ディジタル制御方式ピーク電流モード DC-DC コンバータに関する研究

Study on Digital Peak Current Mode DC-DC Converter

2016年3月

長崎大学大学院工学研究科グリーンシステム創成科学専攻

梶 原 一 宏

目次			 ······j
数式記号・略移	۲·····	•••••	 iij

第1章 緒論

1. 1	ディジタル制御電源導入の背景
1. 2	スイッチング電源の役割および制御方式6
1. 3	ディジタル制御電源の歴史および現在の制御回路構成12
1. 4	ディジタル制御電源における問題点
1. 5	本研究の目的と意義

第2章 ディジタル制御方式ピーク電流モード DC-DC コンバータ

2.	1	まえがき
2.	2	従来の問題点および新しいピーク電流検出器の提案
2.	3	回路構成および動作原理
2.	4	静特性
2.	5	動特性
2.	6	第2章の結論

第3	章	データセンタにおけるサーバ用電源のためのディジタル制御方式ピーク電流
		モード DC-DC コンバータ

3. 1	まえがき
3. 2	回路構成および動作原理

3. 3	実証実験
3. 3.	1 過渡特性
3. 3.	2 電力効率
3. 4	第3章の結論

第4章 ディジタル制御方式ピーク電流モード DC-DC コンバータの過電流制限機能

4.	1	まえがき	75
4.	2	回路構成および動作原理	76
4.	3	過電流制限特性	82
4.	4	第4章の結論	88

第5章 ディジタル積分ゲイン可変方式 DC-DC コンバータ

1	まえがき
2	回路構成および動作原理
3	ゲイン可変方式の設計による過渡特性への影響
4	静特性の改善
5	第5章のまとめ103
章 結	5論 ······104
文献・・	
	1 2 3 4 5 定 紀 ·································

数式記号·略称

HEMS	Home Energy Management System	
BEMS	Building Energy Management System	
SNS	Social Networking Service	
ΙοΤ	モノのインターネット (Internet of Things)	
AC	交流(Alternating Current)	
DC	直流(Direct Current)	
PWM	パルス幅変調 (Pulse Width Modulation)	
T _{on}	メインスイッチのオン時間	S
E _i	入力電圧	V
e ₀	出力電圧	V
L	リアクトル	Н
iL	リアクトル電流	А
Co	出力キャパシタ	F
Io	負荷電流	А
T _r	スイッチング用パワー半導体	
D	ダイオード	
E _r	出力電圧目標値	V
ε	出力電圧および目標値との誤差電圧	V
IC	集積回路(Integrated Circuit)	
TTL	Transistor-Transistor Logic	
VCO	電圧制御発振器(Voltage Controlled Oscillator)	
F_{V}	出力電圧検出における VCO の FM パルス列	
$N_{\mathcal{V}}$	出力電圧検出における VCO の FM パルス数	

N _r	出力電圧目標ディジタル値	
A-D	アナログ-ディジタル(Analog to Digital)	
FM	周波数変調(Frequency Modulation)	
F _i	リアクトル電流検出における VCO の FM パルス列	
N _i	リアクトル電流検出における VCO の FM パルス数	
$N_{\mathcal{E}}$	出力電圧および目標値との誤差ディジタル値	
DSP	Digital Signal Processor	
R _S	検出抵抗	Ω
e _s	リアクトル電流検出電圧	V
PID	比例積分微分制御	
S_D	電流検出開始信号	
S _{es}	ピーク電流検出信号	
S_W	スイッチング信号	
$e_0[n]$	出力電圧のディジタル値	
A _{eo}	出力電圧検出における前置増幅器のゲイン	
G_{AD}	A-D 変換器のゲイン	
N _{PID}	PID 制御演算值	
NB	PID 制御のバイアス値	
K _P	比例制御係数	
K _I	積分制御係数	
KD	微分制御係数	
N_I	出力電圧における目標値との偏差の積分値	
BF	遅延バッファ	
MUX	マルチプレクサ	

T_D	リアクトル電流検出開始時間	S
T_{DC}	カウンタにおける1クロック毎の遅延時間	S
T_{DB}	遅延バッファ1個あたりの遅延時間	S
A _c	リアクトル電流検出における前置増幅器のゲイン	
R _i	RC 積分回路の抵抗	Ω
C_i	RC 積分回路のキャパシタ	F
v _{rc}	RC 積分回路出力電圧	V
V _{th}	しきい値電圧	V
T _{CS}	電流検出時間	S
	RC 積分回路の時定数	S
I _{peak}	リアクトル電流のピーク値	А
f_{S}	スイッチング周波数	Hz
T_{S}	スイッチング周期	S
I _c	臨界電流	А
G(s)	降圧形コンバータの伝達関数	
$H_{\mathcal{V}}(s)$	PID 制御部の伝達関数	
H _{pv}	比例ゲイン	1/V
H _i	積分ゲイン	1/(V· s)
HD	微分ゲイン	s/V
τι	制御部の遅れ時間	S
<i>r</i> ₂	アンチエイリアスフィルタの時定数	S
H _{pi}	電流ゲイン	s/A
H(s)	提案方式における□T _{on} および□eoの伝達関数	
T(s)	一巡伝達関数	

i _T	トランス電流	А
e _T	トランス電流検出電圧	V
S _{DH} , S _{DL}	フルブリッジコンバータにおける電流検出開始信号	
S_H, S_L	フルブリッジコンバータにおけるピーク電流検出信号	
VB	バイアス電圧	V
^v rc_H ^{, v} rc_L	フルブリッジコンバータにおける電流検出開始信号	V
i _{Tmax}	トランス電流の最大値	А
i _{Tmin}	トランス電流の最小値	А
N _{Drive}	過電流制限モードにおける MUX 出力ディジタル値	
I_M	過電流制限モード開始電流値	А
Io_set	電流制限値	А
Noc	過電流制限モードにおけるディジタル演算値	
T_{CS}^{*}	過電流制限モード基準電流検出時間	S
Eo_oc	過電流制限モード時の出力電圧定常値	V
R_{o_cal}	負荷推定値	Ω
Q	制御回路における演算上限ビット数	
t _{CV}	出力電圧が目標値の±1%に収束するまでの時間	S
δ _{eo_over}	出力電圧のオーバーシュート	V
δ_{eo_under}	出力電圧のアンダーシュート	V
δ_{iL_over}	リアクトル電流のオーバーシュート	А

第1章 緒論

1.1 ディジタル制御電源導入の背景

地球環境問題だけでなく,電力発電への国全体のコスト負担を考えると各装置の電源 システムの省エネルギー化の必要性はますます大きな課題となっている。図 1.1 に,日 本におけるエネルギー消費の構成比を示す⁽¹⁾。産業部門の日本のエネルギー消費に示す 割合は約 43%であるが,1973 年から 2009 年までのエネルギー消費量は 0.85 倍であり, 省エネルギー化に向けた取り組みが積極的に行われていることがわかる。一方,家庭お よび業務部門から成る民生部門においては,電子機器の普及に伴い消費エネルギー量が 大きく増大しており,1973 年から 2009 年までのエネルギー消費量は 2.4 倍となってお り,日本のエネルギー消費の 3 分の 1 を占めている。そのため,民生部門では,太陽光 発電や風力発電など再生可能エネルギーを活用した省エネルギー化が求められている。

また,図1.2 に示す経済産業省の「技術戦略マップ 2011⁽²⁾」の民生,業務部門におい て,HEMS および BEMS といった家庭やビルの電子機器・設備における省エネ技術が 今後開発すべき重要項目として挙げられている。HEMS の導入により,情報通信機能を 持ったスマートメータを用いて家庭で使用しているエネルギーの使用状況を把握・可視 化することで,家庭での節電意識が高まるとともに,各電子機器のエネルギーを自動制 御することが可能になる。今後は,SNS やクラウド技術の普及,IoT やビッグデータの 活用を考えると,民生部門だけでなく産業分野でも情報通信技術を活用することがさら に増えると予想される。そのため,情報通信分野における省エネルギー化も必要不可欠 になっている。

このような観点から,家庭等における情報通信機器・システムや再生可能エネルギー を導入した電源システムにおける省エネルギー化のためには,電力変換器,バッテリシ ステムおよび再生可能エネルギーを効率よくマネジメントすることが重要である⁽³⁾⁻⁽¹⁰⁾。 一般に、これらの電源システムはアナログ制御回路によって構成されているため、エネ ルギーマネジメント機能を実現するには付属の回路を必要とし、コスト高を招くため極 めて困難である。一方で、制御部分をディジタル回路で構成した場合は、エネルギーマ ネジメント機能を容易に実現できる⁽¹¹⁾⁻⁽²⁰⁾。ディジタル制御には、以下の特徴が挙げら れる⁽²⁰⁾。

- (1) アナログ制御 IC に比べて製品のばらつきが少なく補正が不要である。
- (2) 経年変化による品質変化が少ない。
- (3) 回路の誤動作が少ない。
- (4) 周辺部品が減り,基盤の小型化が可能である。
- (5) 製造ラインでのチューニングが容易
- (6) 特性の再現性が高い。
- (7) 優れた制御特性を容易に実現できる。
- (8) 入力電圧や温度といった環境変化に適用した制御が容易にできる。
- (9) 主回路やノイズフィルタの設計を容易に変更できる。
- (10) インテリゼント化したネットワークに対応したモニタリングや高価値の制御 ができる。

したがって,情報通信機器や再生可能エネルギーによる電力発電システムなど,多く の分野でそのため,電源システムにおいて,ディジタル制御の適用が検討されており, 電源システム全体の省エネ効果が期待されている。

図 1.1 日本におけるエネルギー消費の構成比

					_	
~現在		~2015				
エネルギーマネジメント		(BEMS·HEMS)				
創エネとの強調						
省エネ型情報機器・シ	ステム	省エネ 待村	省エネ型情 型次世代ネ 機時消費電フ 高効率ディス	報機器 ットワーク通信 5削減技術 スプレイ		
~	~2020			~2030		
·最適	削御	 (・エネノ	レギー貯蔵打	、 支術 · 、		
		<u>、、</u> 、-、- - エネノ	レギー貯蔵技	, 友術·		
・データセンター ・光スイッチ ・省電力電源モジ	ルーター等通 ュール 省	クラウドコン 信機器 エネ化	ピューター、 	制御雲酒技術)		
<u>)、</u> 有工不LCD·PD	P,有 1 展上					

図 1.2 経済産業省による民生,業務部門のロードマップ

1.2 スイッチング電源の役割および制御方式

電子機器などの負荷に一定の直流電圧を供給する電源は直流安定化電源と呼ばれ、その回路方式はシリーズ方式およびスイッチング方式に分類できる。現在では高効率化といった観点からスイッチング電源が主流となっている。スイッチング電源は、入力側がACかDCかによって、AC-DCコンバータおよびDC-DCコンバータに分類することができる。家庭では50kHzまたは60kHzの交流電圧をAC-DCコンバータによって、図1.3に示すように直流電圧に変換する。このままでは出力電圧に低周波リップルが生じてしまい、負荷に安定した電圧を供給することはできない。そのため、その後段にDC-DCコンバータを用いることによって、負荷に一定電圧を安定供給することができる。

図 1.4 にスイッチング電源の代表例として降圧形コンバータを示す。スイッチング電源はメインスイッチ、ダイオード、リアクトルおよび出力キャパシタによって構成される。スイッチング電源は、負荷側に供給される出力電圧をフィードバックし、目標電圧値との誤差からスイッチのオン時間を調整することで、必要な電圧を負荷側に供給する。 図 1.5(a)に示すように、定常時においては負荷電流の変化に対してオン時間を調整することで出力電圧を一定に保つことができる。入力電圧や負荷の急激な変動に対しては、図 1.5(b)に示すように、系が不安定にならないことや、出力電圧を許容変動範囲内に抑えるために高速応答が要求される。したがって、電源の制御回路はこれらを満足するように設計しなければならない。その他に、スイッチング電源には、低スイッチングノイズ、小型化、軽量化、高効率化、高密度化や低コスト化が求められている。

図 1.3 スイッチング電源の役割

図 1.4 降圧形コンバータ

図 1.5 出力電圧の安定化

スイッチング電源の制御方式は,図1.6 に示すように,スイッチング周波数が固定か 変動するかで大きく2つに大別できる。周波数固定方式は電圧モードや電流モード制御 に分けられ,周波数変動方式にはヒステリシス制御と呼ばれる方式がある。どの制御方 式も,負荷側に一定の出力電圧を供給することが目的である。本節では,スイッチング 電源の主たる部分を占める DC-DC コンバータの制御方式について,アナログ制御方式 を基に説明する。

図 1.7 にアナログ制御方式電圧モード DC-DC コンバータを示す。電圧モードでは、 出力電圧 *eo*のみを制御ループに帰還し、目標電圧 *Er*との誤差を検出する。その後、誤 差増幅電圧(フィードバック電圧) εを三角波と比較することで、三角波の周波数と等 しい一定の周波数を持つパルス信号を生成する。パルス信号のオン時間はεによって変 化する。このようにしてパルスの幅が変調される方式を PWM と呼ぶ。この場合、スイ ッチング周波数は三角波の周波数と等しくなる。電圧モードの制御回路は電圧ループし かないためシンプルなことに加え、オン時間を短く出来るという特徴があるが、*L*およ び*Co*で構成される平滑フィルタ後段の *eo*のみを帰還するため、電流モードやヒステリ シス制御に比べて系の安定性が小さいという欠点がある。そのため、位相補償回路が複 雑になる。

