

Journal of Medical Entomology

Predicting West Nile Virus Infection Risk from the Synergistic Effects of Rainfall and Temperature

Journal:	Journal of Medical Entomology
Manuscript ID	JME-2015-0246.R3
Manuscript Type:	Research Article
Date Submitted by the Author:	16-Mar-2016
Complete List of Authors:	Shand, Lindsay; University of Illinois, Statistics Brown, William; University of Illinois at Urbana-Champaign, Pathobiology Chaves, Luis; Nagasaki University, Institute of Tropical Medicine (NEKKEN), Department of Vector Ecology and Environment; Tomonori, Goldberg, Tony; University of Wisconsin, Pathobiological Sciences Hamer, Gabriel; Texas A&M, Entomology Haramis, Linn; Illinois Dept of Public Health, Division of Environmental Health Kitron, Uriel; Emory University, ENVS Walker, Edward; Michigan State University, Microbiology and Molecular Gentics Dept Ruiz, Marilyn; University of Illinois at Urbana-Champaign, College of Veterinary Medicine
Please choose a section from the list :	Vector-Borne Diseases, Surveillance, Prevention
Field Keywords:	West Nile Virus, Modeling, Public Health Entomology
Organism Keywords:	Culex

SCHOLARONE[™] Manuscripts

1	Shand et al.: WNV risk prediction	Marilyn O'Hara Ruiz
2	from rainfall and temperature	Department of Pathobiology
3		2001 South Lincoln Avenue
4	Journal of Medical Entomology	Urbana, Illinois 61802
5	Full-length research article, Vector-Borne Diseases,	217-265-5115 (office phone)
6	Surveillance, Prevention	21/-244-7421 (office FAX)
7		moruiz@mnois.edu
8		
9		
10		
12	Predicting West Nile Virus Infection Risk from the Syner	vistic Effects of Bainfall and
13	Temperature	
14		
15	L. Shand, ¹ W.M. Brown, ² L. F. Chaves, ³ T.L. Goldberg, ⁴ G	. L. Hamer, ⁵ L. Haramis, ⁶ U. Kitron ⁷ E. D.
16	Walker ⁸ and M.O. Ruiz ²	
17		
18	¹ Department of Statistics, University of Illinois, Urbana,	IL 61801
19	² Department of Pathobiology, University of Illinois, Urba	ana, IL 61801
20	³ Institute of Tropical Medicine (NEKKEN), Nagasaki Univ	versity, Japan
21	⁴ Department of Pathobiological Sciences, University of V	Wisconsin, Madison, WI 53706
22	⁵ Department of Entomology, Texas A&M University, Co	llege Station, TX 77843
23	⁶ Division of Environmental Health, Illinois Department of	of Public Health, Springfield, IL 62761
24	⁷ Department of Environmental Sciences, Emory Univers	ity, Atlanta, GA 30322
25 26	⁸ Department of Microbiology and Molecular Genetics, M MI 48824	Michigan State University, East Lansing,
27		

Abstract

- 30 Mosquito-based surveillance is a practical way to estimate the risk of transmission of West Nile
- 31 virus (WNV) to people. Variations in temperature and precipitation play a role in driving
- 32 mosquito infection rates and transmission of WNV, motivating efforts to predict infection rates
- 33 based on prior weather conditions. Weather conditions and sequential patterns of
- 34 meteorological events can have particularly important, but regionally distinctive, consequences
- for WNV transmission, with high temperatures and low precipitation often increasing WNV
- 36 mosquito infection. Predictive models that incorporate weather can thus be used to provide
- early indications of the risk of WNV infection. The purpose of this study was: first, to assess the
- ability of a previously published model of WNV mosquito infection to predict infection for an
- 39 area within the region for which it was developed: and second, to improve the predictive ability
- 40 of this model by incorporating new weather factors that may affect mosquito development.
- The legacy model captured the primary trends in mosquito infection, but it was improved
- 42 considerably when calibrated with local mosquito infection rates. The use of interaction terms
- 43 between precipitation and temperature improved model performance. Specifically,
- 44 temperature had a stronger influence than rainfall, so that lower than average temperature
- 45 greatly reduced the effect of low rainfall on increased infection rates. When rainfall was lower,
- 46 high temperature had an even stronger positive impact on infection rates. The final model is
- 47 practical, stable and operationally valid for predicting West Nile virus infection rates in future
- 48 weeks when calibrated with local data.
- 49 West Nile virus, climate and weather, risk model, Illinois

50	
51	
52	Predicting West Nile Virus Infection Risk from the Synergistic Effects of Rainfall and
53	Temperature
54	
55	Since the introduction of West Nile virus (WNV) into the Western Hemisphere via New
56	York City in 1999, WNV has spread throughout the Americas and poses an ongoing and serious
57	threat to human and animal health. Over 40,000 cases of illness from WNV were reported
58	through public health surveillance systems in the United States between 1999 and 2014 (CDC
59	2014). The number and location of cases has varied each year, and the ability to predict
60	outbreaks has proven to be challenging. After a period of relatively low activity between the
61	years 2008 to 2011, a large outbreak in 2012, with 5674 human cases reported in the United
62	States, renewed concern about the need for public health preparedness, and spurred efforts to
63	determine better ways to anticipate and reduce the risk of exposure to WNV (Nasci 2013).
64	Mosquito-based surveillance is a recommended, standard, and practical way to estimate
65	the risk of transmission of WNV and other mosquito-borne pathogens to people (Macdonald
66	1956, Moore et al. 1993, Hokit et al. 2013). Select species of mosquitoes in the genus Culex
67	comprise over 95 percent of the positive tests for WNV in the United States and are the primary
68	focus of mosquito surveillance efforts (Andreadis 2012). After trapping of blood-fed vector
69	mosquitoes and virus diagnostic testing, the minimum infection rate and the maximum
70	likelihood estimator for mosquito infection rates based on pooled samples are common
71	measures used to estimate the true infection rate (Walter et al. 1980, Hepworth 2005, Gu et al.
72	2003, Biggerstaff 2009, Ebert et al. 2010).

