinois at Urbana-Champaign, Pathobiology 
Chaves, Luis; Nagasaki University, Institute of Tropical Medicine (NEKKEN), 
Department of Vector Ecology and Environment; Tomonori,   
Goldberg, Tony; University of Wisconsin, Pathobiological Sciences 
Hamer, Gabriel; Texas A&M, Entomology 

Haramis, Linn; Illinois Dept of Public Health, Division of Environmental 
Health 
Kitron, Uriel; Emory University, ENVS 
Walker, Edward; Michigan State University, Microbiology and Molecular 
Gentics Dept 
Ruiz, Marilyn; University of Illinois at Urbana-Champaign, College of 
Veterinary Medicine 

<b>Please choose a section 
from the list</b>: 

Vector-Borne Diseases, Surveillance, Prevention 

Field Keywords: West Nile Virus, Modeling, Public Health Entomology 

Organism Keywords: Culex 

  

 

 

https://mc.manuscriptcentral.com/medent

Manuscripts submitted to Journal of Medical Entomology



1 

 

Shand et al.: WNV risk prediction  1 

from rainfall and temperature 2 

 3 

Journal of Medical Entomology 4 

Full-length research article, Vector-Borne Diseases, 5 

Surveillance, Prevention 6 

 7 

 8 

 9 

 10 

 11 

Predicting West Nile Virus Infection Risk from the Synergistic Effects of Rainfall and 12 

Temperature   13 

 14 

L. Shand,
1
 W.M. Brown,

2
 L. F. Chaves,

3
 T.L. Goldberg,

4
 G. L. Hamer,

5
 L. Haramis,

6
 U. Kitron

7
 E. D. 15 

Walker
8
 and M.O. Ruiz

2 
16 

  17 
1
Department of Statistics, University of Illinois, Urbana, IL 61801 18 

2
Department of Pathobiology, University of Illinois, Urbana, IL 61801 19 

3
Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan 20 

4
Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706 21 

5
Department of Entomology, Texas A&M University, College Station, TX 77843 22 

6
Division of Environmental Health, Illinois Department of Public Health, Springfield, IL 62761 23 

7
Department of Environmental Sciences, Emory University, Atlanta, GA 30322 24 

8
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 25 

MI 48824 26 

 27 

  28 

Marilyn O’Hara Ruiz 

Department of Pathobiology 

2001 South Lincoln Avenue 

Urbana, Illinois  61802 

217-265-5115 (office phone) 

217-244-7421 (office FAX) 

moruiz@illinois.edu 

 

 

Page 1 of 40

https://mc.manuscriptcentral.com/medent

Manuscripts submitted to Journal of Medical Entomology



2 

 

Abstract 29 

Mosquito-based surveillance is a practical way to estimate the risk of transmission of West Nile 30 

virus (WNV) to people.  Variations in temperature and precipitation play a role in driving 31 

mosquito infection rates and transmission of WNV, motivating efforts to predict infection rates 32 

based on prior weather conditions. Weather conditions and sequential patterns of 33 

meteorological events can have particularly important, but regionally distinctive, consequences 34 

for WNV transmission, with high temperatures and low precipitation often increasing WNV 35 

mosquito infection. Predictive models that incorporate weather can thus be used to provide 36 

early indications of the risk of WNV infection. The purpose of this study was: first, to assess the 37 

ability of a previously published model of WNV mosquito infection to predict infection for an 38 

area within the region for which it was developed: and second, to improve the predictive ability 39 

of this model by incorporating new weather factors that may affect mosquito development.  40 

The legacy model captured the primary trends in mosquito infection, but it was improved 41 

considerably when calibrated with local mosquito infection rates. The use of interaction terms 42 

between precipitation and temperature improved model performance. Specifically, 43 

temperature had a stronger influence than rainfall, so that lower than average temperature 44 

greatly reduced the effect of low rainfall on increased infection rates. When rainfall was lower, 45 

high temperature had an even stronger positive impact on infection rates. The final model is 46 

practical, stable and operationally valid for predicting West Nile virus infection rates in future 47 

weeks when calibrated with local data.    48 

West Nile virus, climate and weather, risk model, Illinois  49 
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 50 

 51 

Predicting West Nile Virus Infection Risk from the Synergistic Effects of Rainfall and 52 

Temperature  53 

 54 

 Since the introduction of West Nile virus (WNV) into the Western Hemisphere via New 55 

York City in 1999, WNV has spread throughout the Americas and poses an ongoing and serious 56 

threat to human and animal health. Over 40,000 cases of illness from WNV were reported 57 

through public health surveillance systems in the United States between 1999 and 2014 (CDC 58 

2014). The number and location of cases has varied each year, and the ability to predict 59 

outbreaks has proven to be challenging. After a period of relatively low activity between the 60 

years 2008 to 2011, a large outbreak in 2012, with 5674 human cases reported in the United 61 

States, renewed concern about the need for public health preparedness, and spurred efforts to 62 

determine better ways to anticipate and reduce the risk of exposure to WNV (Nasci 2013).  63 