図 1.6 スイッチング電源の制御方式の分類

図 1.7 アナログ制御方式電圧モード DC-DC コンバータの基本構成

電流モード制御は、ピーク電流モード制御や平均電流制御方式に分けられる。ここで は、特に優れた動特性が得られるピーク電流モード制御について説明する。図1.8 にア ナログ制御方式ピーク電流モード DC-DC コンバータを示す。まず、メインスイッチ Tr は、STx がオンになると同時に RS フリップフロップによってオン状態となり、この間 リアクトル電流 iL が増加する。制御回路においては、電圧モードと同様にして得られ たεが後段のコンパレータに送られる。コンパレータでは, iL に相当する電圧 es が検出 され、 e_s が ε に到達した瞬間に S_R がオンとなることで、瞬時にメインスイッチがター ンオフされる。すなわち、ピーク電流モードでは、電圧モードで用いた三角波の代わり にスイッチ/リアクトル電流および*ε*を直接比較することで PWM 信号を生成し,オン時 間を調整する。リアクトル電流のピーク値はメインスイッチのターンオフのタイミング を決定するために用いられる。スイッチング周波数はSTkの周波数と等しい。このよう に、電圧ループ以外に電流ループを持つピーク電流モードは、コンバータにおける平滑 フィルタ後の出力電圧だけでなくその前段のリアクトル電流も検出するため、一般的に 優れた動特性を得ることができる。また、アナログピーク電流モード制御では、ツェナ ーダイオードを用いてεに制限値を設けることにより過電流制限機能を容易に付加す ることが出来る。さらに、電流モードは複数の電源を並列運転させる際に必要となる電 流バランス制御を導入しやすいといった利点がある。

図 1.8 アナログ制御方式ピーク電流モード DC-DC コンバータの基本構成

ヒステリシス制御はリプル制御とも呼ばれ,検出した出力電圧のリプルに対してしき い値を設けることでスイッチのオン・オフのタイミングを決定する。ここではヒステリ シス制御はいくつかの実装方法があるが,ここではヒステリシスウィンドウ方式につい て述べる。ヒステリシス制御が電圧モードや電流モードと最も異なる点は,誤差電圧*ε* を検出するためのオペアンプを使用せず,*eo*のリプルを用いて直接スイッチのオン・ オフを決定することである。図1.9に示すように,*eo*はヒステリシスコンパレータに入 力し,上側のしきい値に到達するとメインスイッチをターンオフし,下側のしきい値に 到達するとターンオンする。ヒステリシス制御は,このように*eo*を直接制御している ため,負荷変動に対して最も応答が良いという利点があるが,スイッチング周波数が固 定でないためノイズ除去フィルタの設計が困難であることや,リプルが小さな場合に制 御が困難であるという欠点がある。

以上のことから,アナログ制御電源では,主に電流モード制御が古くから利用されて いる。最初の電流モード制御の研究報告は 1978 年に行われ,その後,静特性や動特性 解析が進むことで設計手法が明らかにされた⁽²¹⁾⁻⁽³⁰⁾。現在は,さらなる高速応答化に向 けた研究および LED や太陽光発電システムへの応用研究が行われている⁽³¹⁾⁻⁽³⁷⁾。これら の制御方式を踏まえ,ディジタル制御におけるこれまでの取り組みとその問題点につい て述べる。

図 1.9 アナログヒステリシス制御方式 DC-DC コンバータの基本構成

1.3 ディジタル制御電源の歴史および現在の基本回路構成

ディジタル制御電源は、IC 技術とともに発展した。1960 年代より IC の実用化が始ま り、その目覚ましい発展により、TTL と呼ばれるディジタル IC が登場した。これに伴 い、1977 年、ベル研究所(Bell Laboratories)によって、VCO を用いたディジタル制御 方式電圧モード DC-DC コンバータが報告されている^{(38),(39)}。図 1.10 に回路構成図を示 す。この方式では、VCO は A-D 変換器として使用される。VCO とは、入力された直流 電圧を FM パルス信号列 F_v に変換する素子である。FM パルス信号の周波数は直流電 圧の大きさに比例する。VCO の後段にカウンタを用いることによって、VCO の FM パ ルス数 N_v をカウントする。 N_v は出力電圧 e_o のディジタル値を表す。 N_v が目標電圧値 に相当するディジタル値 N_r に到達するとメインスイッチがターンオフされる。したが って、 e_o が増加すると F_v の周波数が大きくなるため、N が N_R に到達する時間は短く なり、メインスイッチ T_r のオン時間は短くなる。このようにオン時間を調整すること で、負荷側に一定の出力電圧を供給することが出来る。また、 N_r を変更することで所 望の出力電圧を得ることができる。

図 1.10 VCO を用いたディジタル制御方式電圧モード DC-DC コンバータ

1979年には、ベル研究所により VCO を用いたディジタル制御方式平均電流モード DC-DC コンバータが提案された⁽⁴⁰⁾。図 1.11 にその回路構成図を示す。その動作原理は 上述のアナログピーク電流モード制御と同様である。ただし、VCO の出力パルスの個 数はパルス検出期間の平均値を表すため、平均電流モードとなる。図 1.11 に示すよう に、出力電圧に加えてリアクトル電流も VCO を用いて検出され、ディジタル値 N_i に変 換される。まず、出力電圧ループにおいて、図 1.8 におけるオペアンプと同じ役割を持 つ減算器を用いて N_v および N_r の誤差ディジタル値 N_eが検出される。そして、コンパ レータにおいて N_i が N_eに到達した瞬間にメインスイッチがターンオフされる。

1980年代になると、VCOを用いたディジタル制御方式電流モード DC-DC コンバー タの静特性および動特性解析が進み、VCO を用いたディジタル制御の設計方法が明ら かにされた⁽⁴¹⁾⁻⁽⁴⁴⁾。さらに、1990年代になると、電源の保護機能として重要な過電流制 限機能に関する報告も行われた^{(45), (46)}。このようにしてディジタル制御電源の研究は進 んでいたものの、VCO には温度変化に対して出力の周波数特性が大きく影響するとい う問題点があり、定電圧制御を行う上で、正確な出力電圧値を得ることが困難であった。

図 1.11 VCO を用いたディジタル制御方式平均電流モード DC-DC コンバータ

一方,1970年代よりDSPの開発が大きく進み,1983年,世界初のハーバード・アー キテクチャを採用したDSPとして,Texas Instruments 社よりTMS320C10が登場した。 その後もDSPの開発は大きく進み,A-D変換器を用いてアナログ信号をディジタル信 号としてDSPに取り込むことで,VCOやカウンタを用いて実現していた演算をDSPに よって実現できるようになった。1995年にはTMS320E15を用いたディジタル制御方式 DC-DCコンバータが報告されている⁽⁴⁷⁾。この当時のDSPは性能が十分ではなく,文献 (47)では、50kHzのスイッチング周波数(20µs周期)に対してA-D変換および演算時間 が 30µs かかってしまうため,演算結果の更新に2スイッチング周期が必要であった。 この制御演算による遅れ時間により,ディジタル制御電源の過渡特性はアナログ制御電 源に対して悪化してしまう。さらに、20世紀におけるDSPは価格が高かったことや, 電源に対する要求事項がアナログ制御で克服できるものであった。

現在は A-D 変換器や DSP の性能が向上し、かつ安価な価格で手に入れられるように なったため、ディジタル制御電源は大きく注目されるようになった。図 1.12 にディジ タル制御回路を示す。ディジタル制御回路には、出力電圧 *eo* および制御方式により入 力電圧 *Ei* や負荷電流検出電圧 *es* が検出され、アンチエイリアシングフィルタを通過し A-D 変換器に入力される。A-D 変換後のディジタル値は DSP に送られ、制御演算のた めに用いられる。演算部の出力であるディジタルフィードバック値 *NPID* によってスイ ッチのオン時間が決定され、DPWM 信号生成回路により生成された PWM 信号がドラ イブ回路を通じてスイッチのオン・オフを決定する。

図 1.12 ディジタル制御回路

図 1.13 にディジタル PWM 信号発生器を示す。 N_{Ts} はスイッチング周期 T_s に相当す るディジタル値である。図 1.13 に示すように、PWM 信号発生器には N_{PID} および N_{Ts} がプリセットされる。周期開始点から CLK によるカウントが開始され、カウント数が N_{PID} に達した時点でスイッチをターンオフする。ディジタル PWM 信号発生器におけ る入出力の関係を式 (1.1)に示す。

$$\frac{N_{PID}}{N_{Ts}} = \frac{T_{on}}{T_s} \tag{1.1}$$

図 1.14 に A-D 変換器における出力電圧検出のタイミングを示す。出力電圧検出は、 スイッチングノイズの影響を避けるため、各周期の終了前にサンプリングを行い、A-D 変換および演算処理を経て、N_{PID}がプリセットされる。通常、A-D 変換器のサンプリ ング周期 T_{samp} は T_s と同様である。定電圧電源において、精度の高い出力電圧検出を 行うためには、A-D 変換時間が大きくても高分解能 A-D 変換器を用いる必要がある。 一方、高速応答の実現を目的にスイッチ/リアクトル電流を検出する場合は、精度より もリアルタイム処理の方が重要である。

図 1.13 ディジタル PWM 信号発生器

図 1.14 電圧検出のタイミング

1.4 ディジタル制御電源における問題点

電源の制御回路部をディジタル回路で構成した場合は,エネルギーマネジメント機能 を容易に実現できるが,図1.14に示すようにA-D変換時間および制御の処理時間によ り遅れ時間が生じてしまう。これにより,ディジタル制御にはアナログ制御に比べて動 特性が悪化するという問題がある。動特性の悪化は機器の誤動作や破壊を招き,電源シ ステムの信頼性を著しく低下させてしまう。したがって,ディジタル制御を普及させる ためには高速応答制御技術が求められる⁽⁴⁸⁾⁻⁽⁶⁸⁾。

数百 kHz から数 MHz で動作する DC-DC コンバータにおいて, A-D 変換器を用いて スイッチ電流やリアクトル電流のピーク値を検出する場合, 図 1.15 に示すように GHz サンプリングの A-D 変換器が必要となる。そのため,アナログ制御で広く利用されて いるピーク電流モード DC-DC コンバータをディジタル制御で実装するためには, 超高 速 A-D 変換器およびディジタル信号処理回路を用いて制御回路を構成しなければなら ず,コストが上昇するため実用的ではない。

そこで、ディジタル制御の特徴であるプログラム演算処理を利用し、電流のピーク値 または平均値を予測する方式が提案されている⁽⁶⁹⁾⁻⁽⁸⁶⁾。図 1.16 にピーク電流予測制御に 基づくリアクトル電流波形を示す。n 回目におけるスイッチング周期の開始点において *iL*のサンプリングを行うことで、*iL*のボトム値 *I*_V[*n*]を得ることができる。オン期間に おける *iL*の傾き *m*は(*E_i*-*E₀)/<i>L*である。したがって、1 周期前のオン時間 *T*_{on_n}-*l*, *I*_V[*n*] および *m* から、*iL*のピーク値 *I*_{peak}[*n*]を予測することが出来る。この予測値を用いてフ ィードバック制御を行うことでピーク電流モードを実現している。しかしながら、電流 予測制御は複雑な制御演算が必要であることや予測による遅れ時間のため、動特性は十 分に改善されていないようである。さらに、リアクトル電流だけでなく入力電圧用の検 出回路および A-D 変換器が必要であるため、コストが上昇する。

図 1.15 A-D 変換器によるリアクトル電流検出

図 1.16 予測制御に基づくリアクトル電流波形

また,ピーク電流および平均電流を予測する方式以外にも過渡特性を改善するための 制御手法が提案されている⁽⁸⁷⁾⁻⁽⁹⁰⁾。文献(87)-(90)では,負荷のステップ変化が生じ,出力 電圧が急変した場合に,メインスイッチをオフ(あるいはオン)に固定し,過渡電圧の 変化を抑制する方式の提案である。その期間の出力電圧をサンプルすることでキャパシ タ電圧の最大値(あるいは最小値)とそれに基づく出力電圧の定常値への復帰のタイミ ングを予測し,つまりオフ(あるいはオン)時間への固定されたスイッチング周期を予 測し,それ以後は円滑に通常の PID 制御を行うようにしている。出力電圧の検出誤差を 相殺するためにアナログ回路を使わざるを得ないようであり,計算式に基づく予測制御 方式の限界が感じられる結果となっている。

ディジタル制御電源を普及させ、さらなるエネルギー削減を進めるには、複雑な演算 が必要なく、低コストであり、かつ電圧モード制御に比べて動特性が改善されたディジ タル電流モード制御電源の開発が必要である。

1.5 本研究の目的と意義

スイッチング電源は小型・軽量化を実現するために高周波化が進んでいるが、これに 伴い高速かつ高分解能 A-D 変換器を用いることはコストを上昇させてしまう。したが って、高精度な検出が必要な場合を除いては、安価でリアルタイム処理が可能な方式が 望ましい。数百 kHz から数 MHz で動作するコンバータにおいて、A-D 変換器を用いて スイッチ電流やリアクトル電流のピーク値を検出する場合、GHz サンプリングの A/D 変換器が必要となる。そのため、アナログ制御で広く利用されているピーク電流モード DC-DC コンバータを実装するためには、超高速 A-D 変換器およびディジタル処理回路 が必要となり、コストが上昇するため実用的ではない。

本研究では、RC 積分回路およびコンパレータのみで構成される新しいピーク電流検 出器を用いてリアルタイムにピーク値を検出でき、優れた動特性を有するディジタル制 御方式ピーク電流モード制御を実現した。この方式では、出力電圧は A-D 変換器を用 いて検出するが、リアクトル電流のピーク値は上述の RC 積分回路およびコンパレータ で構成されるアナログ回路によって検出される。すなわち、出力電圧のフィードバック 演算はディジタル制御回路部で行うが、電流のピーク値検出は動特性改善が目的であり、 精度よりもリアルタイム処理が求められるためアナログ回路によって行われる。これに より、ディジタル制御の特徴を有し、かつリアルタイムに電流のピーク値検出を実現す ることができ、電圧モード制御に比べて優れた動特性を得ることが出来た。