73	Variations in temperature and precipitation play a role in driving the WNV infection rate
74	and transmission, motivating efforts to predict WNV mosquito infection rates from prior
75	weather conditions. Warmer weather increases potential for transmission because it reduces
76	the number of days between virus ingestion to effective transmission (extrinsic incubation
77	period), shortens the length of time between blood meals (gonotrophic cycle), and leads to an
78	earlier start to seasonal mosquito activity (Turell et al. 2001, Dohm 2002, Turell et al. 2005,
79	Reisen et al. 2010, Hartley et al. 2012). Mosquito abundance also generally increases with
80	warmer temperatures, but very hot conditions can have the opposite effect; and shorter
81	lifespans in Culex mosquitoes may reduce transmission as fewer individuals live long enough to
82	become infectious (Chaves et al. 2013, Ciota et al. 2014).
83	Hydrologic conditions also affect WNV transmission. Culex mosquitoes reproduce in
84	standing water, but heavy rainfall can reduce <i>Culex</i> survival both at the adult stage and during
85	larval development (Gardner et al. 2012, Jones et al. 2012). Rainfall influences near-surface
86	humidity, and studies have found that higher humidity induced oviposition in gravid Culex
87	nigripalpus (Day and Curtis 1999) and Culex quinquefasciatus (Chaves and Kitron 2011). Thus,
88	rainfall may increase the potential for pathogen transmission as females seek blood meals prior
89	to oviposition. The frequency, strength, and timing of rainfall events can also affect water
90	chemistry and the degree to which standing water is suitable for mosquito pre-adult
91	development (Shaman and Day 2007, Chaves and Kitron 2011, Gardner et al. 2013).
92	The net result of these effects is that high temperatures combined with low
93	precipitation have often led to higher than average mosquito infection, but these effects vary
94	by region, and the effect of rainfall is especially variable. Weekly patterns of lower than average

rainfall and higher temperature, for example, explained about 70 percent of the variability in 95 96 WNV mosquito infection rates in a study focused on the Chicago, Illinois area (Ruiz et al. 2010). Similarly, drought followed by wet conditions preceded the reporting of WNV human illness in 97 Florida (Shaman et al. 2005;). Drought, during which mosquitoes and birds are in closer 98 99 proximity due to reduced water availability, could cause local sylvatic amplification of WNV, 100 and subsequent rainfall could then allow dispersal of infected vectors and hosts (Shaman et al. 2005). Especially during very hot and dry periods, human-introduced water can create 101 102 mosquito habitats that might not be otherwise available (Reisen et al. 2008, Barker et al. 2009, 103 Becker, Leisnham, and LaDeau 2014). The relationship between prior rainfall and WNV 104 outbreaks has varied in prior analyses. Outbreaks of WNV in Europe in 2010, for example, were 105 preceded two to four weeks earlier by warmer than average conditions, but the outbreaks were 106 less clearly associated with relative humidity and rainfall (Paz et al. 2013). Similarly, warmer 107 than average winter temperatures and higher than average rainfall preceded the 2012 outbreak 108 in Dallas, Texas, but variables that measured rainfall were not significant in a multivariate 109 analysis (Chung et al. 2013).

The purpose of our study was two-fold. First, we assessed the ability of a previously published model of WNV mosquito infection developed for the Chicago region (Ruiz et al. 2010) to predict infection for a subset of that region – specifically for DuPage County, Illinois. For this objective, we compared the measured WNV mosquito infection rate (MIR) for the period from 2004 to 2013 with the MIR estimated by a linear model that resulted from the prior work (See Supplementary Materials), referred to henceforth as the "legacy model". Then, we worked with public health and mosquito abatement personnel in DuPage County in 2014 to learn about the

117	local characteristics of mosquito testing and delivery of public health warnings, so that a
118	predictive model for WNV could be developed and implemented effectively in this setting.
119	Second, we refined the legacy model both to develop a model that takes into account the local
120	conditions and to exploit weather data more fully by considering interaction effects between
121	rainfall and temperature. The broader context of this work is to provide a practical,
122	generalizable, and operationally valid approach to predicting WNV mosquito infection that can
123	be incorporated into public health assessments using data from prior weather conditions.
124	Materials and Methods
125	Study region.
126	DuPage County, Illinois, is located west of the city of Chicago (Figure 1). It comprises an
127	area of 848 km ² and is the second most populous county in the state of Illinois, with a
128	population of 932,126 in 2013 (US Census Bureau). Mosquito control in the county is organized
129	through a combination of mosquito abatement districts, townships, municipalities, and several
130	large landholders. The study period of interest was from 2005 to 2014 and model development
131	included data on weather conditions and mosquito infection rates during this period. All data
132	were organized by week, with weeks starting on Saturday.
133	Weather data
134	Daily temperature and precipitation measures were based on two local weather
135	stations: Midway (MDW) and O'Hare (ORD) (Figure 1). Weekly precipitation (rainfall in cm) was
136	calculated from the daily average for each week from the two stations. Weekly temperature
137	was measured as the mean of the temperature (°C) from the daily temperature readings from
138	the two stations. Temperature data were further used to calculate a variable called a "Degree

Week" (DW) constructed similarly to the more common Degree Day, but with differences 139 140 accumulated over weeks, rather than days (Ruiz et al. 2010). The DW is the cumulative sum of the difference of all prior weekly temperatures from a threshold value of 22°C. The 141 temperature threshold of 22°C was used because compared to other values, it led to the 142 143 highest correlation between DW and the weekly local MIR based on cross-correlations across a range of threshold values from 10° to 24°C and time lags from one to ten weeks (Baker et al. 144 1984, Curriero et al. 2005, Kunkle et al. 2006). For a given week: ΔDW =T_{mean}-T_{base} if the weekly 145 146 Temperature (T_{mean}) is greater than the threshold (T_{base}=22°C) and 0 otherwise. To remove the seasonal trend from the model, weather variables were measured as the weekly differences 147 from the 30-year Climate Normals for 1981-2010, provided by the U.S. National Weather 148 149 Service (Figure 2). These differences captured the patterns outside the seasonal trends and focused the analysis on characterizing how weeks differed from the expected values. We also 150 151 considered variables that measured the prior year's average precipitation as was done in Ruiz et al. (2010). To improve our understanding of this relationship with MIR, we considered the 152 effect of the average precipitation for four equal parts of the prior year starting with week 1, 153 rather than the year as a whole. 154

155 Mosquito data

The results of mosquito pools tested for WNV during the years from 2005 to 2013 from specimens and collected from gravid traps located in DuPage County were provided by the Illinois Department of Public Health (IDPH). These data were submitted to the IDPH Web Portal, where Illinois agencies upload WNV mosquito test results. For 2014 data, mosquito test results were received directly from the DuPage County Department of Public Health. Test results were

161	selected to include only the most common female vector species mosquitoes, which in this
162	region are Culex pipiens and Culex restuans (Hamer et al. 2008, Andreadis 2012). PCR and
163	VecTests were reported from 2005 to 2007 and PCR and RAMP tests, from 2009 to 2014. PCR
164	tests comprised from 49 percent to 65 percent of all samples, depending on the year. The IDPH
165	protocol stipulates pool sizes no larger than 50 individuals, and 19,115 (99 percent) of the
166	19,345 pools tested were within this guideline. The number of gravid trap locations in the study
167	region during the years of interest varied from 136 trap locations in 2007 to 72 in 2014 (Figure
168	1). Test result data were grouped by week and the <i>MIR</i> was calculated for a given week where:
169	minimum infection rate = 1000 * (number of positive pools)/ (total number of mosquitoes in
170	pools tested), using the CDC Excel Add-in for pooled infection rates (Biggerstaff 2009). As with
171	the weather data, the MIR variable was calculated as the difference from the countywide
172	average MIR from 2005-2013 (Figure 2).