 Mosquito-based surveillance is a recommended, standard, and practical way to estimate 64 

the risk of transmission of WNV and other mosquito-borne pathogens to people (Macdonald 65 

1956, Moore et al. 1993, Hokit et al. 2013). Select species of mosquitoes in the genus Culex 66 

comprise over 95 percent of the positive tests for WNV in the United States and are the primary 67 

focus of mosquito surveillance efforts (Andreadis 2012). After trapping of blood-fed vector 68 

mosquitoes and virus diagnostic testing, the minimum infection rate and the maximum 69 

likelihood estimator for mosquito infection rates based on pooled samples are common 70 

measures used to estimate the true infection rate (Walter et al. 1980, Hepworth 2005, Gu et al. 71 

2003, Biggerstaff 2009, Ebert et al. 2010).  72 
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   Variations in temperature and precipitation play a role in driving the WNV infection rate 73 

and transmission, motivating efforts to predict WNV mosquito infection rates from prior 74 

weather conditions.  Warmer weather increases potential for transmission because it reduces 75 

the number of days between virus ingestion to effective transmission (extrinsic incubation 76 

period), shortens the length of time between blood meals (gonotrophic cycle), and leads to an 77 

earlier start to seasonal mosquito activity (Turell et al. 2001, Dohm 2002, Turell et al. 2005, 78 

Reisen et al. 2010, Hartley et al. 2012). Mosquito abundance also generally increases with 79 

warmer temperatures, but very hot conditions can have the opposite effect; and shorter 80 

lifespans in Culex mosquitoes may reduce transmission as fewer individuals live long enough to 81 

become infectious (Chaves et al. 2013, Ciota et al. 2014).  82 

 Hydrologic conditions also affect WNV transmission. Culex mosquitoes reproduce in 83 

standing water, but heavy rainfall can reduce Culex survival both at the adult stage and during 84 

larval development (Gardner et al. 2012, Jones et al. 2012). Rainfall influences near-surface 85 

humidity, and studies have found that higher humidity induced oviposition in gravid Culex 86 

nigripalpus (Day and Curtis 1999) and Culex quinquefasciatus (Chaves and Kitron 2011). Thus, 87 

rainfall may increase the potential for pathogen transmission as females seek blood meals prior 88 

to oviposition. The frequency, strength, and timing of rainfall events can also affect water 89 

chemistry and the degree to which standing water is suitable for mosquito pre-adult 90 

development (Shaman and Day 2007, Chaves and Kitron 2011, Gardner et al. 2013).    91 

 The net result of these effects is that high temperatures combined with low 92 

precipitation have often led to higher than average mosquito infection, but these effects vary 93 

by region, and the effect of rainfall is especially variable. Weekly patterns of lower than average 94 
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rainfall and higher temperature, for example, explained about 70 percent of the variability in 95 

WNV mosquito infection rates in a study focused on the Chicago, Illinois area (Ruiz et al. 2010). 96 

Similarly, drought followed by wet conditions preceded the reporting of WNV human illness in 97 

Florida (Shaman et al. 2005;). Drought, during which mosquitoes and birds are in closer 98 

proximity due to reduced water availability, could cause local sylvatic amplification of WNV, 99 

and subsequent rainfall could then allow dispersal of infected vectors and hosts (Shaman et al. 100 

2005).  Especially during very hot and dry periods, human-introduced water can create 101 

mosquito habitats that might not be otherwise available (Reisen et al. 2008, Barker et al. 2009, 102 

Becker, Leisnham, and LaDeau 2014). The relationship between prior rainfall and WNV 103 

outbreaks has varied in prior analyses. Outbreaks of WNV in Europe in 2010, for example, were 104 

preceded two to four weeks earlier by warmer than average conditions, but the outbreaks were 105 

less clearly associated with relative humidity and rainfall (Paz et al. 2013). Similarly, warmer 106 

than average winter temperatures and higher than average rainfall preceded the 2012 outbreak 107 

in Dallas, Texas, but variables that measured rainfall were not significant in a multivariate 108 

analysis (Chung et al. 2013).   109 

 The purpose of our study was two-fold. First, we assessed the ability of a previously 110 

published model of WNV mosquito infection developed for the Chicago region (Ruiz et al. 2010) 111 

to predict infection for a subset of that region – specifically for DuPage County, Illinois. For this 112 

objective, we compared the measured WNV mosquito infection rate (MIR) for the period from 113 

2004 to 2013 with the MIR estimated by a linear model that resulted from the prior work (See 114 

Supplementary Materials), referred to henceforth as the “legacy model”. Then, we worked with 115 

public health and mosquito abatement personnel in DuPage County in 2014 to learn about the 116 
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local characteristics of mosquito testing and delivery of public health warnings, so that a 117 

predictive model for WNV could be developed and implemented effectively in this setting.  118 

Second, we refined the legacy model both to develop a model that takes into account the local 119 

conditions and to exploit weather data more fully by considering interaction effects between 120 

rainfall and temperature. The broader context of this work is to provide a practical, 121 

generalizable, and operationally valid approach to predicting WNV mosquito infection that can 122 

be incorporated into public health assessments using data from prior weather conditions.    123 