また,データセンタにおけるサーバ用電源に上述の提案するディジタルピーク電流モ ード制御を適用し,過渡特性およびエネルギーマネジメントの効果を検証した。これに より,サーバシステムにおけるダイナミックな負荷変動に対して優れた過渡特性を示し, かつディジタル制御による電源のアダプティブ制御を実現することにより,負荷に応じ て電源の稼働台数が最適に切り替えられ,電力効率に大きな改善が見られた。

また,アナログピーク電流モード制御ではツェナーダイオードを用いることにより過 電流制限機能を容易に実現することができるが,ディジタル制御ではこれまで有効な電 流モード制御が実現されていなかったため,過電流制限機能の報告は未だ行われていな かった。そこで,提案するディジタルピーク電流モード制御の有効性をさらに高めるた め,過電流制限機能について検討を行い,制限値を超えるオーバーシュートが発生する ことなく電流を制限する方式を実現した。さらに,提案方式は,アナログピーク電流モ ード制御と異なりディジタル制御部において過電流制限値を任意の値に変更すること が可能である。

一般に、電流モード DC-DC コンバータは負荷が重負荷であり、リアクトル電流が CCM のときに用いられる。電子機器等が待機または省エネモードで動作する場合は、 負荷は軽負荷となり、リアクトル電流は DCM となる。DCM では、電流が小さく検出 が困難なため電圧モード制御で動作する。DCM では、一般に出力電圧が大きく上昇す るという問題があることが知られている。そのため、これまでに PWM 信号を間欠的に 出力することで電圧上昇を抑制するバースト制御が検討されている。しかしながら、バ ースト制御では出力電圧リプルが上昇し、電源回路の信頼性低下につながる。また、ス イッチング周波数が変動するため、ノイズ除去フィルタの設計が困難になる。そこで、 ディジタル制御の特徴の一つであるパラメータの変更が容易である点を活かして、負荷 の状況に応じた積分ゲイン可変方式を提案し、DCM における DC-DC コンバータの問題 点を解決する。

本論文は,第1章から第6章で構成され,以下に各章の概要を示す。

第1章では、本研究を行うに至った背景および要求と問題点を明らかにし、従来の 研究を展望して本研究の位置付けを示す。

第2章では,提案するピーク電流検出器を用いたディジタル制御方式 DC-DC コンバ ータの回路構成および動作原理を述べ,その静特性および動特性について検討する。 第3章では、2章で述べたピーク電流モード制御をデータセンタにおけるサーバ用電 源に適用し、過渡特性および台数切替運転による電力効率について検討する。

第4章では,提案方式ピーク電流モード制御のさらなる有効性を高めるため,過電流 制限機能の回路構成および動作原理を述べ,その特性について検討する。

第5章では,負荷電流検出に基づく積分ゲイン可変方式の動作原理および設計方法を 述べ,軽負荷時における問題点の改善を行う。

第6章「結論」では、以上の成果を総括し、本論文で提案する制御方法の実用化・普及に向けた今後の課題にふれて結論とする。

第2章 ディジタル制御方式ピーク電流モード DC-DC コンバータ

2.1 まえがき

ディジタル制御には多くの利点がある一方, A-D 変換およびディジタル制御演算によ る遅れ時間によって、動特性が悪化するという問題がある。したがって、ディジタル制 御を普及させるためには高速応答制御技術が求められる⁽⁴⁸⁾⁻⁽⁶⁸⁾。スイッチング電源の主 たる部分を占める DC-DC コンバータ(直流-直流変換器)の制御方式は、電圧モードお よび電流モード方式の2つに大きく分けられる。DC-DCコンバータでは、半導体スイ ッチによりエネルギーを断続的にオン・オフし、その時比率により出力電圧を制御する。 そのため、出力には直流を得るための平滑フィルタが必要である。電流モードは、平滑 フィルタ後の出力電圧だけでなくその前段のスイッチ電流も検出するため,一般的に優 れた過渡特性を得ることができる。特に、ピーク電流モード方式は過渡特性改善に有効 である。このピーク電流モードをディジタル制御方式で実装する場合、リアルタイムに ピーク電流を検出するためには高速 A-D 変換器が必要であるが、コストが上昇するた め実用的ではない。また、予測制御によってスイッチまたはリアクトル電流のピーク値 を求める方法が提案されている。予測制御では複雑な演算が必要であり、予測に伴う遅 れ時間が生じてしまうため、十分に動特性を改善できない(22)-(27)。したがって、安価か つ簡単な回路構成でリアルタイムにピーク電流を検出できる方式を用いたディジタル 制御方式を確立が求められる。

本章では、リアルタイムにピーク電流検出を実現できる新しいディジタル制御方式ピ ーク電流モード DC-DC コンバータを提案し、その基本特性について検討する。提案方 式では、ピーク電流検出器に RC 積分回路およびコンパレータを用いる。これまで、デ ィジタル制御で電流モード制御を実装する場合には、スイッチング周期に比べて大きな 時定数を用いた RC 積分回路によってリアクトル電流を平滑し、その平均値をサンプリ

ングし A-D 変換を行う平均電流モード制御が用いられていた。この方式では時定数が 大きいため電流の変化に瞬時に追従することが出来ず,動特性を十分に改善することが できていなかった。一方,提案方式では電流を平滑化する必要がなく,小さな時定数を 用いることができる。電流の検出開始点は,出力電圧を PID 制御することによって得ら れた値によって変化する。電流検出開始後,連続値である RC 積分電圧を用いてピーク 値を瞬時に捉えることができる。

本章では、まず、電流の検出方式における従来の問題点を指摘し、提案方式の優位性 を明らかにする。次に、提案するピーク電流検出器を用いたディジタル制御方式ピーク 電流モード DC-DC コンバータの回路構成および動作原理を述べる。最後に、シミュレ ーションおよび実験結果より、提案方式によってリアルタイムにピーク値が検出され、 優れた動特性を得ることを示す。 2.2 従来の問題点および新しいピーク電流検出器の提案

スイッチング電源は小型・軽量化を実現するために高周波化が進んでいるが、これに 伴い高速かつ高分解能 A-D 変換器を用いることはコストを上昇させてしまう⁽⁸⁾⁻⁽¹¹⁾。し たがって、高精度な検出が必要な場合を除いては、安価でリアルタイム処理が可能な方 式が望ましい。

これまでディジタル制御で電流モード DC-DC コンバータを実装する場合,図 2.1(a) に示すように RC 積分回路を用いてリアクトル電流を平滑し,その平均値を検出する平 均電流モード制御が用いられている。この方式で用いる RC 積分回路の時定数は,スイ ッチング周期に比べて非常に大きいため,電流の急激な変化に追従することができない。 したがって,十分な応答性を得ることは困難である。一方,図 2.1(b)に示す提案方式は, 電流のピーク値付近のみを検出し,積分電圧がしきい値に到達するまでの時間からピー ク値を検出する。そのため提案方式では,電流を平滑化する必要がなく,小さな時定数 を用いることができる。提案方式では,電流の検出開始点は出力電圧のフィードバック 値で決定し, RC 積分回路は小さな時定数で済むため従来方式に比べて優れた応答性を 得ることができる。

(a) 従来方式

図 2.1 リアクトル電流の検出方法
2.3 回路構成および動作原理

図 2.2 にディジタル制御方式ピーク電流モード DC-DC コンバータの回路構成を示す。 メイン回路は降圧型コンバータを用いている。 E_i は入力電圧, e_o は出力電圧, R_o は負 荷抵抗, i_L はリアクトル電流, I_o は負荷電流, R_s はリアクトル電流の検出抵抗, T_r は メインスイッチ,Dはダイオード,Lはリアクトルおよび C_o はキャパシタである。本 方式では, i_L に相当する電圧 e_s および e_o が制御回路に送られ,メインスイッチのター ンオフを決定する。

図 2.3 に提案するディジタル制御回路の構成図を示す。 e_o を検出してから遅延回路までの流れは、 e_s の検出開始を決定する信号を生成する部分である。また、 e_s を検出してからピーク電流検出器およびディジタルパルス幅変調 (DPWM) までの流れは、ピーク電流検出部である。 N_{PID} は PID 制御部による演算値である。 S_D は電流検出のタイミングを決定する信号であり、遅延回路によって生成される。 S_{es} はピーク値の検出を表す信号であり、 S_w はメインスイッチのスイッチング信号である。

まず、 e_o を検出してからの流れについて説明する。 e_o は前置増幅器および A-D 変換器を通過後、式(2.1)によってディジタル値 $e_o[n]$ に変換される。

$$e_0[n] = A_{eo}G_{AD}e_0 \tag{2.1}$$

ただし, *A_{eo}* は前置増幅器の増幅度および *G_{AD}* は A-D 変換器の入出力における変換係 数である。*A_{eo}* の値は,使用する A-D 変換器の入力電圧範囲によって決定する。

*e*₀[*n*]は PID 制御部に送られ, ディジタルフィードバック値 *N*_{PID} が演算される。この とき, *n* 番目のスイッチング周期における *N*_{PID} は式(2.2)によって求められる。

$$N_{PID,n} = N_B - K_P(e_O[n-1] - N_r) - K_I N_I - K_D(e_O[n-2] - e_O[n-1])$$
(2.2)

$$N_{I} = \sum (e_{O}[n-1] - N_{r})$$
(2.3)

ただし、 N_B は基準動作点を決定するバイアス値、 N_r は出力電圧の目標値に相当するディジタル値であり、 K_P 、 K_I および K_D はそれぞれ比例、積分、および微分制御係数である。

図 2.4 に遅延回路の構成および信号遅延の過程を示す。遅延回路は FPGA において、 カウンタ、遅延バッファ(BF) およびマルチプレクサ(MUX)によって構成される。 遅延回路では、 N_{PID} をもとに遅延時間 T_D が決定する。 T_D は、スイッチング周期の開 始から i_L の検出開始までの時間を表す。カウンタにおける 1 クロック毎の遅延時間を T_{DC} および遅延バッファ 1 個あたりの遅延時間を T_{DB} とすると、

$$T_D = T_{DC}X + T_{DB}Y \tag{2.4}$$

となる。ただし、XおよびYはそれぞれカウンタのカウント数および遅延バッファの個数であり、 T_{DB} は $T_{DC}/10$ である。この場合、Xは $N_{PID}/10$ の商であり、Yは $N_{PID}/10$ の剰余となり、 N_{PID} は式(2.5)のように表すことができる。

$$N_{PID} = 10X + Y \tag{2.5}$$

例として、*NPID*=1234 のとき、*X*=123 および *Y*=4 である。*T_{DB}* が 1ns の場合、*T_{DC}*=10ns となり、スイッチング周期の開始から 1234ns 経過後、電流検出が開始される。このよ うに、遅延バッファを用いることで高い分解能を実現するとともに、FPGA 全体におけ るクロックのカウント数を少なくし、高周波クロックの使用を避けることができる。信 号 *S_I* に対して、*S₂* はカウンタを通過後の信号および *S_D* は遅延バッファを通過後の信 号を表す。*S_D* がターンオンするとき、電流検出が開始される。

次に、リアクトル電流 i_L は検出抵抗 R_s によって電圧 e_s として検出され、前置増幅 器を通ることにより以下のように変換される。

$$e_s = A_c R_s i_L \tag{2.6}$$

ただし、Acは前置増幅器の増幅度である。

 e_s は図 2.5 に示すピーク電流検出器に入力される。ピーク電流検出器は RC 積分回路 およびコンパレータのみで構成される。遅延回路で生成された S_D がターンオフすると, 積分回路の出力電圧 v_{rc} が上昇する。 v_{rc} はコンパレータに送られ,しきい値 V_{th} を超え るとコンパレータの出力信号 S_{es} がターンオンする。この瞬間がピーク電流検出を表す。

ピーク電流検出における各信号の動作を図 2.6 に示す。SD は各周期の始まりから TDだけ遅れてオンになる信号であり、電流検出のタイミングを決定する。その後、電流検 出が始まり v_{rc} が V_{th} に達した瞬間 S_{es} がオンになり、メインスイッチがターンオフす る。図 2.6 における T_{cs} は積分時間、すなわち電流検出時間を表し、式(2.7)によって表 される。

$$T_{CS} = -\tau ln \left(1 - \frac{V_{th}}{A_C R_S I_{peak}} \right)$$
(2.7)

また,提案方式において, Ton は

$$T_{on} = T_D + T_{cs} \tag{2.8}$$

と表される。

図 2.2 ディジタル制御方式ピーク電流モード DC-DC コンバータ

図 2.3 提案方式制御回路

(a) 回路構成

図 2.5 ピーク電流検出器

図 2.6 ピーク電流検出部における動作波形

2.4 静特性

提案するディジタル制御方式ピーク電流モード DC-DC コンバータにおける静特性を シミュレーションおよび実験により確認した。回路シミュレータは PSIM を用いた。回 路パラメータを表 2.1 に示す。*E*₀*は出力電圧目標値, *f*_s はスイッチング周波数および *I c* は臨界電流を表す。遅延回路および DPWM は FPGA(XILINX Virtex-5)によって実装さ れている。データの評価を容易にするため、*e*₀の A-D 変換および PID 制御器は、DSP(T MS320C6713-225)を用いている。通常、ピーク電流モード DC-DC コンバータでは、時 比率が 0.5 を超えると低調波発振現象が発生するため、スロープ補償と呼ばれる手法に よってこの現象を防ぐ。今回はスロープ補償を用いず、時比率は 0.5 以下で動作させる。

パラメータ	值
Ei	15 V
E ₀ *	5 V
L	175 μH
Co	285 μF
Rs	0.05 Ω
$f_{\mathcal{S}}$	100 kHz
Ι _c	0.1 A
A-D 変換器	14 bit
A _{eo}	0.25
G_{AD}	2000
T _{DC}	10 ns
T _{DB}	l ns
N _{Ts}	10000
NB	3030
N _R	2500
A _c	128
τ	1.32 µs or 2.64 µs
V _{th}	0.8 V