173 Model development

To determine how well the legacy model published in Ruiz et al. (2010) performed for 174 DuPage County alone, we first used the coefficients from the weather-only (MIR independent) 175 version of this model and local weather station data and compared visually the actual MIR for 176 DuPage County with the predicted weekly MIR values. For the new model, initially, we 177 considered all weather variables - including 1-8 week lags of temperature and rainfall and the 178 prior year's precipitation measured in guarters, halves, and the full year. We used Pearson's 179 correlation r values to assess the strength of associations between weather variables and MIR 180 at different time lags to determine how far back in time to include weekly lagged weather 181

variables and to determine the relative strength of the associations with prior seasons'precipitation.

184	Using the same general approach as the legacy model, we developed new linear
185	regression models to predict the weekly DuPage County MIR. All models were fitted using the
186	least squares method with the R package <i>stats</i> (R Core Team 2013). We selected the model
187	variables using adjusted R ² (R ² _{adj}) and Akaike Information Criteria (AIC) with both backward and
188	forward stepwise regression with a significance level threshold of α =0.1. Calendar weeks 18-38
189	(from the end of April to mid-September) from each year were used to develop the model. Data
190	were treated as a weekly time series, with weekly weather data starting four weeks prior to the
191	MIR data, to account for the temporal lags prior to the first MIR measurement in week 18.
192	We investigated the effect of the temporal autocorrelation of <i>MIR</i> by developing <i>MIR</i>
193	lag dependent models that included prior levels of <i>MIR</i> to predict future levels. We then added
194	all interaction terms between the temperature and precipitation weekly lagged weather
195	variables in interactions models. One important practical goal was to determine if it was
196	possible to use the MIR measured from mosquitoes collected and tested during the current
197	season for real-time predictions. Thus, we compared four model types in the model
198	development phase: MIR dependent models without and with interaction terms, and MIR
199	independent models without and with interaction terms.
200	The new models for DuPage County were fitted initially using data from the years 2005
201	through 2012, while data from 2013 and 2014 were used to test the models' predictive ability.
202	Since the difference from the weekly average MIR was used to fit the model, the MIR weekly
203	averages were added to the model estimates to produce the predicted MIR values. The

204	predicted residual sum of squares (PRESS), calculated as the sum of squared errors of out-of-
205	sample prediction values for 2005 to 2013, was used as a measure to compare the model
206	predictions (Chaves and Pascual 2007). Out-of-sample predictions were made by randomly
207	dropping one weekly observation at a time to predict, while using the remainder of the data to
208	fit the model. Once we selected the best model for DuPage County and were reaching the end
209	of the 2014 mosquito season, we refit the model including the year 2013 data to recalculate
210	and improve the models' coefficients. Finally, we compared the best new local model with the
211	legacy model predictions, using the mean square prediction error (MSPE) and standard error
212	(SE) of MSPE for model prediction for the year 2014, a year that was not used to fit the
213	coefficients of either of the two models.
214	
215	Results
215 216	Results Data exploration
215 216 217	Results Data exploration During the study period, the three years with the highest rates of human illness in
215 216 217 218	Results Data exploration During the study period, the three years with the highest rates of human illness in DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness
215216217218219	Results Data exploration During the study period, the three years with the highest rates of human illness in DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness (Table 1). These years also had high average mosquito infection rates of 5.57, 6.88, and 8.74
215 216 217 218 219 220	Results Data exploration During the study period, the three years with the highest rates of human illness in DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness (Table 1). These years also had high average mosquito infection rates of 5.57, 6.88, and 8.74 respectively. In the two years 2010 and 2013, average <i>MIR</i> was similar to the years with more
 215 216 217 218 219 220 221 	Results Data exploration During the study period, the three years with the highest rates of human illness in DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness (Table 1). These years also had high average mosquito infection rates of 5.57, 6.88, and 8.74 respectively. In the two years 2010 and 2013, average <i>MIR</i> was similar to the years with more human illness, but the peak <i>MIR</i> week was later. Weekly precipitation was often lower in the
 215 216 217 218 219 220 221 222 	Results Data exploration During the study period, the three years with the highest rates of human illness in DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness (Table 1). These years also had high average mosquito infection rates of 5.57, 6.88, and 8.74 respectively. In the two years 2010 and 2013, average <i>MIR</i> was similar to the years with more human illness, but the peak <i>MIR</i> week was later. Weekly precipitation was often lower in the three weeks prior to the peak <i>MIR</i> and the DW temperature higher at the peak <i>MIR</i> week
 215 216 217 218 219 220 221 222 223 	Results Data exploration During the study period, the three years with the highest rates of human illness in DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness (Table 1). These years also had high average mosquito infection rates of 5.57, 6.88, and 8.74 respectively. In the two years 2010 and 2013, average <i>MIR</i> was similar to the years with more human illness, but the peak <i>MIR</i> week was later. Weekly precipitation was often lower in the three weeks prior to the peak <i>MIR</i> and the DW temperature higher at the peak <i>MIR</i> week during higher MIR years.
 215 216 217 218 219 220 221 222 223 224 	Results Data exploration During the study period, the three years with the highest rates of human illness in DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness (Table 1). These years also had high average mosquito infection rates of 5.57, 6.88, and 8.74 respectively. In the two years 2010 and 2013, average MIR was similar to the years with more human illness, but the peak MIR week was later. Weekly precipitation was often lower in the three weeks prior to the peak MIR and the DW temperature higher at the peak MIR week during higher MIR years. The initial comparison between the actual MIR and predicted MIR using the legacy
 215 216 217 218 219 220 221 222 223 224 225 	Results Data exploration During the study period, the three years with the highest rates of human illness in DuPage County were 2005, 2006, and 2012, with at least 40 or more cases of WNV illness (Table 1). These years also had high average mosquito infection rates of 5.57, 6.88, and 8.74 respectively. In the two years 2010 and 2013, average <i>MIR</i> was similar to the years with more human illness, but the peak <i>MIR</i> week was later. Weekly precipitation was often lower in the three weeks prior to the peak <i>MIR</i> and the DW temperature higher at the peak <i>MIR</i> week during higher MIR years. The initial comparison between the actual <i>MIR</i> and predicted <i>MIR</i> using the legacy model for DuPage County indicated that the model captured the main trend of infection rates

but did not always correctly estimate the amplitude or timing of mosquito infection, especiallyin years with low infection rates (Figure 3A).

Weekly average precipitation showed moderate correlation with MIR. The assessment 228 229 of correlations between weather variables and MIR at different weekly time lags determined 230 that the average weekly precipitation and DW were most strongly correlated with MIR at lags 1-4, with correlation dropping after a 4-week lag (Figure 4). The correlation between MIR and DW 231 was particularly strong at short lags and showed a clear pattern of decreasing correlation with 232 233 increased time lag. The Pearson's correlations between MIR and lagged MIR were 0.88 (n=209, 234 p < 0.0001) at one week and 0.73 (n=208, p < 0.0001) at two weeks. We found that the average precipitation of weeks 27-39 of the previous year showed the highest negative correlation with 235 236 MIR (Table 2). Therefore, we considered this variable in the new DuPage County MIR model.