Materials and Methods 124 

Study region. 125 

 DuPage County, Illinois, is located west of the city of Chicago (Figure 1).  It comprises an 126 

area of 848 km
2
 and is the second most populous county in the state of Illinois, with a 127 

population of 932,126 in 2013 (US Census Bureau). Mosquito control in the county is organized 128 

through a combination of mosquito abatement districts, townships, municipalities, and several 129 

large landholders. The study period of interest was from 2005 to 2014 and model development 130 

included data on weather conditions and mosquito infection rates during this period.  All data 131 

were organized by week, with weeks starting on Saturday. 132 

Weather data 133 

 Daily temperature and precipitation measures were based on two local weather 134 

stations: Midway (MDW) and O’Hare (ORD) (Figure 1). Weekly precipitation (rainfall in cm) was 135 

calculated from the daily average for each week from the two stations. Weekly temperature 136 

was measured as the mean of the temperature (˚C) from the daily temperature readings from 137 

the two stations. Temperature data were further used to calculate a variable called a “Degree 138 
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Week” (DW) constructed similarly to the more common Degree Day, but with differences 139 

accumulated over weeks, rather than days (Ruiz et al. 2010).  The DW is the cumulative sum of 140 

the difference of all prior weekly temperatures from a threshold value of 22°C. The 141 

temperature threshold of 22°C was used because compared to other values, it led to the 142 

highest correlation between DW and the weekly local MIR based on cross-correlations across a 143 

range of threshold values from 10° to 24°C and time lags from one to ten weeks (Baker et al. 144 

1984, Curriero et al. 2005, Kunkle et al. 2006).  For a given week:  ΔDW=Tmean-Tbase if the weekly 145 

Temperature (Tmean) is greater than the threshold (Tbase=22˚C) and 0 otherwise. To remove the 146 

seasonal trend from the model, weather variables were measured as the weekly differences 147 

from the 30-year Climate Normals for 1981-2010, provided by the U.S. National Weather 148 

Service (Figure 2). These differences captured the patterns outside the seasonal trends and 149 

focused the analysis on characterizing how weeks differed from the expected values. We also 150 

considered variables that measured the prior year’s average precipitation as was done in Ruiz 151 

et al. (2010). To improve our understanding of this relationship with MIR, we considered the 152 

effect of the average precipitation for four equal parts of the prior year starting with week 1, 153 

rather than the year as a whole.  154 

Mosquito data 155 

 The results of mosquito pools tested for WNV during the years from 2005 to 2013 from 156 

specimens and collected from gravid traps located in DuPage County were provided by the 157 

Illinois Department of Public Health (IDPH). These data were submitted to the IDPH Web Portal, 158 

where Illinois agencies upload WNV mosquito test results. For 2014 data, mosquito test results 159 

were received directly from the DuPage County Department of Public Health. Test results were 160 
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selected to include only the most common female vector species mosquitoes, which in this 161 

region are Culex pipiens and Culex restuans (Hamer et al. 2008, Andreadis 2012). PCR and 162 

VecTests were reported from 2005 to 2007 and PCR and RAMP tests, from 2009 to 2014.  PCR 163 

tests comprised from 49 percent to 65 percent of all samples, depending on the year. The IDPH 164 

protocol stipulates pool sizes no larger than 50 individuals, and 19,115 (99 percent) of the 165 

19,345 pools tested were within this guideline. The number of gravid trap locations in the study 166 

region during the years of interest varied from 136 trap locations in 2007 to 72 in 2014 (Figure 167 

1). Test result data were grouped by week and the MIR was calculated for a given week where:  168 

minimum infection rate = 1000 * (number of positive pools)/ (total number of mosquitoes in 169 

pools tested), using the CDC Excel Add-in for pooled infection rates (Biggerstaff 2009). As with 170 

the weather data, the MIR variable was calculated as the difference from the countywide 171 

average MIR from 2005-2013 (Figure 2).   172 

Model development 173 

 To determine how well the legacy model published in Ruiz et al. (2010) performed for 174 

DuPage County alone, we first used the coefficients from the weather-only (MIR independent) 175 

version of this model and local weather station data and compared visually the actual MIR for 176 

DuPage County with the predicted weekly MIR values. For the new model, initially, we 177 

considered all weather variables - including 1-8 week lags of temperature and rainfall and the 178 

prior year’s precipitation measured in quarters, halves, and the full year. We used Pearson’s 179 

correlation r values to assess the strength of associations between weather variables and MIR 180 

at different time lags to determine how far back in time to include weekly lagged weather 181 
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variables and to determine the relative strength of the associations with prior seasons’ 182 

precipitation.   183 

 Using the same general approach as the legacy model, we developed new linear 184 

regression models to predict the weekly DuPage County MIR.  All models were fitted using the 185 

least squares method with the R package stats (R Core Team 2013). We selected the model 186 

variables using adjusted R
2
 (R

2
adj) and Akaike Information Criteria (AIC) with both backward and 187 

forward stepwise regression with a significance level threshold of α=0.1. Calendar weeks 18-38 188 