表 2.1 回路パラメータ

定常時における出力電圧 E_o のレギュレーション特性の実験結果を図 2.7 に示す。PID 制御器において, K_P は 5, K_I は 0.07 および K_D は 1 である。電流モード DC-DC コン バータは, 軽負荷時には電圧モードに切り替わる。そのため, 動作範囲は 0.2A から 1A とする。 P_1 および P_2 は I_o が 0.5A および 1A のときの点を示す。 P_1 および P_2 におけ る制御特性および観測波形は後述する。図 2.7 より, 動作範囲において, E_o *が維持さ れていることが確認できる。これは, I_o の変化に伴い T_{cs} が変化するのに対し, E_o の ディジタルフィードバック値 N_{PID} が式(2.2)により更新され, その結果 T_D が I_o に対し て変化しているためである。

図 2.8 に定常時における T_{cs} の値を示す。図 2.8 に示すように、計算値、シミュレーション値および実験値は良好に一致している。 T_{cs} の計算値は、式(2.7)において I_{peak} に I_{o} +0.1 を代入することで得られる。図 2.6 に示すように I_{peak} および I_{cs} の誤差は T_{cs} が大きいほど大きくなる。そのため、 I_{o} が小さくなるにつれて計算値との誤差が拡大していることがわかる。また、実験値より T_{cs} は 320ns から 2200ns の間で変化しており、P1 では 664ns および P2 では 320ns である。提案方式の T_{on} は式(2.8)より T_{cs} および T_{D} から決定する。また、 E_{o} */ E_{i} は 0.33 および T_{s} は 10 μs であるため、損失を考慮しない場合、定常時の基準となる T_{on} は 3.3 μs である。したがって、良好なレギュレーション特性を満たすには T_{cs} が 3.3 μs 以下であればいい。今回、 T_{cs} の最大値は 2200ns(=2.2 μs)であるため、この条件を満たしている。

図 2.9 に定常時における T_D の値を示す。実験値において、 T_D は 980ns から 2940ns の間で変化しており、 E_o が E_o *を維持するために N_{PID} を基に算出される。実験値より、 P₁ では 2540ns および P₂ では 2940ns である。計算値には、以下に示す降圧形コンバー タの入出力特性の関係式が用いられている。

$$T_{ON} = \frac{E_O + rI_O}{E_i} T_S \tag{2.9}$$

ただし, r はメイン回路の損失抵抗を表しており,ここでは 0.23Ωである。計算値は,式(2.8)に式(2.7)および(2.9)を代入することで得られる。実験では,S_D がターンオフしてから電流検出が開始されるまでに 240ns の遅延が生じる。この遅延は R-S フリップフロップによるものであり,計算値にはこの遅れ時間も含まれている。

 P_1 および P_2 における電流検出部の観測波形を図 2.10 および 2.11 にそれぞれ示す。 観測波形より,実験結果は図 2.6 の原理図と同様に動作している。また, T_D および T_{cs} は図 2.9 および 2.10 と同じ値である。 S_D がターンオフし 240ns 経過後,リアクトル電流の検出が開始される。その後, v_{rc} および V_{th} によって瞬時にピーク電流を捉え,メインスイッチがターンオフされていることが確認できる。

図 2.7 実験における提案方式のレギュレーション特性

図 2.8 定常時における T_{cs}

図 2.9 定常時における T_D

図 2.10 P1 におけるピーク電流検出部の観測波形

図 2.11 P2 におけるピーク電流検出部の観測波形

2.5 動特性

本節では、まず提案方式の伝達関数の導出を行う。

図 2.2 の降圧形コンバータにおいて、微小変化分を考慮したラプラス変換表示による 等価回路は図 2.12 のように表すことができる。図 2.12 より、

$$\Delta e_O(s) = \frac{\Delta T_{ON}(s)E_i + T_{ON}\Delta e_i(s)}{T_S} - (Ls + r)\Delta i_L(s)$$
(2.10)

$$\Delta i_L(s) = \frac{\Delta e_O(s)}{\frac{R_O / sC_O}{1 / sC_O + R_O}} \cdot \frac{E_O}{R_O} \frac{\Delta R_O(s)}{R_O}$$

$$= \frac{1 + sC_OR_O}{R_O} \Delta e_O(s) - \frac{E_O}{R_O} \frac{\Delta R_O(s)}{R_O}$$
(2.11)

式(2.10)に式(2.11)を代入し、について整理すると、式(2.12)が得られる。

$$\Delta e_{o}(s) = G(s) \cdot \left\{ \frac{\Delta T_{on}(s)E_{i} + T_{on}\Delta e_{i}(s)}{T_{s}} + (Ls+r)\frac{E_{o}}{R_{o}}\frac{\Delta R_{o}(s)}{R_{o}} \right\}$$
(2.12)

ただし,

$$G(s) = \frac{1/LC_o}{s^2 + s(\frac{1}{LC_o}) + \frac{1}{LC_o}(1 + \frac{r}{R_o})}$$
(2.13)

式(2.12)より,降圧形 DC-DC コンバータにおける伝達関数表示のブロック線図は図 2.13 のように表すことができる。

図 2.12 降圧形コンバータのラプラス変換表示における等価回路

図 2.13 降圧形コンバータの伝達関数表示

一方,制御回路の伝達関数を用いたブロック線図は図 2.14 のように表すことができる。 $H_{v}(s)$ は出力電圧の PID 制御における伝達関数を表し,

$$H_{\mathcal{V}}(s) = H_{\mathcal{P}\mathcal{V}} + \frac{H_I}{s} + sH_D \tag{2.14}$$

ただし,

$$H_{Pv} = \frac{K_P A_{eo} G_{AD}}{N_{Ts}} \tag{2.15}$$

$$H_I = \frac{K_I A_{eo} G_{AD}}{N_{Ts} \cdot T_s} \tag{2.16}$$

$$H_D = \frac{K_I A_{eo} G_{AD} T_s}{N_{Ts}} \tag{2.17}$$

ここで、制御による遅れ時間およびアンチエイリアスフィルタの影響を考慮すると、式 (2.14)は

$$H_{\mathcal{V}}(s) = \frac{H_{P\mathcal{V}} + \frac{H_{I}}{s} + sH_{D}}{1 + s\tau_{2}} e^{-s\tau_{1}}$$
(2.18)

と表すことができ,遅れ時間を

$$e^{-s\tau_1} \approx \frac{1}{1+s\tau_1} \tag{2.19}$$

と近似すると、 $H_{v}(s)$ は以下のように表すことができる。

$$H_{\mathcal{V}}(s) = \frac{s^2 H_D + s H_{P\mathcal{V}} + H_I}{s^2 (\tau_1 + \tau_2) + s}$$
(2.20)

また、電流検出については、式(2.7)を近似すると、

$$T_{cs} = \frac{\tau \cdot V_{th}}{A_c R_s i_L} \tag{2.21}$$

となる。ここで, i_L が I_L *から Δi_L だけ微小変化したとすると, $\Delta T_{cs}/T_s$ は式(2.21)により求められる。

$$\frac{\Delta T_{cs}}{T_s} = \frac{\tau \cdot V_{th}}{A_c R_s (I_L + \Delta i_L) T_s}$$

$$\approx -\frac{\tau \cdot V_{th}}{A_c R_s I_L *^2 T_s} \Delta i_L$$
(2.22)

式(2.22)をラプラス変換すると,

$$\frac{\Delta T_{cs}(s)}{T_s} = -\frac{\tau \cdot V_{th}}{A_c R_s I_L *^2 T_s} \Delta i_L(s)$$
(2.23)

したがって,電流ゲイン HPi は,

$$H_{Pi} = \frac{\tau \cdot V_{th}}{A_c R_s I_L *^2 T_s}$$
(2.24)

よって、図 2.14 における $\Delta T_{on}/T_s$ は、以下のように表すことができる。

$$\frac{\Delta T_{ON}(s)}{T_s} = -H_V(s) \cdot \Delta e_O(s) - H_{Pi} \cdot \Delta i_L(s)$$
(2.25)

ここで、 $\Delta i_L(s)$ を消去し、 $\Delta T_{on}/T_s$ および Δe_o の関係を明らかにするために、式(2.25)に式(2.11)を代入すると、

$$\frac{\Delta T_{ON}(s)}{T_s} = -H_{PCM}(s) \cdot \Delta e_O(s) - H_{Pi} \frac{E_O}{R_O} \frac{\Delta R_O(s)}{R_O}$$
(2.26)

ただし,

$$H_{PCM}(s) = \left(H_{v}(s) + \frac{1 + sC_{o}R_{o}}{R_{o}}H_{Pi}\right)$$
(2.27)

式(2.27)より,制御回路のブロック線図は図 2.15 のように書き換えられる。したがって,図 2.13 および図 2.15 により,提案方式の一巡伝達関数表示が図 2.16 のように得られる。図 2.16 において,一巡伝達関数 *T*(*s*)は,

$$T(s) = E_i \cdot G(s) \cdot H_{PCM}(s) \tag{2.28}$$

となる。式(2.28)を用いることにより、ボード線図を描くことで提案方式の安定性解析 を解析することができる。

図 2.14 制御回路の伝達関数表示

図 2.15 ΔiL(s)を消去した場合の制御回路の伝達関数表示

図 2.16 提案方式ピーク電流モード DC-DC コンバータのブロック線図

図 2.17 に、従来電圧モード PID 制御方式および提案方式のボード線図を示す。 τ_I =10µs および τ_2 =6.8µs である。ゲインが 0 になるときの位相を読み取り,-180 度との差を計算 することで位相余裕がわかる。表 3.2 に、 R_o が 5 Ω のときの位相余裕をそれぞれ示す。 図中の(A)の線は、 K_P =2、 K_I =0.005、 K_D =1 のときの従来方式におけるボード線図である。 (A)の従来方式の位相余裕は 19 度であった。(B)および(C)は、従来方式と同じ PID 制御 係数を用いたときのボード線図であり、表 2.2 に示すように異なる τ を用いている。 τ =1.32µs である (B)の位相余裕は 37 度であり、 τ =2.64µs である(C)では 52 度である。 このことから、提案方式は、従来方式に比べて大きく安定性が改善されていることがわ かる。さらに、(C)の時の方が高い安定性を有する。(D)では、 τ =2.64µs とし、従来方式 よりも安定性を損なわないように PID 制御係数を大きくした時のボード線図であり、 K_P =5、 K_I =0.07, K_D =1 である。この場合、位相余裕は 20 度となり、従来方式に比べて位 相余裕が悪化することなく PID 制御係数を大きくできる。したがって、過渡特性改善が 期待できる。

図 2.17 従来方式および提案方式のボード線図

制御方式	ϕ_m (deg)
(A) 従来方式 (Kp=2, Kf=0.005, Kf=1)	19
(B) 提案方式 (Kp=2, Kf=0.005, KD=1, r=1.32µs)	37
(C) 提案方式 (Kp=5, Kf=0.07, KD=1, r=2.64µs)	52
(D)提案方式 (Kp=5, Kf=0.07, Kf=1, r=2.64µs)	20

表 2.2 従来方式および提案方式の位相余裕

次に,従来の電圧モード PID 制御および提案方式の過渡特性の比較を行う。以下,負荷のステップ幅は 0.5A (P₁)から 1A (P₂)である。提案方式の*t*は 2.64µs である。

図 2.18 に K_P が 2 のときの従来方式における過渡特性を示す。 K_I は 0.01 および K_D は 1 である。図 2.18 より、シミュレーションおよび実験結果は良好に一致している。 従来方式では、 N_{PID} の値のみで T_{on} が決定する。負荷ステップ後、 e_o が減少するため N_{PID} は増加する。実験結果より、 e_o の収束時間は 2.1ms、 e_o のアンダーシュートは 4.8% および i_L のオーバーシュートは 31%であった。

図 2.19 に従来方式と同じ PID 制御パラメータを用いた時の提案方式の過渡特性を示 す。シミュレーション結果に示すように、提案方式の T_{on} は T_D および T_{cs} によって決 定する。負荷ステップ前後の定常状態においては、 T_{cs} の値は P1 および P2 の値と等し くなる。負荷ステップ後、 T_{on} は増加するが T_{cs} は減少し、 i_L のオーバーシュートを抑 制する。実験結果より、 e_o の収束時間は 8.0ms、 e_o のアンダーシュートは 5.6%および i_L のオーバーシュートは 6.4%であった。従来方式に比べて e_o の収束時間やアンダーシ ュートは改善されていないが、 i_L のオーバーシュートは 77%改善することができた。 また、従来方式に比べて系が安定になっていることがわかる。そのため、提案方式にお いて e_o の収束時間やアンダーシュートを改善するためには K_P および K_I を大きくすれ ば良い。

図 2.20 に K_P を 5 および K_I を 0.07 にしたときの提案方式の過渡特性を示す。PID 制 御パラメータを大きくしたため、 T_D および T_{cs} が負荷ステップ後に急激に変化してい ることがシミュレーション結果より確認できる。実験結果より、 e_o の収束時間は 0.98ms および e_o のアンダーシュートは 4.1%になった。また、 i_L のオーバーシュートは 24%で あった。結果として、提案方式は従来方式に比べて i_L のオーバーシュートを悪化させ ることなく優れた動特性を示すことが確認できた。 e_o の収束時間およびアンダーシュ ートはそれぞれ 53%および 15%改善された。

図 2.18 従来方式における動特性 (Kp=2, Kf=0.01, Kp=1)

(a) シミュレーション結果

図 2.19 提案方式における動特性 (Kp=2, Kp=0.01, Kp=1)

(a) シミュレーション結果

(b) 実験結果

図 2.20 提案方式における動特性(Kp=5, Kp=0.07, Kp=1)