237 Model selection

238 After observing the timing of data availability following mosquito collection and testing 239 in the county, we determined that the data for a 2-week lagged autoregressive MIR term may 240 be available for use in a real-time prediction model, but the data would not be available in time for including the 1-week lagged MIR. Initial model diagnostics revealed additional temporal 241 correlation among the residuals, even after the seasonal de-trending of MIR. Thus, we also 242 243 included the temporal variable week as a predictor. Week was a more significant and influential 244 variable in the MIR independent models. The four best models, after AIC variable selection, based on the R^{2}_{adi} and the smallest AIC included variables significant with p < 0.1. As a last step, 245 246 the least important interaction terms were also excluded in cases where the model fits were

Page 12 of 40

not significantly changed as a result. From six to nineteen variables were selected for the four
models (Table 3).

249 Comparing model structures, two things became clear. First, in the models that included prior MIR (models 1 and 3), MIR had an exceptionally strong effect on the model prediction in 250 251 all cases; and second, the interaction terms significantly improved the model fit. The MIR dependent model with interaction effects (model 3) explained the most variation ($R_{adi}^2 = 0.721$; 252 AIC = 315.2), but the strong contribution of the interaction terms was seen especially when MIR 253 254 from previous weeks was not included in the model (comparison of model 2 and model 4). 255 Though the autoregressive MIR term was an important factor statistically, we determined that 256 its inclusion in the model could overwhelm the effect of weather on MIR prediction. In other 257 words, the MIR autoregressive terms tended to mimic the prior weeks' MIR pattern, making predictions less sensitive to actual changes in weather. 258 259 Based on these observations, we decided that the MIR independent models were preferred. They modeled more clearly the relationship of next week's MIR with the weather 260 261 variables and obviated the need to wait for field-based collections and testing. We then considered whether implementation of the more complex interaction term model was 262 warranted over a simpler model. For DuPage County, the best independent main effects model 263

(model 2) explained only about half of the variation in *MIR* (R^2_{adj} =0.451; AIC=409.0), whereas

the best *MIR* independent 2nd order interaction model (model 4) explained 66 percent

266 (AIC=353.5). For these reasons, we selected the latter model for implementation. The larger

267 PRESS statistic of 0.537 of model 4 also showed the strength of this model over model 2

268 (PRESS=0.481). Quadratic terms were also tested in model construction due to a possible

269	quadratic relationship between MIR and DW lags seen in the exploratory analysis, but did not
270	improve the model. Finally, comparing the best local model with the legacy model, the 2014
271	MSPE and SE of the new local DuPage model was 4.54 and 1.70 respectively, which was lower
272	(less error) when compared to the legacy model MSPE of 5.52 and SE 2.08.
273	Model inference
274	The best model's final variable selection included weekly precipitation (prec) at 1 to 3
275	week lags, weekly DW at 1 to 4 week lags, the average precipitation in the third quarter of the
276	previous year (previous year prec. weeks 27-39), and 9 interaction terms, for a total of 17
277	factors (Table 3). All of the included terms had significant effects at α =0.1 on <i>MIR</i> predictions.
278	As with the legacy model, DW had a larger overall effect on infection rate than precipitation.
279	Considering the overall effect of the weather variables, an increase in average DW in the
280	4 prior weeks led to higher than average infection rate estimates. Precipitation effects varied,
281	however, with a positive effect of rainfall in the week immediately prior, but a negative effect in
282	the second and third prior weeks. Unlike DW, rainfall four weeks prior did not have an effect on
283	the model estimates. The strongest main effects variable was DW with a 1-week lag with an
284	effect of 1.10. For precipitation, the strongest variable was lower than average precipitation
285	during weeks 27-39 of the previous year, which led to higher MIR estimates with an effect of -
286	0.21.
287	Discussion
288	Since temperature and precipitation are largely interdependent events, interaction
289	terms more realistically represented the relationship between temperature and precipitation
290	and their combined effect on infection rate. This was an important improvement over the

291	legacy model and provided insight into how weather affected the mosquito infection rate. In
292	particular, the interaction terms revealed that though higher DW generally increased MIR,
293	higher DW two weeks prior in combination with higher than average precipitation in weeks 1,
294	2, and 3 prior each resulted in lower MIR. In other words, higher precipitation slightly reduced
295	the magnitude of temperature's effect on MIR, as seen by the effect of DW on MIR decreasing
296	from 2.41 to a magnitude of 2.16 when the average precipitation in preceding weeks is below
297	average by 1.85 cm (Figure 5A). In addition, with lower than average precipitation, temperature
298	became an even stronger predictor of <i>MIR</i> (Figure 5A) and with lower than average
299	temperatures, precipitation had minimal to no effect on <i>MIR</i> (Figure 5B). Refer to the
300	Supplementary Materials for figures with all interaction plots.
301	The legacy model (Ruiz et al 2010) captured the overall shape of the mosquito infection
302	curve when applied to a sub-region of the area for which it was developed, but significant
303	improvements were possible by developing a new model to account for local weather
304	conditions, by using the local MIR, by introducing additional terms, and by using more years of
305	data in the model. We found that the general linear regression approach used by the legacy
306	model, with MIR based on prior weather conditions, provided a reproducible methodology to
307	estimate <i>MIR</i> in a location and time period that was not part of the original model. The
308	assessment of the use of prior <i>MIR</i> in the new DuPage County model led us to conclude that a
309	model that is not dependent on MIR measured in previous weeks is both statistically sound and
310	operationally preferred. In situations where the MIR can be reliably measured across the entire
311	study region, the MIR dependent model may give good predictions most weeks, but with the
312	caution that a prediction immediately after a rapid change in weather may not capture the true

effect of weather and thus over-emphasize the effect of past *MIR*. The inclusion of significant
interaction terms between rainfall and temperature greatly improved the model's fit and
provided more detailed insight into the relationship between weather and mosquito infection
rate.

317 Both higher temperature and below average precipitation led to an increase in MIR, which conforms to prior expectations (Shaman et al. 2005, Paz and Albersheim 2008, Paz et al. 318 2013). Additionally, temperature had a greater influence than precipitation on mosquito 319 320 infection as demonstrated in the results of all four models, where the effect of DW had a much 321 stronger effect than the precipitation variables (see Table 3). Significant interactions revealed that when temperature was much lower than average, low precipitation had little to no effect 322 323 on the prediction and when precipitation was much lower than average, temperature had an even greater influence. It is this second situation that is most likely to lead to illness from WNV, 324 325 and we recommend that public health personnel should develop the information they provide 326 to the public on the risk of WNV in the following week by incorporating both the predicted MIR 327 and the prior weather patterns.