(from the end of April to mid-September) from each year were used to develop the model. Data 189 

were treated as a weekly time series, with weekly weather data starting four weeks prior to the 190 

MIR data, to account for the temporal lags prior to the first MIR measurement in week 18.  191 

 We investigated the effect of the temporal autocorrelation of MIR by developing MIR 192 

lag dependent models that included prior levels of MIR to predict future levels. We then added 193 

all interaction terms between the temperature and precipitation weekly lagged weather 194 

variables in interactions models. One important practical goal was to determine if it was 195 

possible to use the MIR measured from mosquitoes collected and tested during the current 196 

season for real-time predictions. Thus, we compared four model types in the model 197 

development phase: MIR dependent models without and with interaction terms, and MIR 198 

independent models without and with interaction terms. 199 

 The new models for DuPage County were fitted initially using data from the years 2005 200 

through 2012, while data from 2013 and 2014 were used to test the models’ predictive ability. 201 

Since the difference from the weekly average MIR was used to fit the model, the MIR weekly 202 

averages were added to the model estimates to produce the predicted MIR values. The 203 
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predicted residual sum of squares (PRESS), calculated as the sum of squared errors of out-of-204 

sample prediction values for 2005 to 2013, was used as a measure to compare the model 205 

predictions (Chaves and Pascual 2007). Out-of-sample predictions were made by randomly 206 

dropping one weekly observation at a time to predict, while using the remainder of the data to 207 

fit the model.  Once we selected the best model for DuPage County and were reaching the end 208 

of the 2014 mosquito season, we refit the model including the year 2013 data to recalculate 209 

and improve the models’ coefficients. Finally, we compared the best new local model with the 210 

legacy model predictions, using the mean square prediction error (MSPE) and standard error 211 

(SE) of MSPE for model prediction for the year 2014, a year that was not used to fit the 212 

coefficients of either of the two models.   213 

  214 

Results 215 

Data exploration 216 

 During the study period, the three years with the highest rates of human illness in 217 

DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness 218 

(Table 1). These years also had high average mosquito infection rates of 5.57, 6.88, and 8.74 219 

respectively. In the two years 2010 and 2013, average MIR was similar to the years with more 220 

human illness, but the peak MIR week was later. Weekly precipitation was often lower in the 221 

three weeks prior to the peak MIR and the DW temperature higher at the peak MIR week 222 

during higher MIR years.    223 

 The initial comparison between the actual MIR and predicted MIR using the legacy 224 

model for DuPage County indicated that the model captured the main trend of infection rates 225 
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but did not always correctly estimate the amplitude or timing of mosquito infection, especially 226 

in years with low infection rates (Figure 3A).   227 

 Weekly average precipitation showed moderate correlation with MIR. The assessment 228 

of correlations between weather variables and MIR at different weekly time lags determined 229 

that the average weekly precipitation and DW were most strongly correlated with MIR at lags 1-230 

4, with correlation dropping after a 4-week lag (Figure 4). The correlation between MIR and DW 231 

was particularly strong at short lags and showed a clear pattern of decreasing correlation with 232 

increased time lag. The Pearson’s correlations between MIR and lagged MIR were 0.88 (n=209, 233 

p < 0.0001) at one week and 0.73 (n=208, p < 0.0001) at two weeks. We found that the average 234 

precipitation of weeks 27-39 of the previous year showed the highest negative correlation with 235 

MIR (Table 2). Therefore, we considered this variable in the new DuPage County MIR model. 236 

Model selection 237 

 After observing the timing of data availability following mosquito collection and testing 238 

in the county, we determined that the data for a 2-week lagged autoregressive MIR term may 239 

be available for use in a real-time prediction model, but the data would not be available in time 240 

for including the 1-week lagged MIR. Initial model diagnostics revealed additional temporal 241 

correlation among the residuals, even after the seasonal de-trending of MIR. Thus, we also 242 

included the temporal variable week as a predictor. Week was a more significant and influential 243 

variable in the MIR independent models. The four best models, after AIC variable selection, 244 

based on the R
2

adj and the smallest AIC included variables significant with p < 0.1. As a last step, 245 

the least important interaction terms were also excluded in cases where the model fits were 246 
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not significantly changed as a result. From six to nineteen variables were selected for the four 247 

models (Table 3).  248 

 Comparing model structures, two things became clear. First, in the models that included 249 

prior MIR (models 1 and 3), MIR had an exceptionally strong effect on the model prediction in 250 

all cases; and second, the interaction terms significantly improved the model fit. The MIR 251 

dependent model with interaction effects (model 3) explained the most variation (R
2

adj = 0.721; 252 

AIC = 315.2), but the strong contribution of the interaction terms was seen especially when MIR 253 

from previous weeks was not included in the model (comparison of model 2 and model 4). 254 