2.6 第2章のまとめ

提案するディジタルピーク電流モード制御におけるまとめを以下に示す。

- (1) RC 積分回路およびコンパレータを用いた新しいピーク電流器を提案し, ディジタ ル制御方式ピーク電流モード DC-DC コンバータを実装した。
- (2) 静特性におけるシミュレーションおよび実験結果から,提案方式はリアルタイム に電流のピーク値を検出することができることを確認した。
- (3) 実験結果における出力電圧のディジタルフィードバック値および電流の積分時間が、それぞれの式から導出された値と等しくなることから、提案方式が正しく動作していることを確認した。
- (4) 動特性解析から、同じフィードバックゲインを用いた時、提案方式は従来方式に 比べて位相余裕が大きく改善されることを確認した。また、シミュレーションお よび実験における過渡特性から、提案方式を用いることによって安定性が向上し ていることを確認した。
- (5) 提案方式では、従来方式よりも大きなフィードバックゲインを用いることによって、リアクトル電流のオーバーシュートを悪化させることなく、出力電圧の過渡 特性を改善することが出来た。結果として、出力電圧の収束時間は 53%、またア ンダーシュートは 15%改善することができた。

第3章 データセンタにおけるサーバ用電源のためのディジタル制御方式ピーク電流 モード DC-DC コンバータ

3.1 まえがき

情報通信分野で取り扱う情報量および IT 機器の増大に伴い,電源システムにおける 消費エネルギーの削減が重要な課題となっている。そのため,この分野における省エネ ルギー化を目指し,新エネルギー・産業技術総合開発機構(NEDO)によるグリーン IT プロジェクトが 2008 年より発足された。本プロジェクトの主な目的は,データセンタ におけるサーバシステムの年間消費電力量を 30%以上削減することである。

まず、本プロジェクトでは、直流 380 V で ICT (Information and Communication Technology) 装置に電力を供給する直流給電方式を世界に先駆けて採用し、その省エネ 効果の検証を行った^{(57), (59), (61), (63)}。図 3.1 および図 3.2 に、データセンタにおける交流給 電システムおよび直流給電システムを示す。図 3.1 より、交流給電システムにおける電 力変換回数は 4 回と多いことから、電力損失が大きいという問題点があった。一方、図 3.2 より、直流給電システムの電力変換回数は 2 回のみであるため、従来の交流給電シ ステムに比べて電力損失を大きく減らすことが出来る。また、既に導入されている直流 給電システムとして、ICT 分野では 48V 直流給電システムが使用されているが、本プロ ジェクトでは 380V 直流給電システムを採用している。48V 直流給電と比べて扱う電流 量が小さくすることができる。

さらに、ディジタル制御を用いて電源のアダプティブマネジメントを実現し、運用方 式から電力効率の改善を図った。これにより、負荷の変化、装置特性およびシステムの 状況に合わせて直流電源装置や PSU における各モジュールおよびユニットで運転・待 機・完全停止を適切に制御することにより、高効率かつ高信頼性を備えた運転方式を実 現する。

56

サーバ用電源は負荷がダイナミックに変動するため,高速応答が求められる。そこで, 本章では,データセンタのサーバ用電源として用いられる位相シフト方式フルブリッジ DC-DC コンバータに,2章で示したディジタルピーク電流モード制御を適用し,優れた 過渡特性を実現した。さらに,電源のアダプティブマネジメントによる省エネ効果を実 証するために,電源の台数切替制御を行い,負荷の状態に応じて適切に電源の稼働台数 を切り替えることで,負荷の状態に関わらず高い電力効率を得ることができた。

図 3.1 データセンタにおける交流給電システム

図 3.2 データセンタにおける直流給電システム

3.2 回路構成および動作原理

図 3.3 にデータセンタにおけるサーバ用電源のためのディジタル制御方式位相シフト・フルブリッジ形 DC-DC コンバータを示す。フルブリッジコンバータの制御トポロジーは基本的に 2 章で示した降圧形コンバータと同じである。Q1 から Q4 までのスイッチを制御することで出力電圧を調整する。

図 3.4 に位相シフト・フルブリッジ形 DC-DC コンバータの基本動作波形を示す。こ こでは、図 3.4 に示すように、 S_1 がオンの時を Mode 1、 S_2 がオンの時を Mode 2 とす る。 S_1 および S_2 が同時にオンすることで回路が短絡状態にならないように、どちらも オフになる期間が設けられる。この期間のことをデッドタイムと呼ぶ。トランス電流 i_T は 0A を中心に、 S_1 および S_2 のどちらがオン状態かによって、 i_T の流れる向きは異な る。そのため、 i_T のピーク値は Mode 1 と Mode 2 の両方に存在する。Mode 1 および Mode 2 におけるオン時間は、それぞれ S_4 および S_3 によって決定する。そのため、2 章で用いたピーク電流検出器が 2 つ必要である。

図 3.3 ディジタル制御方式位相シフト・フルブリッジ形 DC-DC コンバータ

図 3.4 位相シフト・フルブリッジ形 DC-DC コンバータの基本動作波形

図 3.5 に位相シフト・フルブリッジ形 DC-DC コンバータにおけるディジタル電流モ ード制御回路構成図を示す。 e_o の PID 制御によって得られた N_{PID} によって,電流検出 開始を決定する信号 S_{DH} および S_{DL} が遅延回路で生成され, Mode 1 および Mode 2 そ れぞれのピーク電流検出器に送られる。Mode1 においては I_{peak1} が検出され,ピーク 電流検出信号 S_H により S_4 がターンオフする。同様に, Mode 2 では I_{peak2} が検出され, ピーク電流検出信号 S_L により S_3 がターンオフする。Mode 1 および Mode 2 では i_T の 流れる方向が異なるため、ピーク電流検出器においても工夫が必要になる。

図 3.6 に Mode 1 および Mode 2 におけるピーク電流検出器を示す。ピーク電流検出器 において、図 2.5 と異なる点はバイアス電圧 V_B が追加されていることである。RC 積分 電圧 v_{rc_H} および v_{rc_L} はそれぞれ V_B を基準に変化する。そのため、 V_{th_H} は V_B より 大きな値に、 V_{th_L} は V_B より小さな値に設定される。図 3.6(a)において、 S_{DH} がオン の時、 v_{rc_H} は V_B に等しい。 S_{DH} がオフになると同時に電流検出が開始され、 v_{rc_H} が上昇する。 v_{rc_H} が V_{th_H} に到達すると、コンパレータの出力 S_H がオフとなり、こ の瞬間に S_4 がターンオフする。図 3.6(b)でも同様に、 S_{DH} がオンの時は v_{rc_L} は V_B に 等しい。 S_{DL} がオフになると同時に電流検出が開始され、 v_{rc_L} が V_B から減少する。 v_{rc_L} が V_{th_L} に等しくなると、コンパレータの出力 S_L がオフとなり、この瞬間に S_3 がターンオフする。

図 3.5 位相シフト・フルブリッジ形 DC-DC コンバータにおけるディジタル電流モード 制御回路構成図

(a) Mode 1

(b) Mode 2

図 3.6 位相シフト・フルブリッジ形 DC-DC コンバータのためのピーク電流検出器

図 3.7 に i_T および e_T の関係図を示す。 e_T はピーク電流検出器における RC 積分回路 の入力電圧となるため、 i_T が負の電流値になる Mode 2 においても正の電圧値にならな ければならない。つまり、 V_B は i_T が i_{T_min} のときに e_T が 0V 以上になるよう設計す る必要がある。 i_T は 0A を中心に変化するため、 i_T が 0A のときに e_T が V_B に等しくな り、 i_{T_max} のときに e_T が 2 V_B となるようにすることで、Mode 1 および Mode 2 にお ける電流変化に対する v_{rc} H および v_{rc} L の変化を同じにすることが出来る。

以上の動作原理をまとめると、提案するピーク電流モードを用いたディジタル制御方 式位相シフト・フルブリッジ形 DC-DC コンバータの動作波形は図 3.8 のように表すこ とができる。ディジタル制御回路では、Mode 1 および Mode 2 における電流検出開始時 間 *T_{DH}* および *T_{DL}* が式(2.4)および式(2.5)と同様に *N_{PID}* から算出される。電流検出開 始後は、*S_{DH}* および *S_{DL}* によりピーク値検出とともに *S*₄ および *S*₃ がターンオフされ る。Mode 1 では *S*₁ および *S*₄ が同時にオンのときに *iT* が上昇し、Mode 2 では *S*₂ およ び *S*₃ が同時にオンのときに *iT* が減少する。このように、図 3.6 に示すピーク電流検出 器を用いることにより、位相シフト・フルブリッジ形 DC-DC コンバータにおいても提 案するピーク電流モードを適用することができる。

図 3.8 ピーク電流モードを用いたディジタル制御方式位相シフト・フルブリッジ形

DC-DC コンバータの動作波形

3.3 実証実験

3.3.1 過渡特性

図 3.9 に示すプロトタイプを用いて過渡特性の検証を行った。幅は 220mm,奥行きは 270mm および高さは 100mm である。回路パラメータは表 3.1 に示す。定格電流は 67A および定格出力は 800W である。過渡特性における負荷ステップ幅は 25%から 50%であ る。A-D 変換器以外のディジタル制御は FPGA (XC3S700AN-4FGG484C)で行われる。ピ ーク電流モードでは,図 3.10 に示す *i*T を用いる。

まず、プロトタイプ単体の過渡特性を検証する。図 3.11 および図 3.12 に従来方式お よび提案方式の過渡特性を示す。従来方式は電圧モード PID 制御を用いている。どちら もアンダーシュートは 1.2%であるが、目標値の 0.5%以内に収束する時間は従来方式が 390µs であるのに対し、提案方式が 200µs となっており、49%改善していることが確認 できた。

次に、プロトタイプを2並列運転させた場合の過渡特性を検証する。図 3.13 および 図 3.14 に従来方式および提案方式の過渡特性を示す。従来方式では収束時間が 250 µs であり、提案方式では 190 µs である。単体動作の時と同様に、どちらもアンダーシュ ートは 1.2%であるが、提案方式を用いることで収束時間が 24%改善しており、サーバ 用電源のプロトタイプにおいても提案するピーク電流モード制御の有効性を確認する ことができた。

図 3.9 プロトタイプの写真

図 3.10 *iT*の波形

パラメータ	值
Ei	380 V
E ₀ *	12 V
L	10 µH
Co	13.2 mF
$f_{\mathcal{S}}$	135 kHz
Т	10:1
A-D 変換器	12 bit
VB	1.5 V
V _{th_H}	1.65V
V _{th_L}	1.35 V
τ	47 ns
ⁱ Tmax	5.67 A
ⁱ Tmin	-5.67 A
Kp	4
K _I	0.13
KD	4

表 3.1 回路パラメータ

図 3.10 プロトタイプ単体における従来方式の過渡特性

図 3.11 プロトタイプ単体における提案方式の過渡特性

図 3.12 プロトタイプ 2 並列運転における従来方式の過渡特性

図 3.13 プロトタイプ 2 並列運転における提案方式の過渡特性

3.3.2 電力効率

図 3.14 に、プロトタイプを最大で 4 つまで並列運転させたときの電力効率を示す。 実線は負荷に応じてプロトタイプの数を切り替えた時の電力効率を表し、点線は 4 並列 で動作させた時の電力効率を表す。プロトタイプの切り替え点はそれぞれ、57A、98A、 134A である。負荷の大きさに関わらず 4 並列運転させた場合、軽負荷時における効率 が大きく低下している。

一方、コンバータの台数を切り替えることによって、軽負荷時における効率を最大1
0%以上改善することができる。また、台数切替時には、負荷稼働率が11%以上の時に9
1%以上の効率を維持できることが確認できる。したがって、電源のアダプティブマネジメントを実現することで、運用方式から電力効率の改善できることを示した。

図 3.14 電力効率

3.4 第3章のまとめ

ディジタルピーク電流モード制御を用いたデータセンタにおけるサーバ用電源に関 する検証のまとめを以下に示す。

- (6) 380V 直流給電システムを用いたデータセンタにおけるサーバ用電源に、第2章で 提案したピーク電流モード制御を適用するための方法を示した。フルブリッジ DC-DC コンバータでは電流のピーク値が2箇所存在するため、ピーク電流検出器 を2つ用いた制御回路構成が必要である。
- (7) 出力 800W のプロトタイプを用いて過渡特性の検証を行った。結果として、提案 方式は、従来方式電圧モード PID 制御と比較して出力電圧の収束時間をおよそ 50% 改善することを確認した。
- (8) また、プロトタイプを4台用いて電源のアダプティブマネジメントによる省エネ 効果の検証を行なった。結果として、電源の台数切替制御がない場合と比べて、 軽負荷時における電力効率を10%以上改善することを示した。さらに、負荷稼働 率が11%以上の広範囲にわたって91%以上の電力効率を維持することができ、電 源のアダプティブマネジメントの有効性が確認できた。

第4章 ディジタル制御方式ピーク電流モード DC-DC コンバータの過電流制限機能

4.1 まえがき

スイッチング電源の制御は,負荷の値により定電圧モードおよび過電流制限モードに 分けられる。過電流制限モードは電源の安全性を向上させるために重要であり,実装さ れていない場合には重大な事故を引き起こす危険性がある^{(91),(95)}。アナログ制御方式ピ ーク電流モード DC-DC コンバータは,ツェナーダイオードを用いることで,出力電圧 のフィードバック値を制限することにより,容易に過電流制限を実装することが可能で ある。一方,ディジタル制御方式では,電流検出用の A-D 変換器によるコストの増大, 制御の複雑化およびリアルタイムにピーク電流を検出することが困難であるため,ディ ジタル制御方式ピーク電流モード DC-DC コンバータに対する過電流制限の実装につい ては報告されていない。2章では,定電圧モードにおいてピーク電流をリアルタイムに 検出することができるディジタル制御方式ピーク電流モードを提案し,その性能評価を 行なった。提案方式の有効性をさらに向上させ、ディジタル制御を普及させるためには, 追加の回路を用いずに過電流制限モードを実装することが重要である。