Because lower than average precipitation during weeks 27-39 of the previous year resulted in higher *MIR* during the current mosquito season, the next summer's *MIR* can be approximated prior to the onset of the WNV season, a point also made by Hahn et al. (2015). Reasons behind the significance of the previous fall and winter's precipitation remain unclear. It is possible, for example, that less rainfall during the fall and winter are correlated with the amount of rainfall during later periods, and the effect is indirect rather than direct. It is also possible that this variable improves the model mostly during the early part of the season, and it

335	may not be as important for the critical period of virus amplification. Less moisture in the soil
336	at the start of the season might lead to a more patchy distribution of mosquito larval sites, thus
337	influencing spatial patterns of interactions between birds and mosquitoes. Vegetation
338	characteristics, related to the avian hosts and their interactions with WNV vectors, may also be
339	affected by weather (Gibbs et al. 2006, LaDeau et al. 2008). Mosquito abundance may be
340	higher following a dry fall due to a reduction of predator species (Walsh et al. 2008).
341	Abundance may also be affected by a mild winter with higher survival rates of overwintering
342	Culex pipiens and restuans, while cooler weather earlier in the fall may lead to earlier, more
343	successful hibernation, and earlier warmer conditions in the spring could provide conditions for
344	early emergence (Walsh et al. 2008). The simple linear models used in the current study would
345	not be suitable to determine these complex biological interactions. However, both
346	precipitation and temperature during the prior year and the winter and spring weeks leading up
347	to mosquito season of the same year should be evaluated in future work.
348	Several factors may influence the calculation of MIR estimates used to build the models.
349	For WNV surveillance, the best policy management decisions are often tempered by funding
350	and public perceptions related to pesticide use and to the risk of human illness (Shaw et al.
351	2010, Tedesco et al. 2010, Dickenson and Paskewitz 2012,). Thus, temporal and spatial
352	variability in testing effort and in mosquito abatement is likely, but it is difficult to measure.
353	Pooled samples for testing mosquitoes are another issue. The testing of mosquitoes is usually
354	done with pools of variable size, rather than testing individuals. This characteristic, in
355	combination with the relative inability to discriminate between latent and active infection
356	levels, and the differences in results from different testing methods can lead to errors in the

measurement of mosquito infection rates (Bustamante and Lord 2010, Speybroeck et al. 2012). 357 358 Although of interest from a research perspective, these measures are not easily managed across administrative areas, and different approaches in other places may need to be 359 considered if this *MIR* model is applied in other locations. 360 361 An important area of research is to explore more fully the effects of weather on avian 362 hosts, mosquito abundance and human behavior relative to the risk of WNV illness. The relationship between mosquito infection and the abundance of *Culex* vectors could not be 363 364 assessed in our analysis, so the model does not use a vector index measure, which is often used 365 to determine the risk of human exposure (e.g. Chung et al. 2013). Abundance measures were not available in this study because the number of tested mosquitoes, not the full count from 366 367 each collection was recorded in the IDPH database. DuPage County did have some light trap and larval sampling to monitor vector mosquito abundance, but these were not collected 368 369 systematically across all entities and could not be incorporated into the model. One future analysis would be to determine how weather influences the abundance of 370 vector mosquito populations both temporally and spatially (see Yoo 2014 for example), and 371 develop an approach to incorporate this into predictions of MIR. For example, Lebl et al. (2013) 372

analyzed light trap counts of *Culex* mosquitoes relative to weather in northeast Illinois and
found abundance was positively correlated with temperature during the prior two weeks and

375 negatively associated with increased wind speed. Chaves et al. (2013) found that *Culex pipiens*

abundance in the island of Jeju-do Korea was positively associated with temperature, but with

377 heterogeneities at local scales, as mosquito abundance decreased with rainfall in the north,

while it increased with minimum temperature in the south. Morin and Comrie (2013)

Page 18 of 40

379 developed a climate-based approach to link temperature and rainfall conditions in the southern 380 U.S. to the population dynamics of the WNV vector *Culex quinquefasciatus* and extended their 381 approach to consider future conditions under climate change, finding that dry and hot conditions may reduce populations. Kunkel et al. (2006) used a long-term database on vector 382 383 mosquito abundance in Central Illinois to link weather to the so-called "crossover" of the earlyseason dominance of *Culex restuans* that gives way to the later-season *Culex pipiens*. The timing 384 of their crossover was related to weather and often coincided with WNV amplification 385 386 (Westcott et al. 2011). Studies that incorporate both biotic and abiotic factors to model mosquito abundance are relatively rare, and future work should be directed in this area to 387 create a more nuanced WNV risk estimate. 388 389 The main intent of our work was to build a stable local model that would provide a reliable way to predict MIR guickly and effectively. With our model, we were able to provide 390

391 regionally calibrated model-based estimates of MIR two to three weeks sooner than MIR estimation that needed test results from mosquitoes collected by a variety of agencies to be 392 completed by all groups and compiled into a common MIR value. Of immediate interest would 393 be to apply our methods to other locations to develop a similar weather-only model for further 394 comparison where vegetation and landscape factors are different from those in northern 395 396 Illinois. We do not expect that our model will apply to all other locations, but we expect that its 397 general structure can form a template for similar MIR prediction models elsewhere and ultimately may be a way to estimate MIR, even in the absence of lab testing for WNV. 398

399

400 Acknowledgments

- 401 This research was made possible through funding from the Wheaton Mosquito Abatement
- 402 District, the Forest Preserve District of DuPage County, and the DuPage County Health
- 403 Department. A. Bolds encouraged the initiation of the operational model and facilitated
- 404 communication with the mosquito abatement and public health agencies in DuPage County.
- 405 This material is also based upon work supported by the National Science Foundation Ecology of
- 406 Infectious Diseases program under Awards 0429124 and 0840403.
- 407