Though the autoregressive MIR term was an important factor statistically, we determined that 255 

its inclusion in the model could overwhelm the effect of weather on MIR prediction. In other 256 

words, the MIR autoregressive terms tended to mimic the prior weeks’ MIR pattern, making 257 

predictions less sensitive to actual changes in weather.   258 

 Based on these observations, we decided that the MIR independent models were 259 

preferred. They modeled more clearly the relationship of next week’s MIR with the weather 260 

variables and obviated the need to wait for field-based collections and testing. We then 261 

considered whether implementation of the more complex interaction term model was 262 

warranted over a simpler model. For DuPage County, the best independent main effects model 263 

(model 2) explained only about half of the variation in MIR (R
2

adj=0.451; AIC=409.0), whereas 264 

the best MIR independent 2
nd

 order interaction model (model 4) explained 66 percent 265 

(AIC=353.5). For these reasons, we selected the latter model for implementation. The larger 266 

PRESS statistic of 0.537 of model 4 also showed the strength of this model over model 2 267 

(PRESS=0.481). Quadratic terms were also tested in model construction due to a possible 268 
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quadratic relationship between MIR and DW lags seen in the exploratory analysis, but did not 269 

improve the model. Finally, comparing the best local model with the legacy model, the 2014 270 

MSPE and SE of the new local DuPage model was 4.54 and 1.70 respectively, which was lower 271 

(less error) when compared to the legacy model MSPE of 5.52 and SE 2.08. 272 

Model inference 273 

 The best model’s final variable selection included weekly precipitation (prec) at 1 to 3 274 

week lags, weekly DW at 1 to 4 week lags, the average precipitation in the third quarter of the 275 

previous year (previous year prec. weeks 27-39), and 9 interaction terms, for a total of 17 276 

factors (Table 3). All of the included terms had significant effects at α=0.1 on MIR predictions.  277 

As with the legacy model, DW had a larger overall effect on infection rate than precipitation.  278 

 Considering the overall effect of the weather variables, an increase in average DW in the 279 

4 prior weeks led to higher than average infection rate estimates.  Precipitation effects varied, 280 

however, with a positive effect of rainfall in the week immediately prior, but a negative effect in 281 

the second and third prior weeks. Unlike DW, rainfall four weeks prior did not have an effect on 282 

the model estimates. The strongest main effects variable was DW with a 1-week lag with an 283 

effect of 1.10. For precipitation, the strongest variable was lower than average precipitation 284 

during weeks 27-39 of the previous year, which led to higher MIR estimates with an effect of -285 

0.21.  286 

Discussion 287 

 Since temperature and precipitation are largely interdependent events, interaction 288 

terms more realistically represented the relationship between temperature and precipitation 289 

and their combined effect on infection rate. This was an important improvement over the 290 
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legacy model and provided insight into how weather affected the mosquito infection rate.  In 291 

particular, the interaction terms revealed that though higher DW generally increased MIR, 292 

higher DW two weeks prior in combination with higher than average precipitation in weeks 1, 293 

2, and 3 prior each resulted in lower MIR. In other words, higher precipitation slightly reduced 294 

the magnitude of temperature’s effect on MIR, as seen by the effect of DW on MIR decreasing 295 

from 2.41 to a magnitude of 2.16 when the average precipitation in preceding weeks is below 296 

average by 1.85 cm (Figure 5A). In addition, with lower than average precipitation, temperature 297 

became an even stronger predictor of MIR (Figure 5A) and with lower than average 298 

temperatures, precipitation had minimal to no effect on MIR (Figure 5B). Refer to the 299 

Supplementary Materials for figures with all interaction plots. 300 

 The legacy model (Ruiz et al 2010) captured the overall shape of the mosquito infection 301 

curve when applied to a sub-region of the area for which it was developed, but significant 302 

improvements were possible by developing a new model to account for local weather 303 

conditions, by using the local MIR, by introducing additional terms, and by using more years of 304 

data in the model. We found that the general linear regression approach used by the legacy 305 

model, with MIR based on prior weather conditions, provided a reproducible methodology to 306 

estimate MIR in a location and time period that was not part of the original model. The 307 

assessment of the use of prior MIR in the new DuPage County model led us to conclude that a 308 

model that is not dependent on MIR measured in previous weeks is both statistically sound and 309 

operationally preferred. In situations where the MIR can be reliably measured across the entire 310 

study region, the MIR dependent model may give good predictions most weeks, but with the 311 

caution that a prediction immediately after a rapid change in weather may not capture the true 312 
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effect of weather and thus over-emphasize the effect of past MIR. The inclusion of significant 313 

interaction terms between rainfall and temperature greatly improved the model’s fit and 314 

provided more detailed insight into the relationship between weather and mosquito infection 315 

rate.  316 

 Both higher temperature and below average precipitation led to an increase in MIR, 317 

which conforms to prior expectations (Shaman et al. 2005, Paz and Albersheim 2008, Paz et al. 318 