本論文では、提案するディジタル制御方式ピーク電流モード DC-DC コンバータに対 する過電流制限モードの実装について検討を行った。提案方式ピーク電流検出回路は、 RC 積分回路およびコンパレータのみで構成されており、検出電流用の A-D 変換器とし て使われる。そこで、RC 積分回路の積分時間を用いることで、スイッチ電流のピーク 値をリアルタイムに算出し、その値によって過電流かどうかを瞬時に判別することが可 能である。したがって、定電圧モードにおける既存の論理を適用するため、新たな回路 を追加することなく過電流制限を実装することができる。まず、提案する過電流制限モ ードの動作原理について述べ、その後過電流制限特性を示す。

4.2 回路構成および動作原理

メイン回路構成図は図 2.2 と同じである。図 4.1 に提案方式の制御回路図を示す。定 電圧モードでは、2 章で述べた動作原理によりピーク値検出を行い、メインスイッチの オン時間を決定する。過電流検出回路は、*T_{cs}*によって *I_{peak}*を式(4.1)より算出する。

$$I_{peak} = \frac{\tau \cdot V_{th}}{A_c R_s T_{cs}} \tag{4.1}$$

 I_{peak} を過電流と判断した場合 S_{oc} がオンとなり,過電流制限モードに移行する。過電流制限モードでは, I_o が過電流制限値 I_{o_set} を常に維持するためのディジタルフィードバック値 N_{oc} が演算される。定電圧モードおよび過電流制限モードでは、それぞれリアクトル電流の検出開始時間 T_D の算出方法が異なる。マルチプレクサにより、定電圧モードでは N_{PID} が選択され、 N_{Drive} として出力される。一方、過電流制限モードでは N_{PID} および N_{oc} を比較し、小さな値が N_{Drive} として選択される。

図 4.2 に過電流検出時におけるピーク電流検出器の動作波形を示す。また、図 4.3 に 過電流制限モードにおける提案方式の動作波形を示す。過電流と判断する積分時間 T_{cs} を T_{cs}*と設定することにより、過電流かどうかを判別できる。過電流検出値 I_M は

$$I_M = \frac{\tau \cdot V_{th}}{A_c R_s T_{cs} *} \tag{4.2}$$

と求められる。

図 4.2 より,積分時間 T_{cs} は I_{peak} の値が大きいほど短くなり, I_{peak} の値が小さいほ ど長くなる。そのため、定電圧モードでは T_{cs} は T_{cs} *よりも長くなる。 T_{cs} が T_{cs} *以下 になった時、過電流と判断し S_{oc} がターンオンする。この瞬間に定電圧モードから過電 流制限モードに切り替わる。

図 4.3 に提案する過電流制限モードの動作波形を示す。提案方式は既存の原理を利用 して過電流検出を行なっており、新たな付加回路は必要ない。

図 4.2 過電流検出

図 4.3 過電流制限モードにおける動作波形

図 4.4 に提案方式における過電流制限特性の模式図を示す。図 4.4 において $R_o=R_1$ の とき、すなわち $I_o=I_M$ のとき、 $T_{cs}=T_{cs}$ *となり、過電流制限モードに移行する。過電流 制限モードでは I_o が I_{o_set} を超えないように制御する必要がある。そのため、定電圧 モードと異なり R_o に応じて e_o を変化させ、 $I_o=I_{o_set}$ の状態を維持する。過電流制限モ ードの定常状態における出力電圧 E_{o_oc} は以下のように算出される。

$$E_{o_oc} = I_{o_set} \cdot R_{o_cal} \tag{4.3}$$

ただし,

$$R_{o_cal} = e_o / I_{peak} \tag{4.4}$$

過電流制限モードでは式(4.4)で算出された R_{o_cal} の値を用いて,定常時に I_o が I_{o_set} と等しくなるような E_{o_oc} を算出する。そのために、 T_D の値は定常時に成り立つ関係 式から算出される演算結果 N_{oc} によって決定する。その導出方法を以下に示す。

式(2.8)および式(4.1)より、定常時における TD は

$$T_D = \frac{E_o + rI_o}{E_i} T_s - \frac{\tau \cdot V_{th}}{A_c R_s I_{peak}}$$
(4.5)

と求められる。ここで、降圧形コンバータにおいて、Ipeakは

$$I_{peak} = I_o + \frac{E_i - E_o}{2L} T_{on}$$

$$\tag{4.6}$$

である。式(2.9)および式(4.6)を式(4.5)に代入することにより、

$$T_{D} = \frac{E_{o} + rI_{o}}{E_{i}} T_{s} - \frac{\tau V_{th}}{A_{c}R_{s}} \frac{1}{I_{o} + \frac{E_{i} - E_{o}}{2L} \cdot \frac{E_{o} + rI_{o}}{E_{i}} T_{s}}$$
(4.7)

と表される。 $E_{o\ oc}$ および $I_{o\ set}$ を用いると、式(4.7)は以下のように書き換えられる。

$$T_{D} = \frac{E_{o} oc + rI_{o} set}{E_{i}} T_{s} - \frac{\tau V_{th}}{A_{c}R_{s}} \frac{1}{I_{o} + \frac{E_{i} - E_{o} oc}{2L} \cdot \frac{E_{o} + rI_{o} set}{E_{i}} T_{s}}$$
(4.8)

また、TDおよびNocには以下の関係式が成り立つ。

$$N_{oc}[n] = \frac{T_D}{T_s} N_{Ts} \tag{4.9}$$

したがって、過電流制限モードでは、以下の演算が行われる。

$$N_{oc}[n] = \frac{E_{o_oc} + rI_{o_set}}{E_{i}} N_{Ts} - \frac{\tau V_{th}}{A_{c}R_{s}T_{s}} \frac{N_{Ts}}{I_{o} + \frac{E_{i} - E_{o_oc}}{2L} \cdot \frac{E_{o} + rI_{o_set}}{E_{i}} T_{s}}$$
(4.10)

式(4.10)において、 E_{o_oc} および I_{o_set} 以外の値は全て定数である。そのため、PID 制 御器のようにパラメータの調整を行う必要が無い。さらに、任意の I_{o_set} を設定するこ とができる。提案方式では、2章で述べたようにリアルタイムにピーク電流値を検出す ることができるため、瞬時に過電流制限モードに切り替えることが可能であり、優れた 過電流制限特性を得ることができる。

4.3 過電流制限特性

メイン回路パラメータは表 2.1 と同様である。 I_M は 1A とする。このときの T_{cs} は 320ns である。

図 4.5 に I_{o_set} を 1.2A および 1.4A にしたときの定常時における定電流特性のシミュ レーション結果を示す。 I_o が 1A 以内においては、定電圧モードで動作しており、 I_o が 変化しても E_o は目標電圧を維持している。 R_o が 3Ω以下では、任意の I_{o_set} の値を維 持できており、優れた過電流制限特性を示している。

図 4.6 に,過電流制限機能がない場合において *R_o* が 10Ωから 3Ωにステップ変化した 時の実験結果を示す。*i*_L において,2.7Aのオーバーシュートが発生していることが確認 できる。負荷急変時に発生する大きなオーバーシュートは,素子の破壊の原因になる。

図 4.7 および図 4.8 は、 I_{o_set} を 1.2A に設定し、 R_o が 10 Ω から 3 Ω にステップ変化した時のシミュレーションおよび実験結果である。 R_o が 10 Ω の時、制御モードは定電圧モードであり、負荷ステップ後リアクトル電流の上昇に伴い、 T_{cs} は減少する。 T_{cs} が T_{cs} *に到達した時、制御モードは定電圧モードから過電流制限モードに移行する。その時、電流の上昇が抑えられ、リアクトル電流は I_{o_set} に維持される。過電流制限モードがない状態の場合、 R_o が 3 Ω における定常時の I_o は 1.67A であるが、オーバーシュートが発生することなく 1.2A を維持することができている。また、このときの e_o は、式(4.3)で算出された値となる。図 4.7 および図 4.8 では、負荷ステップ後の R_o が 3 Ω であり、 I_o set が 1.2A であるため、 e_o は定常時に 3.6V となる。

図 4.9 および図 4.10 は、 I_{o_set} を 1.4A に設定した場合のシミュレーションおよび実験結果であり、負荷ステップ幅は図4.7および図4.8と同じである。この場合、負荷ステップ後の R_o が 3 Ω であり、 I_{o_set} が 1.4A であるため、 e_o は定常時に 4.2V となる。 I_{o_set} を変えてもオーバーシュートが発生することなく優れた過電流制限特性を示している。

図 4.5 定常時における定電流特性

図 4.6 過電流制限機能がない場合における負荷ステップ応答(10Ω→3Ω)

図 4.7 *Io_set* が 1.2A の場合における負荷ステップ応答のシミュレーション結果

図 4.8 *Io_set* が 1.2A の場合における負荷ステップ応答の実験結果

図 4.9 *Io_set* が 1.4A の場合における負荷ステップ応答のシミュレーション結果

図 4.10 *Io_set* が 1.4A の場合における負荷ステップ応答の実験結果

4.4 第4章のまとめ

本章では、ディジタルピーク電流モード DC-DC コンバータの過電流制限機能を、定 常状態における解析を基に実現し、優れた過電流制限特性を実現することができた。本 章におけるまとめを以下に示す。

(1) ディジタル制御方式ピーク電流モード DC-DC コンバータの過電流制限モードの実装について検討を行い、パラメータの設計が不要かつ優れた過電流制限特性を得ることができる方式を実現した。

(2) 提案する過電流制限モードは、2章で述べた原理を応用しており、新たな付加回路 を用いることなく過電流制限モードを実現することができた。

(3) 提案方式では,瞬時に過電流値を検出し,オーバーシュートを発生させることなく任意の過電流制限値を設定することができた。

第5章 ディジタル積分ゲイン可変方式 DC-DC コンバータ

5.1 まえがき

一般的に、電流モード DC-DC コンバータは重負荷で使用されるため、動作範囲はリ アクトル電流が臨界電流以上で動作する CCM(Continuous Conduction Mode:連続モード) である。コンバータには、軽負荷時にリアクトル電流が臨界電流以下となり1周期の中 でゼロになる区間が存在する DCM(Discontinuous Conduction Mode:不連続モード)での 動作において、出力電圧が大きく上昇するという問題がある。これまで、この電圧上昇 における問題を改善するために、様々な検討が行われてきた。

まず,主回路の工夫により電圧の上昇を抑制する方式がある⁽⁹⁶⁾⁻⁽¹⁰⁷⁾。その一つとして ダミー抵抗を用いることにより出力電圧の上昇を防ぐという方式があるが,これは回路 における電力効率を大きく低下させることになる。また,双方向性を持つ半導体スイッ チを用いる同期整流器方式が増え出力電圧の上昇を防ぐ結果になっているが,軽負荷時 において循環電流が流れるため,効率の低下を招いてしまう。これらのことを考えると, 主回路の工夫における出力電圧上昇の抑制を行うことは,部品点数増加や効率の低下に つながるため,望ましくない。

次に、制御方式より抑制する方式がある⁽¹⁰⁸⁾⁻⁽¹²⁶⁾。PWM 信号を毎周期ではなく間欠的 に出力することで電圧の上昇を防ぐバースト制御があるが、これは出力電圧リプルが増 大してしまい電源回路の信頼性低下につながってしまう。さらに、スイッチング周波数 の変動によりノイズフィルタの設計が困難であることも無視できない問題である。そこ で、制御により出力電圧を抑制する手段として、フィードバックゲインの値を切り替え る方式が考えられる。DC-DC コンバータは、軽負荷時である DCM においては出力電圧 上昇の抑制のために大きなフィードバックゲインに設定する必要がある。一方で、CCM

では回路動作が不安定となり易いため,フィードバックゲインを大きな値に設計できない。

本章では、ディジタル制御の特徴の一つであるパラメータの変更が容易である点を活 かした積分ゲイン可変方式を提案する。ディジタル制御を用いてフィードバックゲイン を可変にすることにより、部品点数の増加を抑えることができる。また、ディジタル制 御を用いる利点として、積分ゲインは定常状態において無限大のゲインを得られるため、 出力電圧の安定化に適しているといえる。本章では、入力電源に再生可能エネルギーを 用いたことも想定し、入力電圧変動にも対応した負荷電流検出による積分ゲイン可変方 式を検討する。

5.2 回路構成および動作原理

図 5.1 に負荷電流を検出するディジタル制御方式 DC-DC コンバータを示す。この場合, e_s は負荷電流 I_o に相当する電圧を表す。本章における積分ゲイン可変方式では, e_o および e_s がディジタル制御回路に送られる。

負荷電流を用いた積分ゲイン可変方式の制御回路図を図 5.2 に示す。 I_o は前置増幅器 および A-D 変換器によりディジタル値 $I_o[n]$ に変換される。n は n 番目のスイッチング 周期を表す。提案方式において、式(2.2)に示す PID 制御演算における K_I の値は $I_o[n]$ に よって決定される。

CCM における *K*_Iの値は,系の安定性の観点から小さな値が望ましいが,DCM では 出力電圧の安定化のために大きな値にする必要がある。積分(I)制御による出力電圧 の安定化範囲は以下の式によって表すことができる。

$$K_{I} \geq -\frac{N_{B}}{2^{Q-I}} + \frac{N_{Ts}}{E_{i}(2^{Q-1}-1)} \left(rI_{o} + E_{o}^{*} \right) \qquad (I_{o} > I_{NB} \oslash \succeq \textcircled{e})$$
(5.1)

$$K_{I} \geq \frac{N_{B}}{2^{Q-1}-1} - \frac{N_{T_{S}}}{E_{i}(2^{Q-1}-1)} \left(rI_{o} + E_{o}^{*} \right) \qquad (I_{c} < I_{o} \leq I_{NB} \ \mathcal{O} \succeq \stackrel{*}{\geq}) \tag{5.2}$$

$$K_{I} \geq \frac{N_{B}}{2^{Q-1} \cdot 1} - \frac{2LN_{T_{S}}I_{O}}{T_{On}E_{i}(2^{Q-1} \cdot 1)\left\{(E_{i}/E_{O}^{*}) \cdot I\right\}}$$
(5.3)