409	References Cited
410 411 412	Andreadis, T. G. 2012. The contribution of <i>Culex pipiens</i> complex mosquitoes to transmission and persistence of West Nile virus in North America. J Am Mosquito Contr 28: 137-151.
413 414 415	Baker, D., B. Sharratt, H. Chiang, J. Zandlo, and D. Ruschy. 1984. Base temperature selection for the prediction of European corn borer instars by the growing degree day method. Agr Forest Meteorol 32: 55-60.
416 417 418 419	Barker, C. M., B. G. Bolling, W. C. Black, C. G. Moore, and L. Eisen. 2009. Mosquitoes and West Nile virus along a river corridor from prairie to montane habitats in eastern Colorado. J Vector Ecol 34: 276-293.
420 421 422 423 424	Becker, B., P. T. Leisnham, and S. L. LaDeau. 2014. A tale of two city blocks: differences in immature and adult mosquito abundances between socioeconomically different urban blocks in Baltimore (Maryland, USA). Int J Environ Res Publ Health 11: 3256-3270.
425 426 427 428	Bertolotti, L., U. D. Kitron, E. D. Walker, M. O. Ruiz, J. D. Brawn, S. R. Loss, G. L. Hamer, and T. L. Goldberg. 2008. Fine-scale genetic variation and evolution of West Nile Virus in a transmission "hot spot" in suburban Chicago, USA. Virology 374: 381-389.
429 430 431 432	Biggerstaff, B. J. 2009. PooledInfRate, Version 4.0: A Microsoft Office Excel Addin to Compute Prevalence Estimates from Pooled Samples computer program, version By Biggerstaff, B. J., Fort Collins, CO.
433 434 435	Bustamante, D. M., and C. C. Lord. 2010. Sources of error in the estimation of mosquito infection rates used to assess risk of arbovirus transmission. Am J Trop Med Hyg 82: 1172-1184.
435 436 437	CDC. 2014. West Nile Virus Statistics and Maps, Division of Vector-Borne Diseases, http://www.cdc.gov/westnile/statsMaps/ .
438 439 440 441 442	Chaves, L. F., Y. Higa, S. H. Lee, J. Y. Jeong, S. T. Heo, M. Kim, N. Minakawa, and K. H. Lee. 2013. Environmental forcing shapes regional house mosquito synchrony in a warming temperate island. Environ Entomol 42: 605-613.
443 444 445	Chaves, L. F., and U. D. Kitron. 2011. Weather variability impacts on oviposition dynamics of the southern house mosquito at intermediate time scales. B Entomol Res 101: 633-641.
446 447 448	Chaves, L. F., and M. Pascual. 2007. Comparing models for early warning systems of neglected tropical diseases. PLoS Neglect Trop D 1: e33.
449 450 451	 Chung, W. M., C. M. Buseman, S. N. Joyner, S. M. Hughes, T. B. Fomby, J. P. Luby, and R. W. Haley. 2013. The 2012 West Nile encephalitis epidemic in Dallas, Texas. JAMA – J Am Med Assoc 310: 297-307.

452	Ciete A.T. and L.D. Kremer 2012. Vector virus interactions and transmission dynamics of West Nile
453	views Viewson Ex 2021, 2047
454	VIIUS. VIIUSES 5. 5021-5047.
455	Curriers F.C. C.M. Change and C.F. Class 2005. Grass correlation manages tool for viewalizing and
450	curriero, F. C., S. Wi. Shone, and G. E. Glass. 2005. Cross correlation maps: a tool for visualizing and
457	modeling time lagged associations. Vector-Borne 200not 5: 267-275.
458	Dev. I. F. and C. A. Curtis 1000 Dead feeding and evinesities by Culey nigriculary (Distance
459	Day, J. F., and G. A. Curtis. 1999. Blood recuring and oviposition by Curex highpaipus (Diptera:
460	LMod Entomol 26: 176-181
401	J Med Entomol 50. 170-181.
402	Dickinson K and S. Backowitz, 2012. Willingness to pay for mesquite central: how important is West
405	Nilo virus risk compared to the puisance of mosquitoes? Voctor Borno Zoonot 12: 886 802
404	
405	Dohm D. L. M. L. O'Guinn and M. L. Turell. 2002 Effect of environmental temperature on the ability
400	of Culey niniens (Dintera: Culicidae) to transmit West Nile virus 1 Med Entomol 39: 221-225
407	of curex pipiens (Diptera: cancidae) to transmit west tine virus. J wied Entomor 55, 221 225.
400 //60	Ehert T A R Briansky and M Rogers 2010 Reexamining the pooled sampling approach for
470	estimating prevalence of Infected insect vectors. Ann Entomol Soc Am 103: 827-837
471	
472	Gardner, A. M., T. K. Anderson, G. L. Hamer, D. F. Johnson, K. F. Varela, F. D. Walker, and M. O. Ruiz.
473	2013. Terrestrial vegetation and aquatic chemistry influence larval mosquito abundance in
474	catch basins. Chicago, USA. Parasite Vector 6:9.
475	
476	Gardner. A. M., G. L. Hamer. A. M. Hines. C. M. Newman. E. D. Walker. and M. O. Ruiz. 2012.
477	Weather variability affects abundance of larval <i>Culex</i> (Diptera: Culicidae) in storm water catch
478	basins in suburban Chicago. J Med Entomol 49: 270-276.
479	
480	Gibbs, S. E., M. C. Wimberly, M. Madden, J. Masour, M. J. Yabsley, and D. E. Stallknecht. 2006.
481	Factors affecting the geographic distribution of West Nile virus in Georgia, USA: 2002-2004.
482	Vector-Borne Zoonot 6: 73-82.
483	
484	Gu, W., R. Lampman, and R. J. Novak. 2003. Problems in estimating mosquito infection rates using
485	minimum infection rate. J Med Entomol 40: 595-596.
486	
487	Hahn, M. B., A. J. Monaghan, M. H. Hayden, R. J. Eisen, M. J. Delorey, N. P. Lindsey, R. S. Nasci, and
488	M. Fischer. 2015. Meteorological conditions associated with increased incidence of West Nile
489	virus disease in the United States, 2004-2012. Am J Trop Med Hyg 92: 1013-1022.
490	
491	Hamer, G. L., U. D. Kitron, J. D. Brawn, S. R. Loss, M. O. Ruiz, T. L. Goldberg, and E. D. Walker. 2008.
492	Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol
493	45: 125-128.
494	
495	Hartley, D. M., C. M. Barker, A. Le Menach, T. Niu, H. D. Gaff, and W. K. Reisen. 2012. Effects of

496 temperature on emergence and seasonality of West Nile virus in California. Am J Trop Med Hyg 497 86: 884-894. 498 499 **Hepworth, G. 2005.** Confidence intervals for proportions estimated by group testing with groups of unequal size. J Agr Biol Envir St 10: 478-497. 500 501 502 Hokit, G., S. Alvey, J. M. Geiger, G. D. Johnson, M. G. Rolston, D. T. Kinsey, and N. Tall Bear. 2013. Using undergraduate researchers to build vector and West Nile virus surveillance capacity. Int J 503 504 Environ Res Publ Health 10: 3192-3202. 505 506 Jones, C. E., L. P. Lounibos, P. P. Marra, and A. M. Kilpatrick. 2012. Rainfall influences survival of Culex 507 pipiens (Diptera: Culicidae) in a residential neighborhood in the mid-Atlantic United States. J Med Entomol 49: 467-473. 508 509 510 LaDeau, S. L., P. P. Marra, A. M. Kilpatrick, and C. A. Calder. 2008. West Nile virus revisited: Consequences for North American ecology. Bioscience 58: 937-946. 511 512 513 Lebl, K., K. Brugger, and F. Rubel. 2013. Predicting *Culex pipiens/restuans* population dynamics by 514 interval lagged weather data. Parasite Vector 6: 129. 515 516 Macdonald, G. 1956. Theory of the eradication of malaria. B World Health Organ 15: 369-387. 517 Moore, C. G. M., R.G.; Mitchell, C.J.; Nasci, R.S.; Tsai, T.F.; Calisher, C.H.; Marfin, A.A; Moore, P.S.; 518 519 Gubler, D.J. 1993. Guidelines for Arbovirus Surveillance Programs in the United States. Division 520 of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado. 521 522 523 Morin, C. W., and A. C. Comrie. 2013. Regional and seasonal response of a West Nile virus vector to 524 climate change. B Natl Acad Sci USA 110: 15620-15625. 525 Nasci, R. S. 2013. Monitoring and controlling West Nile Virus: are your prevention practices in place? J 526 Environ Health 75: 42-44. 527 528 529 Paz, S., and I. Albersheim. 2008. Influence of warming tendency on Culex pipiens population 530 abundance and on the probability of West Nile fever outbreaks (Israeli Case Study: 2001-2005). 531 Ecohealth. 5: 40-48. 532 Paz, S., D. Malkinson, M. S. Green, G. Tsioni, A. Papa, K. Danis, A. Sirbu, C. Ceianu, K. Katalin, E. 533 Ferenczi, H. Zeller, and J. C. Semenza. 2013. Permissive summer temperatures of the 2010 534 European West Nile fever upsurge. PloS One 8: e56398. 535 536 537 **R Development Core Team 2013.** R: A language and environment for statistical computing. computer program, version By R Development Core Team, Vienna, Austria http://www.R-project.org/. 538 539