2013). Additionally, temperature had a greater influence than precipitation on mosquito 319 

infection as demonstrated in the results of all four models, where the effect of DW had a much 320 

stronger effect than the precipitation variables (see Table 3). Significant interactions revealed 321 

that when temperature was much lower than average, low precipitation had little to no effect 322 

on the prediction and when precipitation was much lower than average, temperature had an 323 

even greater influence. It is this second situation that is most likely to lead to illness from WNV, 324 

and we recommend that public health personnel should develop the  information they provide 325 

to the public on the risk of WNV in the following week by incorporating both the predicted MIR 326 

and the prior weather patterns.  327 

 Because lower than average precipitation during weeks 27-39 of the previous year 328 

resulted in higher MIR during the current mosquito season, the next summer’s MIR can be 329 

approximated prior to the onset of the WNV season, a point also made by Hahn et al. (2015). 330 

Reasons behind the significance of the previous fall and winter’s precipitation remain unclear.  331 

It is possible, for example, that less rainfall during the fall and winter are correlated with the 332 

amount of rainfall during later periods, and the effect is indirect rather than direct. It is also 333 

possible that this variable improves the model mostly during the early part of the season, and it 334 
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may not be as important for the critical period of virus amplification.  Less moisture in the soil 335 

at the start of the season might lead to a more patchy distribution of mosquito larval sites, thus 336 

influencing spatial patterns of interactions between birds and mosquitoes. Vegetation 337 

characteristics, related to the avian hosts and their interactions with WNV vectors, may also be 338 

affected by weather (Gibbs et al.  2006, LaDeau et al. 2008). Mosquito abundance may be 339 

higher following a dry fall due to a reduction of predator species (Walsh et al. 2008).  340 

Abundance may also be affected by a mild winter with higher survival rates of overwintering 341 

Culex pipiens and restuans, while cooler weather earlier in the fall may lead to earlier, more 342 

successful hibernation, and earlier warmer conditions in the spring could provide conditions for 343 

early emergence (Walsh et al. 2008). The simple linear models used in the current study would 344 

not be suitable to determine these complex biological interactions.  However, both 345 

precipitation and temperature during the prior year and the winter and spring weeks leading up 346 

to mosquito season of the same year should be evaluated in future work.   347 

 Several factors may influence the calculation of MIR estimates used to build the models.  348 

For WNV surveillance, the best policy management decisions are often tempered by funding 349 

and public perceptions related to pesticide use and to the risk of human illness (Shaw et al. 350 

2010, Tedesco et al. 2010, Dickenson and Paskewitz 2012,). Thus, temporal and spatial 351 

variability in testing effort and in mosquito abatement is likely, but it is difficult to measure.  352 

Pooled samples for testing mosquitoes are another issue. The testing of mosquitoes is usually 353 

done with pools of variable size, rather than testing individuals. This characteristic, in 354 

combination with the relative inability to discriminate between latent and active infection 355 

levels, and the differences in results from different testing methods can lead to errors in the 356 
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measurement of mosquito infection rates (Bustamante and Lord 2010, Speybroeck et al. 2012).  357 

Although of interest from a research perspective, these measures are not easily managed 358 

across administrative areas, and different approaches in other places may need to be 359 

considered if this MIR model is applied in other locations. 360 

 An important area of research is to explore more fully the effects of weather on avian 361 

hosts, mosquito abundance and human behavior relative to the risk of WNV illness. The 362 

relationship between mosquito infection and the abundance of Culex vectors could not be 363 

assessed in our analysis, so the model does not use a vector index measure, which is often used 364 

to determine the risk of human exposure (e.g. Chung et al. 2013). Abundance measures were 365 

not available in this study because the number of tested mosquitoes, not the full count from 366 

each  collection was recorded in the IDPH database. DuPage County did have some light trap 367 

and larval sampling to monitor vector mosquito abundance, but these were not collected 368 

systematically across all entities and could not be incorporated into the model.   369 

 One future analysis would be to determine how weather influences the abundance of 370 

vector mosquito populations both temporally and spatially (see Yoo 2014 for example), and 371 

develop an approach to incorporate this into predictions of MIR. For example, Lebl et al. (2013) 372 

analyzed light trap counts of Culex mosquitoes relative to weather in northeast Illinois and 373 

found abundance was positively correlated with temperature during the prior two weeks and 374 

negatively associated with increased wind speed. Chaves et al. (2013) found that Culex pipiens 375 

abundance in the island of Jeju-do Korea was positively associated with temperature, but with 376 

heterogeneities at local scales, as mosquito abundance decreased with rainfall in the north, 377 

while it increased with minimum temperature in the south. Morin and Comrie (2013) 378 
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developed a climate-based approach to link temperature and rainfall conditions in the southern 379 

U.S. to the population dynamics of the WNV vector Culex quinquefasciatus and extended their 380 

approach to consider future conditions under climate change, finding that dry and hot 381 

conditions may reduce populations. Kunkel et al. (2006) used a long-term database on vector 382 

mosquito abundance in Central Illinois to link weather to the so-called “crossover” of the early-383 

season dominance of Culex restuans that gives way to the later-season Culex pipiens. The timing 384 

of their crossover was related to weather and often coincided with WNV amplification 385 