ただし, Qは制御部の演算上限ビット数である。

式(5.1)から(5.3)までの関係を図 5.3 に示す。 I_{NB} は動作バイアス点 N_B における負荷 電流値を表す。動作バイアス点では K_I が 0 であり、これは、積分制御がなくても出力 電圧を安定化することができ、目標電圧を維持できることを意味する。 I_{NB} から I_o が 変化すると、出力電圧の安定化範囲を広くするために K_I を大きくする必要がある。す なわち、図 5.3 に示す K_I は出力電圧を安定化するための必要最低限の値を表す。図 5.3 より、積分演算量 K_IN_I は I_o が I_{NB} より大きいときは負の値となる。一方、 K_IN_I は I_o が I_{NB} より小さいときは正の値となる。したがって、 N_B の値により I 制御の振舞いが 大きく異なる。PID 演算におけるバイアス値 N_B は、式(5.4)により算出される。

$$N_B = N_{T_S} \left(l + \frac{r}{R_O} \right) \frac{E_O^*}{E_i} \tag{5.4}$$

式(5.4)より E_i 変動によっても動作バイアス点が異なる値になることがわかる。そのため、 K_I を可変にする際は E_i 変動への影響を考慮した N_B の設計が必要となる。

図 5.1 負荷電流を検出するディジタル制御方式 DC-DC コンバータ

図 5.2 負荷電流を用いた積分ゲイン可変方式の制御回路構成

図 5.3 積分制御による出力電圧安定化特性の模式図

5.3 ゲイン可変方式の設計による過渡特性への影響

回路パラメータとして、 E_i は20V、出力電圧の目標値は5V、定格負荷電流は1A、臨 界電流 I_c は0.1A、Lは183µH、Cは530µF、rは0.42Ω、A-Dコンバータの分解能は11bit でサンプリング周波数は100kHz、スイッチング周波数は100kHz、 N_{Ts} は2000、Qは15 とする。また、 K_P および K_D は1である。 E_i の変動幅は±20%を想定し、16Vから24V とする。以下、2つのゲイン可変関数の設計を基に過渡特性への影響を述べる。

図 5.4 に、入力電圧変動を考慮しなかった場合の出力電圧安定化範囲およびゲイン可 変関数を示す。図中の K_I Changeable Function は提案するゲイン可変方式のことである。 式(5.4)における E_i には 20V を代入することで、 N_B は 543 となる。このとき、 E_i が 16V のときは、動作範囲において負の $K_I N_I$ を持つ領域があることがわかる。ゲイン可変関 数は、入力電圧に関わらず、 I_o の変化に対して 1 つの関数で対応できるよう、図 5.4 に 示す対数関数を用いた。

図 5.5 に、 N_B が 676 のときの出力電圧安定化範囲およびゲイン可変関数を示す。 N_B は、 E_i に 16V を代入することで求められる。この場合、16V から 24V のすべての場合において、安定化範囲は式(5.1)および(5.2)から算出されており、 K_IN_I は正の値のみとなる。

以下,図 5.4 および図 5.5 の設計により, *E_i* が 16V のときにおける積分演算量の正負の違いが過渡特性に与える影響を考察する。

図 5.4 NB が 543 の場合のゲイン可変関数

図 5.5 NBが 676の場合のゲイン可変関数

図 5.6 に, E_i が 16V および N_B が 543 の場合のゲイン可変関数を用いた場合における 1A から 0.05A への過渡特性を示す。負荷変動が起こる前に $K_I N_I$ が負の値のため、 K_I が負荷変動と同時に増加することによって、 $K_I N_I$ が負の方向にさらに大きくなるよう 働く。これにより PID 制御はメインスイッチのオン時間を増やす方向に働いており、 e_o のオーバーシュートがより大きくなる。実験結果より、 δ_{eo_over} は 1120mV となり、 t_{cv} が 54.8ms であった。

図 5.7 に E_i が 16V および N_B が 676 の場合のゲイン可変関数を用いた場合における 1A から 0.05A への過渡特性を示す。この場合は、偏差の蓄積が負になることがないた め、図 5.6 で見られた悪影響がなくなっており、実験結果より、 δ_{eo_over} が 470mV と なり、 t_{cv} が 44.8ms であった。このことから、入力電圧変動を考慮し E_i が 16V のとき の N_B を用いて設計を行うことで、過渡特性悪化を避けることができ、図 5.6 に比べて t_{cv} が 18%および δ_{eo_over} が 58%改善される結果となった。

図 5.8 および図 5.9 に, E_i が 16V のときの従来方式および提案方式における 0.05A から 1A への過渡特性を示す。従来方式では、重負荷時においても積分ゲインは大きな値のままであるが、提案方式は瞬時に小さな積分ゲインに切り替わるため、従来方式に比べて安定性が改善される。さらに、提案方式では負荷ステップと同時にメインスイッチのオン時間が大きくなり、 δ_{eo_under} が改善される。結果として、ゲイン可変関数を用いることによって、 δ_{eo_under} および δ_{eo_over} をそれぞれ 17%および 44%改善することができた。

図 5.6 NB=543 における 1A から 0.05A への過渡特性

図 5.7 NB=676 における 1A から 0.05A への過渡特性

図 5.8 従来方式における 0.05A から 1A への過渡特性

(a) シミュレーション結果

(b) 実験結果

5.4 静特性

図 5.10 に N_B を 676 とした場合のゲイン可変関数における静特性を示す。積分ゲイン は I_o に応じて変更され、軽負荷時における E_o の上昇を抑制することができている。さ らに、 E_i が変動しても静特性に影響がないことがわかる。これは、提案方式は出力電圧 安定化のために最低限必要な積分ゲインを解析から明らかにしており、入力電圧変動ま で考慮した設計をしているためである。したがって、提案する積分ゲイン可変方式によ り、 E_i および I_o の両方に対して良好なレギュレーションが得られることが確認できた。

図 5.10 Io に対する静特性

5.4 第5章のまとめ

本章では,積分ゲインを負荷電流の値によって可変にするディジタル制御を提案し, その設計方法および軽負荷時における DC-DC コンバータの静特性について検討した。 以下に,本章におけるまとめを示す。

- (1) 入力電圧変化を想定して積分ゲイン可変関数を設計することで、入力電圧および負荷電流の両方の変化に対して出力電圧安定化が実現できる。
- (2) 入力電圧が定格より低くなる場合,定格電流において偏差の蓄積が負の値で行われ るため積分ゲイン可変方式が過渡特性に悪影響を与えることを確認した。
- (3) PID 制御におけるバイアス値を入力電圧の下限に合わせて設計し, 偏差の蓄積が正 の値でのみ行われるようにすることで, 過渡特性における悪影響を取り除くことが できた。

第6章 結論

本論文では、まず、RC 積分回路およびコンパレータのみで構成される新しいピーク 電流検出器を用いてリアルタイムにピーク値を検出できるディジタル制御方式 DC-DC コンバータを提案し、その性能評価を行った。結果として、優れた動特性を有するディ ジタル制御方式ピーク電流モード制御を実現できることを、シミュレーションおよび実 験結果から明らかにした。従来の電圧モード制御に比べて、出力電圧の収束時間は 50% 以上、アンダーシュートは 15%改善することができた。

次に、この提案方式をデータセンタにおけるサーバ用電源に適用し、従来制御方式よ りも優れた動特性が得られることを確認した。さらに、ディジタル制御による電源のア ダプティブマネジメントにより、特に軽負荷時において、電力効率を10%以上改善する ことができた。

また,提案するディジタルピーク電流モード制御の有効性を高めるために,過電流制 限機能について検討を行なった。この過電流制限方式は,既存の回路を利用して定常時 の解析式を基に実現でき,電流のオーバーシュートが発生することのない優れた過電流 制限特性を得ることができる。また,パラメータの調整が不要であり,過電流制限値を 任意に調整することができる。

電流モード制御は通常 CCM でしか用いられない。そのため、本論文の最後に、DCM におけるコンバータの出力電圧が上昇するという問題点を解決するため、積分ゲイン可 変方式を提案し、DCM においても出力電圧を安定化することができた。

これらの成果により, DCM, CCM および過電流領域のいずれにおいても安定性が確 保され,優れた動特性を示すディジタル制御電源を実現することができた。今後は,再 生可能エネルギーシステムへの展開を含めたさらなる省エネルギー化に向け,研究を発 展させていきたい。

謝辞

本研究の題目を与えていただき,終始ご指導,ご鞭撻を賜った長崎大学大学院工学研 究科の黒川不二雄教授に心から感謝の意を表します。これまでの温かい御指導や叱咤激 励を通じて,研究遂行能力だけでなく,研究者としてのあり方,組織の運営や後輩への 指導方法など多くのことを学ばせて頂きました。深く感謝致します。

日頃から研究や論文作成に関して熱心に協力して下さり,私の至らなさに対し辛抱強 くご助言・ご指導を頂いた本学丸田英徳助教に深く感謝致します。

また,本学柴田裕一郎准教授の多大なご援助なくしては実験を遂行することはできま せんでした。心より感謝申し上げます。

学位取得に向けて度々心強い励ましや貴重なアドバイスを頂いた長崎総合科学大学 工学部工学科の松井信正教授に心から感謝の意を表します。

2014 年 10 月から 12 月にかけて、私の留学を快く受け入れて頂いた他、研究テーマ を与えてくださり、常に充実した日々を送らせて頂いたスイス連邦工科大学チューリッ ヒ校 Johann Walter Kolar 先生に心より感謝申し上げます。

本論文作成に当たり,学位論文審査において貴重なご助言を頂いた本学樋口剛教授, 辻峰男教授,森口勇教授に厚く御礼申し上げます。

最後に,円滑な研究活動が行えるよう日々の様々なサポートをしてくださった本学川 原学技術職員,研究遂行および実験の手助けをして戴いた本研究室所属一同に深く感謝 致します。

105

参考文献

- (1) 資源エネルギー庁 経済産業省: "エネルギー白書 2014", 平成 26 年 6 月.
- (2) 経済産業省資源エネルギー庁独立行政法人新エネルギー・産業技術総合開発機構: "省エネルギー技術戦略 2011", 平成 23 年 3 月.
- (3) Y. Yang, H. Li, A. Aichhorn, J. Zheng, and M. Greenleaf, "Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving," IEEE Trans. on Smart Grid, vol. 5, no. 2, pp. 982–991, Mar. 2014.
- (4) C. Molitor, S. Gross, J. Zeitz, and A. Monti, "MESCOS-A multienergy system cosimulator for city district energy systems," IEEE Trans. on Industrial Informatics, vol. 10, no. 4, pp. 2247–2256, Nov. 2014.
- (5) V. Larsson, L. Johannesson Mardh, B. Egardt, and S. Karlsson, "Commuter route optimized energy management of hybrid electric vehicles," IEEE Trans. on Intelligent Transportation Systems, vol. 15, no. 3, pp. 1145–1154, Jun. 2014.
- (6) Zhi Wu, Xiao-Ping Zhang, J. Brandt, Su-Yang Zhou, and Jia-Ning Li, "Three control approaches for optimized energy flow with home energy management system," IEEE Power Energy Technology Systems Journal, vol. 2, no. 1, pp. 21–31, Mar. 2015.
- (7) C. Zhao, S. Dong, F. Li, and Y. Song, "Optimal home energy management system with mixed types of loads," CSEE Journal of Power and Energy Systems, vol. 1, no. 4, pp. 29– 37, Dec. 2015.
- (8) J. Giri, "Proactive management of the future grid," IEEE Power and Energy Technology Systems Journal, vol. 2, no. 2, pp. 43–52, Jun. 2015.
- (9) V. Murugesan, Y. Chakhchoukh, V. Vittal, G. T. Heydt, N. Logic, and S. Sturgill, "PMU Data Buffering for Power System State Estimators," IEEE Power and Energy Technology Systems Journal, vol. 2, no. 3, pp. 94–102, Sep. 2015.
- (10) A. M. Dizqah, A. Maheri, K. Busawon, and A. Kamjoo, "A multivariable optimal energy management strategy for standalone dc microgrids," IEEE Trans. on Power Systems, vol. 30, no. 5, pp. 2278–2287, Sep. 2015.
- (11) M. Erol-Kantarci and H. T. Mouftah, "Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues," IEEE Communications Surveys & Tutorials, pp. 179–197, Jan. 2015.
- (12) F. Kurokawa, R. Yoshida, and Y. Furukawa, "Digital fast P slow ID control dc-dc converter using A-D converters in different resolutions," IEEE Trans. on Industry Application, vol. 51, no. 1, pp. 353–361, Jan. 2015.
- (13) F. Kurokawa, A. Yamanishi, and S. Hirotaki, "A Reference Modification Model Digitally Controlled DC-DC Converter for Improvement of Transient Response," IEEE Trans. on Power Electronics, vol. 31, no. 1, pp. 871–883, Jan. 2016.