540 541 542 543	Reisen, W. K., Y. Fang, and A. C. Brault. 2008. Limited interdecadal variation in mosquito (Diptera: Culicidae) and avian host competence for Western equine encephalomyelitis virus (Togaviridae: Alphavirus). Am J Trop Med Hyg 78: 681-686.
544 545 546 547	Reisen, W. K., T. Thiemann, C. M. Barker, H. Lu, B. Carroll, Y. Fang, and H. D. Lothrop. 2010. Effects of warm winter temperature on the abundance and gonotrophic activity of <i>Culex</i> (Diptera: Culicidae) in California. J Med Entomol 47: 230-237.
548 549 550 551	Ruiz, M. O., L. F. Chaves, G. L. Hamer, T. Sun, W. M. Brown, E. D. Walker, L. Haramis, T. L. Goldberg, and U. D. Kitron. 2010. Local impact of temperature and precipitation on West Nile virus infection in <i>Culex</i> species mosquitoes in northeast Illinois, USA. Parasite Vector 3: 19.
552 553 554	Shaman, J., and J. F. Day. 2007. Reproductive phase locking of mosquito populations in response to rainfall frequency. PloS One 2: e331.
555 556 557	Shaman, J., J. F. Day, and M. Stieglitz. 2005. Drought-induced amplification and epidemic transmission of West Nile virus in southern Florida. J Med Entomol 42: 134-141.
558 559 560	Shaw, I. G. R., P. F. Robbins, and J. P. Jones. 2010. A Bug's life and the spatial ontologies of mosquito management. Ann Assoc Am Geogr 100: 373-392.
561 562 563	Speybroeck, N., C. J. Williams, K. B. Lafia, B. Devleesschauwer, and D. Berkvens. 2012. Estimating the prevalence of infections in vector populations using pools of samples. Med Vet Entomol 26: 361-371.
564 565 566	Tedesco, C., M. Ruiz, and S. McLafferty. 2010. Mosquito politics: Local vector control policies and the spread of West Nile virus in the Chicago region. Health Place 16: 1188-1195.
568 569 570 571	Turell, M. J., D. J. Dohm, M. R. Sardelis, M. L. Oguinn, T. G. Andreadis, and J. A. Blow. 2005. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus. J Med Entomol 42: 57-62.
572 573 574	Turell, M. J., M. L. O'Guinn, D. J. Dohm, and J. W. Jones. 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38: 130-134.
575 576 577	Walsh, A. S., G. E. Glass, C. R. Lesser, and F. C. Curriero. 2008. Predicting seasonal abundance of mosquitoes based on off-season meteorological conditions. Environ Ecol Stat 15: 279-291.
578 579 580	Walter, S. D., S. W. Hildreth, and B. J. Beaty. 1980. Estimation of infection rates in population of organisms using pools of variable size. Am J Epidemiol 112: 124-128.
581 582 583	 Westcott, N. E., S. D. Hilberg, R. L. Lampman, B. W. Alto, A. Bedel, E. J. Muturi, H. Glahn, M. Baker, K. E. Kunkel, and R. J. Novak. 2011. Predicting the seasonal shift in mosquito populations preceding the onset of the West Nile virus in Central Illinois. B Am Meteorol Soc 92: 1173-1180.

- 585 **Yoo, E. H. 2014.** Site-specific prediction of West Nile virus mosquito abundance in Greater
- 586 Toronto area using generalized linear mixed models. Int J Geogr Inf Sci 28: 296-313.

587

589 Tables

590 **Table 1.** DuPage County West Nile virus-related annual conditions data summary.

			Week of			
	Year	MIR		Avg Prec. (cm) of 3 weeks	DW at peak	WNV Human
		Mean (SD)	MIR (Peak)	before peak week*	week*	Cases
	2005	5.57 (6.14)	32	-0.74	11.95	47
	2006	6.88 (8.50)	34	-0.68	6.67	43
	2007	2.76 (3.18)	33	1.23	-1.52	10
	2008	1.13 (1.77)	37	0.59	-2.31	1
	2009	0.78 (0.77)	37	0.36	-5.22	0
	2010	5.66 (6.90)	35	-1.61	16.98	17
	2011	2.63 (3.73)	36	-0.77	12.46	2
	2012	8.74 (7.91)	32	-0.08	29.02	56
	2013	4.52 (5.56)	36	-1.40	5.42	6
	2014	3.27 (5.07)	35	3.42	-0.57	6

⁵⁹¹ *Differences from weekly averages using the 30-year Normal of both temperature and

592 precipitation.

593

594

595

596

- **Table 2.** Pearson's correlation (r) between *MIR* and the previous year's average precipitation
- 599 over blocks of 52, 26, and 13 weeks.

	Weeks	Weeks	Weeks	Weeks	Weeks	Weeks	Weeks
	1-52	1-26	27-52	1-13	14-26	27-39	40-52
r	-0.262	0.014	-0.439	-0.063	0.048	-0.460	-0.091
p- value	< 0.001	0.853	< 0.001	0.391	0.514	< 0.001	0.213

- **Table 3.** Variable effects (standard errors) and fit of 4 model types: (1) Main effect model
- dependent on MIR, (2) Main effect model independent of MIR, (3) Interaction model

608 dependent on MIR, (4) Interaction model independent of MIR.