(Westcott et al. 2011). Studies that incorporate both biotic and abiotic factors to model 386 

mosquito abundance are relatively rare, and future work should be directed in this area to 387 

create a more nuanced WNV risk estimate. 388 

 The main intent of our work was to build a stable local model that would provide a 389 

reliable way to predict MIR quickly and effectively. With our model, we were able to provide 390 

regionally calibrated model-based estimates of MIR two to three weeks sooner than MIR 391 

estimation that needed test results from mosquitoes collected by a variety of agencies to be 392 

completed by all groups and compiled into a common MIR value. Of immediate interest would 393 

be to apply our methods to other locations to develop a similar weather-only model for further 394 

comparison where vegetation and landscape factors are different from those in northern 395 

Illinois. We do not expect that our model will apply to all other locations, but we expect that its 396 

general structure can form a template for similar MIR prediction models elsewhere and 397 

ultimately may be a way to estimate MIR, even in the absence of lab testing for WNV. 398 

 399 
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Tables 589 

Table 1. DuPage County West Nile virus-related annual conditions data summary.  590 

Year 

MIR 

Mean (SD)   

Week of 

Max  

MIR (Peak) 

Avg Prec. (cm) of 3 weeks 

before peak week* 

DW at peak 

week* 

WNV Human 

Cases 

2005 5.57 (6.14) 32 -0.74 11.95 47 

2006 6.88 (8.50) 34 -0.68 6.67 43 

2007 2.76 (3.18) 33 1.23 -1.52 10 

2008 1.13 (1.77) 37 0.59 -2.31 1 

2009 0.78 (0.77) 37 0.36 -5.22 0 

2010 5.66 (6.90) 35 -1.61 16.98 17 

2011 2.63 (3.73) 36 -0.77 12.46 2 

2012 8.74 (7.91) 32 -0.08 29.02 56 

2013 4.52 (5.56) 36 -1.40 5.42 6 

2014 3.27 (5.07) 35 3.42 -0.57 6 

*Differences from weekly averages using the 30-year Normal of both temperature and 591 

precipitation. 592 

 593 

 594 

 595 

 596 

 597 
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Table 2. Pearson’s correlation (r) between MIR and the previous year’s average precipitation 598 

over blocks of 52, 26, and 13 weeks.  599 

 600 

 601 

 Weeks 

1-52 

Weeks 

1-26 

Weeks 

27-52 

Weeks 

1-13 

Weeks 

14-26 

Weeks 

27-39 

Weeks 

40-52 

r -0.262 0.014 -0.439 -0.063 0.048 -0.460 -0.091 

p-

value 

< 0.001 0.853 < 0.001 0.391 0.514 < 0.001 0.213 

 602 

 603 

 604 

  605 
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Table 3. Variable effects (standard errors) and fit of 4 model types: (1) Main effect model 606 

dependent on MIR, (2) Main effect model independent of MIR, (3) Interaction model 607 

dependent on MIR, (4) Interaction model independent of MIR.   608 

 Model 1 Model 2 Model 3 Model 4 

R
2
 adjusted 0.661 0.511 0.721 0.658 

PRESS 0.635 0.481 0.635 0.537 

AIC 340.6 409.0 315.2 353.5 

Main Effects 

(at week lag) 

    

MIR (2
nd

 order) 0.14(0.02)***  0.11(0.02)***  

Week -0.08(0.05) -0.25(0.06)*** -0.10(0.05)* -0.23 (0.05)*** 

 Model 1 Model 2 Model 3 Model 4 

Prec. (1)   0.06(0.04) 0.09(0.05)* 

Prec. (2) -0.06(0.04) -0.09(0.05) -0.05(0.04) -0.03(0.05) 

Prec. (3)   -0.07(0.04) -0.09(0.05) 

DW (1) 0.72(0.12)*** 0.99(0.14)*** 1.12(0.23)*** 1.21(0.25)*** 

DW (2)   0.01(0.32) 0.13(0.36) 

DW (3)   -0.59(0.32) -0.83(0.37)* 

DW (4) -0.53(0.11)*** -0.41(0.13)** 0.01(0.21) 0.42(0.26) 

Previous Year Prec.  

(wks 27-39) 

-0.14 (0.05)*** -0.30(0.05)*** -0.08(0.04) -0.18(0.05)*** 
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Interaction Terms     

Prec. (1)*DW (2)   -0.83(0.20)*** -1.15(0.22)*** 

Prec. (1)*DW (3)   0.86(0.20)*** 1.13(0.22)*** 

Prec. (2)*DW (2)   0.89(0.37)* 1.29(0.41)** 

Prec. (2)*DW (3)   -1.71(0.51)** -2.53(0.57)*** 

Prec. (2)*DW (4)   0.78(0.22)*** 1.18(0.24)*** 

Prec. (3)*DW(1)   0.72(0.26)** 0.83(0.29)** 

Prec. (3)*DW(2)   -0.68(0.25)** -0.85(0.28)** 

DW(2)*DW(4)   -0.12(0.03)*** -0.71(0.17)*** 

DW(2)*DW(3)    0.55(0.18)** 

 609 

R
2
 adjusted and predicted residual sum of squared errors (PRESS)  are  reported for each model. 610 

* indicated the variable is significant at 5% level, ** significant at 1% level and *** significant at 611 

0.1% level.  612 

  613 
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Figure Legends 614 

Figure 1.  Map of the study region with the two weather station locations and the average 615 

number of trap locations at which mosquitoes were tested.  The legacy model was developed 616 

from data combined from Cook and DuPage counties. The current objectives focus on DuPage 617 

County, only.  The average number of traps is for the years from 2005 to 2014 summarized for 618 

hexagons of 200 hectares. 619 

Figure 2 (A) Average weekly Mosquito Infection Rate (MIR) with normal precipitation and (B) 620 

Average MIR with normal temperature. The average MIR is a weekly average from the DuPage 621 

County study area from 2005 to 2014. 622 

Figure 3. (A)  Measured MIR and legacy model estimates (Predicted MIR = a + 0.35 (3wk Prec. 623 

moving average at 3 week lag) + 0.42 (DW at 1week lag) – 1.57 (previous year prec.) (MSPE* 624 

2.640). (B) Measured MIR and new model estimates with interactions (MSPE 1.826). *Mean 625 

squared prediction error. Supplementary Material includes a graph of the full range of years 626 

shown as a subset of four years in Figure 3A. 627 

Figure 4.  Correlations between weather variables and DuPage MIR at lags of from 1 to 8 weeks. 628 

Figure 5.  Interaction Plots between the variables DW and precipitation of preceding weeks and 629 

the variable  MIR. All variables are measured as the difference from the weekly average.  630 

Covariates were scaled before plotting. A: Effect of DW when precipitation is low/high. 631 

Equation of solid line: MIR=-0.003+2.41*DW .  B: Effect of precipitation when DW is low/high. 632 

Equation of solid line: MIR=-0.003-0.39*prec. 633 

 634 
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DuPage Local Model Details.  

Included in this file is: details of coefficients and p-values of model terms, diagnostic plots for this model, 

scatterplots and interaction plots and interpretations for most significant terms. 

Supplementary Table 1. Local DuPage Model Effects, Coefficients, and p-values for each term. *Significant at 0.05 

**Significant at 0.01 ***Significant at 0.001 

Variable Effect Coefficient Significance (P-Value) 

Intercept 0.164 -0.79  

Prec.1wk lag1 0.10 2.19 0.053 

Prec.1wk lag2 -0.02 0.04 0.744 

Prec.1wk lag3 -0.08 -1.44 0.081 

DW lag1 1.12*** 0.59 6x10
-5

*** 

DW lag2 0.13 0.11 0.62 

DW lag3 -0.83* -0.62 0.02* 

DW lag4 0.40 0.44 0.05* 

Prec.1yr Q4 -0.19*** -8.80 0.0004*** 

Prec.1wk lag1*DW lag 2 -1.26*** -2.86 1.34x10
-7

*** 

Prec.1wk lag1*DW lag 3 1.26*** 3.06 1.47x10
-7

*** 

Prec.1wk lag2*DW lag 2 1.28** 2.79 0.004** 

Prec.1wk lag2*DW lag 3 -2.65*** -6.24 2x10
-5

*** 

Prec.1wk lag2*DW lag 4 1.33*** 3.40 3.71x10
-7

*** 

Prec.1wk lag3*DW lag 1 0.71* 1.47 0.021* 

Prec.1wk lag3*DW lag 2 -0.74* -1.63 0.013* 

DW lag2*DW lag4 -0.74*** -0.07 1.25x10
-4*** 

DW lag2*DW lag3 -0.73** 0.05 0.003** 

 

Supplementary Figure 1. Legacy Model from Ruiz 2010, DuPage Local model, and actual DuPage MIR from 2005 through 

2014  
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Supplementary Figure 2. Diagnostic Plots for Local Model above.  

 

• Residuals vs Fitted Plot (Plot 1) shows residuals randomly distributed about 0 

• Q-Q plot (Plot 3) validates the assumption that our residuals follow a normal distribution 

• Leverage Plot (Plot 4) shows no large leverage points based on Cook’s distance 
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Supplementary Figure 3. Scatter and Interaction Plots for most significant variables. 

 

• Higher than average DW in past weeks ago leads to higher MIR this week (effect of DW decreases with lag as see

n previously by correlation r) 

• The lower from average last week’s precipitation is, the less positive effect DW has on MIR 
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• In general, when there is lower than average precipitation in the past few weeks, DW in the past few weeks has a greater p

ositive effect on MIR 

• This observation seems to be most clear when looking at interaction plots of precipitation weeks and DW weeks that are clo

ser together temporally.  

• If DW is lower than average 3-4 weeks ago, DW 2 weeks ago has a more positive effect on MIR 
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• In general, lower than average DW values for the past 4 weeks lessens the negative effect of precipitation in the 

past 3 weeks 

• Again, this relationship is more clear between precipitation and DW of consecutive weeks 
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• Exception: When higher than average DW 2 weeks ago, higher than average precipitation last week has slightly p

ositive effect. This reflects DW has stronger influence on MIR prediction than precipitation  

• Precipitation in the past 3 weeks tends to have a negative effect on MIR 
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