	Model 1	Model 2	Model 3	Model 4
R ² adjusted	0.661	0.511	0.721	0.658
PRESS	0.635	0.481	0.635	0.537
AIC	340.6	409.0	315.2	353.5
Main Effects				
(at week lag)				
MIR (2 nd order)	0.14(0.02)***		0.11(0.02)***	
Week	-0.08(0.05)	-0.25(0.06)***	-0.10(0.05)*	-0.23 (0.05)***
	Model 1	Model 2	Model 3	Model 4
Prec. (1)			0.06(0.04)	0.09(0.05)*
Prec. (2)	-0.06(0.04)	-0.09(0.05)	-0.05(0.04)	-0.03(0.05)
Prec. (3)			-0.07(0.04)	-0.09(0.05)
DW (1)	0.72(0.12)***	0.99(0.14)***	1.12(0.23)***	1.21(0.25)***
DW (2)			0.01(0.32)	0.13(0.36)
DW (3)			-0.59(0.32)	-0.83(0.37)*
DW (4)	-0.53(0.11)***	-0.41(0.13)**	0.01(0.21)	0.42(0.26)
Previous Year Prec.	-0.14 (0.05)***	-0.30(0.05)***	-0.08(0.04)	-0.18(0.05)***
(wks 27-39)				

Interaction Terms

Prec. (1)*DW (2)	-0.83(0.20)***	-1.15(0.22)***
Prec. (1)*DW (3)	0.86(0.20)***	1.13(0.22)***
Prec. (2)*DW (2)	0.89(0.37)*	1.29(0.41)**
Prec. (2)*DW (3)	-1.71(0.51)**	-2.53(0.57)***
Prec. (2)*DW (4)	0.78(0.22)***	1.18(0.24)***
Prec. (3)*DW(1)	0.72(0.26)**	0.83(0.29)**
Prec. (3)*DW(2)	-0.68(0.25)**	-0.85(0.28)**
DW(2)*DW(4)	-0.12(0.03)***	-0.71(0.17)***
DW(2)*DW(3)		0.55(0.18)**

609

 R^2 adjusted and predicted residual sum of squared errors (PRESS) are reported for each model.

* indicated the variable is significant at 5% level, ** significant at 1% level and *** significant at

612 0.1% level.

614	Figure Legends
615	Figure 1. Map of the study region with the two weather station locations and the average
616	number of trap locations at which mosquitoes were tested. The legacy model was developed
617	from data combined from Cook and DuPage counties. The current objectives focus on DuPage
618	County, only. The average number of traps is for the years from 2005 to 2014 summarized for
619	hexagons of 200 hectares.
620	Figure 2 (A) Average weekly Mosquito Infection Rate (<i>MIR</i>) with normal precipitation and (B)
621	Average MIR with normal temperature. The average MIR is a weekly average from the DuPage
622	County study area from 2005 to 2014.
623	Figure 3 . (A) Measured <i>MIR</i> and legacy model estimates (Predicted <i>MIR</i> = a + 0.35 (3wk <i>Prec.</i>
624	moving average at 3 week lag) + 0.42 (DW at 1week lag) – 1.57 (previous year prec.) (MSPE*
625	2.640). (B) Measured MIR and new model estimates with interactions (MSPE 1.826). *Mean
626	squared prediction error. Supplementary Material includes a graph of the full range of years
627	shown as a subset of four years in Figure 3A.
628	Figure 4. Correlations between weather variables and DuPage MIR at lags of from 1 to 8 weeks
629	Figure 5. Interaction Plots between the variables DW and precipitation of preceding weeks and
630	the variable <i>MIR</i> . All variables are measured as the difference from the weekly average.
631	Covariates were scaled before plotting. A: Effect of DW when precipitation is low/high.
632	Equation of solid line: <i>MIR</i> =-0.003+2.41* <i>DW</i> . B: Effect of precipitation when <i>DW</i> is low/high.
633	Equation of solid line: MIR=-0.003-0.39*prec.

29

.

Page 30 of 40

Page 31 of 40

Manuscripts submitted to Journal of Medical Entomology

https://mc.manuscriptcentral.com/medent

https://mc.manuscriptcentral.com/medent

DuPage Local Model Details.

Included in this file is: details of coefficients and p-values of model terms, diagnostic plots for this model, scatterplots and interaction plots and interpretations for most significant terms.

Supplementary Table 1. Local DuPage Model Effects, Coefficients, and p-values for each term. *Significant at 0.05 **Significant at 0.01 ***Significant at 0.001

Variable	Effect	Coefficient	Significance (P-Value)
Intercept	0.164	-0.79	
Prec.1wk lag1	0.10	2.19	0.053
Prec.1wk lag2	-0.02	0.04	0.744
Prec.1wk lag3	-0.08	-1.44	0.081
DW lag1	1.12***	0.59	6x10 ⁻⁵ ***
DW lag2	0.13	0.11	0.62
DW lag3	-0.83*	-0.62	0.02*
DW lag4	0.40	0.44	0.05*
Prec.1yr Q4	-0.19***	-8.80	0.0004***
Prec.1wk lag1*DW lag 2	-1.26***	-2.86	1.34x10 ⁻⁷ ***
Prec.1wk lag1*DW lag 3	1.26***	3.06	1.47x10 ⁻⁷ ***
Prec.1wk lag2*DW lag 2	1.28**	2.79	0.004**
Prec.1wk lag2*DW lag 3	-2.65***	-6.24	2x10 ⁻⁵ ***
Prec.1wk lag2*DW lag 4	1.33***	3.40	3.71x10 ⁻⁷ ***
Prec.1wk lag3*DW lag 1	0.71*	1.47	0.021*
Prec.1wk lag3*DW lag 2	-0.74*	-1.63	0.013*
DW lag2*DW lag4	-0.74***	-0.07	1.25x10 ^{-4***}
DW lag2*DW lag3	-0.73**	0.05	0.003**

Supplementary Figure 1. Legacy Model from Ruiz 2010, DuPage Local model, and actual DuPage MIR from 2005 through 2014

Supplementary Figure 2. Diagnostic Plots for Local Model above.

- Residuals vs Fitted Plot (Plot 1) shows residuals randomly distributed about 0
- Q-Q plot (Plot 3) validates the assumption that our residuals follow a normal distribution
- Leverage Plot (Plot 4) shows no large leverage points based on Cook's distance

Supplementary Figure 3. Scatter and Interaction Plots for most significant variables.

- Higher than average DW in past weeks ago leads to higher MIR this week (effect of DW decreases with lag as see n previously by correlation r)
- The lower from average last week's precipitation is, the less positive effect DW has on MIR

- In general, when there is lower than average precipitation in the past few weeks, DW in the past few weeks has a greater p ositive effect on MIR
- This observation seems to be most clear when looking at interaction plots of precipitation weeks and DW weeks that are clo ser together temporally.
- If DW is lower than average 3-4 weeks ago, DW 2 weeks ago has a more positive effect on MIR
 https://mc.manuscriptcentral.com/medent

- In general, lower than average DW values for the past 4 weeks lessens the negative effect of precipitation in the past 3 weeks
- Again, this relationship is more clear between precipitation and DW of consecutive weeks

Manuscripts submitted to Journal of Medical Entomology

- Exception: When higher than average DW 2 weeks ago, higher than average precipitation last week has slightly p ositive effect. This reflects DW has stronger influence on MIR prediction than precipitation
- Precipitation in the past 3 weeks tends to have a negative effect on MIR