- (14) 梶原一宏,,黒川不二雄, "平均電流を用いたディジタル制御方式 DC-DC コンバ ータについて",電子情報通信学会研究会技術報告,pp. 61-66, 2011 年 7 月.
- (15) 梶原一宏、山邊芳彦、山下健太郎、柴田裕一郎、黒川不二雄、田中徹、廣瀬圭一、 "ピーク電流を用いたディジタル制御方式 DC-DC コンバータについて",電気学 会研究会資料,pp. 19-22, 2012 年 5 月.
- (16) 梶原一宏、山邊芳彦、山下健太郎、柴田裕一郎、黒川不二雄、田中徹、廣瀬圭一、 "ピーク電流を用いたディジタル制御方式 DC-DC コンバータの制御パラメータ について"、電気関係学会九州支部連合大会論文講演集, p. 473, 2012 年 9 月.
- (17) 梶原一宏,柴田裕一郎,丸田英徳,黒川不二雄,廣瀬圭一,"直流給電システムにおけるディジタル制御方式ピーク電流モード DC-DC コンバータの過渡特性について",電気関係学会九州支部連合大会論文講演集,p.25,2013年9月.
- (18) Kazuhiro Kajiwara, Yuichiro Shibata and Fujio Kurokawa, "Performance evaluation of digital peak current mode switching power supply," 電気学会電子・情報・システム部 門大会, pp. 1568-1569, 2015 年 8 月.
- (19) 梶原一宏,柴田裕一郎,丸田英徳,黒川不二雄,廣瀬圭一,"直流給電システムにおけるディジタル制御方式ピーク電流モード電源について",電気学会電子・情報・システム部門大会, pp. 993-996, 2015 年 8 月.
- (20) 黒川不二雄,梶原一宏,"ディジタル制御化が進むスイッチング電源の最新技術動
 向",電子デバイス/半導体電力変換合同研究会資料,pp. 51-56, 2015 年 10 月.(1)
- (21) A. Capel, G. Ferrante, D. O'Sullivan, and A. Weinberg, "Application of the injected current model for the dynamic analysis of switching regulators with the new concept of LC³ modulator," Proc. of IEEE Power Electronics Specialists Conference, pp. 135–147, Jun. 1978.
- (22) C. W. Deisch, "Simple switching control method changes power converter into a current source," Proc. of IEEE Power Electronics Specialists Conference, pp. 300–306, Jun. 1978.
- (23) S.-P. Hsu, A. Brown, L. Rensink, and R. D. Middlebrook, "Modelling and analysis of switching dc-to-dc converters in constant-frequency current-programmed mode," Proc. of IEEE Power Electronics Specialists Conference, pp. 284–301, Jun. 1979.
- (24) R. Redl and I. Novak, "Instability in current-mode controlled switching voltage regulators", Proc. of IEEE Power Electronics Specialists Conference, pp. 17–28, Jun. 1981.
- (25) R. Redl and I. Novak, "Stabilitiy analysis of constant-frequency current-mode controlled switching regulators operating above 50% duty ratio," Proc. of IEEE Power Electronics Specialists Conference, pp. 213–223, Jun. 1982.

- (26) 原田耕介,佐藤輝被,宮崎出雲,"ピーク電流制御形 DC-DC コンバ-タの特性", 電子通信学会論文誌 C, vol. J69-C, no. 4, pp. 487-494, 1986 年 4 月.
- (27) R. D. Middlebrook, "Topics in Multiple-Loop Regulators and Current-Mode Programming," IEEE Trans. on Power Electronics, vol. PE-2, no. 2, pp. 109–124, Apr. 1987.
- (28) R. D. Middlebrook, "Modeling current-programmed buck and boost regulators," IEEE Trans. on Power Electronics, vol. 4, no. 1, pp. 36–52, Jan. 1989.
- (29) R. B. Ridley, "A new, continuous-time model for current-mode control," IEEE Trans. on Power Electronics, vol. 6, no. 2, pp. 271–280, Apr. 1991.
- (30) W. Tang, F. C. Lee, and R. B. Ridley, "Small-signal modeling of average current-mode control," IEEE Trans. on Power Electronics, vol. 8, no. 2, pp. 112–119, Apr. 1993.
- (31) G. Garcerá, M. Pascual, and E. Figueres, "Robust average current-mode control of multimodule parallel dc-dc PWM converter systems with improved dynamic response," IEEE Trans. on Industrial Electronics, vol. 48, no. 5, pp. 995–1005, Oct. 2001.
- (32) M. Karppanen, M. Hankaniemi, T. Suntio, and M. Sippola, "Dynamical characterization of peak-current-mode-controlled buck converter with output-current feedforward," IEEE Trans. on Power Electronics, vol. 22, no. 2, pp. 444-451, Mar. 2007.
- (33) J. Wang and J. Xu, "Peak current mode bifrequency control technique for switching dc-dc converters in DCM with fast transient response and low EMI," IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 1876–1884, Apr. 2012.
- (34) Y. Yan, F. C. Lee, and P. Mattavelli, "Dynamic performance comparison of current mode control schemes for point-of-load buck converter application," Proc. of IEEE Applied Power Electronics Conference and Exposition, Feb. 2012, pp. 2484–2491.
- (35) M. Kim, "Error amplifier design of peak current controlled (PCC) buck LED driver," IEEE Trans. on Power Electronics, vol. 29, no. 12, pp. 6789–6795, Dec. 2014.
- (36) J. Leppaaho and T. Suntio, "Characterizing the dynamics of the peak-current-mode-controlled buck-power-stage converter in photovoltaic applications," IEEE Trans. on Power Electronics, vol. 29, no. 7, pp. 3840–3847, Jul. 2014.
- (37) C. Fang and R. Redl, "Subharmonic Instability Limits for the Peak-Current-Controlled Buck Converter With Closed Voltage Feedback Loop," IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 1085–1092, Feb. 2015.
- (38) V. B. Boros, "A digital proportional, integral and derivative feedback controller for power conditioning equipment," Proc. of IEEE Power Electronics Specialists Conference, pp. 135–141, Jun. 1977.
- (39) N. R. Miller, "A digitally controlled switching regulator," Proc. of IEEE Power Electronics Specialists Conference, pp. 142–147, Jun. 1977.

- (40) T. V. Papathomas and J. N. Giacopelli, "Digital implementation and simulation of an average current controlled switching regulator," Proc. of IEEE Power Electronics Specialists Conference, pp. 155–161, Jun. 1979.
- (41) H. Matsuo and F. Kurokawa, "Regulation characteristics of the digitally controlled DC-DC converter," Proc. of IEEE Power Electronics Specialists Conference, pp. 360–365, Jun. 1983.
- (42) H. Matsuo, F. Kurokawa, and K. Higashi, "Dynamic characteristics of the digitally controlled dc-dc converter," IEEE Trans. on Power Electronics, vol. 4, no. 4, pp. 419–426, Oct. 1989.
- (43) H. Matsuo, F. Kurokawa, K. Imamura, and K. Tanaka, "Regulation characteristics of the dc-dc converter with digital current-injected control circuit," Proc. of IEEE International Telecommunications Energy Conference, pp. 455–462, Sep. 1992.
- (44) 松尾博文,浅野睦喜,黒川不二雄,"ディジタル制御方式電流インジェクト形 DC-DC コンバータの出力特性",長崎大学工学部研究報告,vol. 25(45), pp. 105-112, 1995 年7月.
- (45) 松尾博文,黒川不二雄,今村賢,浅野睦喜,"ディジタル制御方式電流インジェクト形 DC-DC コンバータの過電流制限特性について",電子情報通信学会技術研究報告,vol. 25(45), pp. 55-62, 1994 年1月.
- (46) H. Matsuo, F. Kurokawa, and M. Asano, "Overcurrent limiting characteristics of the dc-dc converter with a new digital current-injected control circuit," IEEE Trans. on Power Electronics, vol. 13, no. 4, pp. 645–650, Jul. 1998.
- (47) P. F. Kocybik and K. N. Bateson, "Digital control of a ZVS full-bridge dc-dc converter," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 687–693, Mar. 1995.
- (48) P. T. Krein, "Digital Control Generations -- Digital controls for power electronics through the third generation," Proc. of International Conference on Power Electronics and Drive Systems, pp. 1-5, Nov. 2007.
- (49) F. Kurokawa and Y. Furukawa, "High performance digital control switching power supply," Proc. of International Power Electronics and Motion Control Conference and Exposition, pp. 1165–1170, Sep. 2014.
- (50) Y. Wen and O. Trescases, "DC-DC converter with digital adaptive slope control in auxiliary phase for optimal transient response and improved efficiency," IEEE Trans. on Power Electronics, vol. 27, no. 7, pp. 3396–3409, Jul. 2012.
- (51) V. S. Rajguru and B. N. Chaudhari, "Analysis and peak current mode control of active clamp forward converter with center tap transformer," Proc. of IEEE Power Electronics, Drives and Energy Systems, pp. 1–6, Dec. 2012.

- (52) K. Suryanarayana, L. V Prabhu, S. Anantha, and K. Vishwas, "Analysis and modeling of digital peak current mode control," Proc. of IEEE Power Electronics, Drives and Energy Systems, pp. 1–6, Dec. 2012.
- (53) S. F. Lim and A. M. Khambadkone, "A simple digital DCM control scheme for boost PFC operating in both CCM and DCM," IEEE Trans. on Industry Applications, vol. 47, no. 4, pp. 1802–1812, July-Aug. 2011.
- (54) R. Li, T. O'brien, J. Lee, and J. Beecroft, "Effects of circuit and operating parameters on the small-signal dynamics of average-current-mode-controlled dc-dc converters," Proc. of IEEE International Conference on Power Electronics & ECCE Asia, pp. 60–67, May 2011.
- (55) G. Garcerá, M. Pascual, and E. Figueres, "Robust average current-mode control of multimodule parallel dc-dc PWM converter systems with improved dynamic response," IEEE Trans. on Industrial Electronics, vol. 48, no. 5, pp. 995–1005, Oct. 2001.
- (56) F. Kurokawa, K. Kajiwara, Y. Shibata, Y. Yamabe, T. Tanaka and K. Hirose, "A new digital peak current mode dc-dc converter using FPGA delay circuit and simple A-D converter," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 1698-1702, Sept. 2012. (1-1 (2))
- (57) Fujio Kurokawa, Kazuhiro Kajiwara, Yuichiro Shibata, Yoshihiko Yamabe, Toru Tanaka and Keiichi Hirose, "Performance characteristics of quick response digital peak-current-mode 380V dc-dc converter for green IT system," Proc. of International Conference on Renewable Energy Research and Applications, pp. 1-5, Nov. 2012.
- (58) Fujio Furokawa, Kazuhiro Kajiwara, Yuichiro Shibata, Yoshihiko Yamabe, Toru Tanaka and Keiichi Hirose, "Control characteristics of novel digital peak current mode dc-dc converter," Proc. of IEEE Power Electronics and Drive Systems, pp. 125-129, Apr. 2013.
- (59) Fujio Kurokawa, Kazuhiro Kajiwara, Hidenori Maruta, Yuichiro Shibata, Yoshihiko Yamabe, Toru Tanaka and Keiichi Hirose, "Digitally controlled peak current mode parallel dc-dc converter for HVDC system," Proc. of IEEE Power Engineering, Energy and Electrical Drives, pp. 1609-1612, May 2013.
- (60) Fujio Kurokawa, Kazuhiro Kajiwara, Yuichiro Shibata, Kentaro Yamashita and Haruhi Eto, "A new digital peak current control for dc-dc converter with fast P control and IIR filter," Proc. of IEEE Power Engineering, Energy and Electrical Drives, pp. 1717-1722, May 2013.
- (61) Fujio Kurokawa, Kazuhiro Kajiwara, Hidenori Maruta, Yuichiro Shibata, Yoshihiko Yamabe, Toru Tanaka and Keiichi Hirose, "Development of digital peak-current-mode and fast feedback control dc-dc converter system in green IT project," Proc. of IEEE International Telecommunications Energy Conference, pp. 400-404, Oct. 2013.

- (62) K. Kajiwara, F. Kurokawa and Y. Shibata, "Static and dynamic analyses of digital peak current mode dc-dc converter," Proc. of International Power Electronics Conference, pp. 3950-3954, May 2014. (1-1 (3))
- (63) K. Kajiwara, F. Kurokawa, H. Maruta, Y. Shibata and K. Hirose, "Digital peak current mode dc-dc converter for data center in HVDC system," Proc. of IEEE International Telecommunications Energy Conference, pp. 18-23, Oct. 2015. (1-1)
- (64) K. Kajiwara, H. Maruta, Y. Shibata, F. Kurokawa, K. Hirose and T. Aoki, "Digitally controlled peak current mode dc-dc converter", IEEE Trans. on Power Electronics, 投稿 中.
- (65) 梶原一宏,黒川不二雄,"平均電流を用いた新しい高速応答ディジタル制御方式 DC-DC コンバータ," 電子情報通信学会九州支部学生会講演会講演論文集,B-8, 2011年9月.
- (66) 梶原一宏,柴田裕一郎,丸田英徳,黒川不二雄,廣瀬圭一,"直流給電システムに おけるディジタル制御方式 DC-DC コンバータの過渡特性について",電気関係学 会九州支部連合大会講演論文集, p. 27, 2013 年 9 月.
- (67) 植木達也,梶原一宏,柴田裕一郎,黒川不二雄, "ピーク電流を用いたディジタ ル制御方式 DC-DC コンバータの基本特性について",電子情報通信学会総合大会 講演論文集, B-9-17, 2014 年 3 月.
- (68) 梶原一宏,柴田裕一郎,黒川不二雄,"ディジタル制御方式ピーク電流モード DC-DC コンバータにおける安定化特性の範囲について",電気関係学会九州支部 連合大会講演論文集, p.41, 2015 年 9 月.
- (69) J. Chen, A. Prodić, R. W. Erickson, and D. Maksimović, "Predictive digital current programmed control," IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 411–419, Jan. 2003.
- (70) A. Kelly and K. Rinne, "Sensorless current-mode control of a digital dead-beat dc-dc converter," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 1790–1795, Feb. 2004.
- (71) P. Mattavelli, "Digital control of dc-dc boost converters with inductor current estimation,"
 Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 74–80, Feb. 2004.
- (72) S. Chattopadhyay and S. Das, "A digital current-mode control technique for dc-dc converters," IEEE Trans. on Power Electronics, vol. 21, no. 6, pp. 1718–1726, Nov. 2006.
- (73) H. Mingzhi and X. Jianping, "Improved digital predictive control of switching dc-dc converters," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 1466–1470, Feb. 2007.

- (74) O. Trescases, A. Parayandeh, A. Prodić, and W. T. Ng, "Sensorless digital peak current controller for low-power dc-dc SMPS based on a bi-directional delay line," Proc. of IEEE Power Electronics Specialists Conference, pp. 1670–1676, Jun. 2007.
- (75) S.Chae, B. Hyun, P. Agarwal, W. Kim, and B. Cho, "Digital predictive feed-forward controller for a dc-dc converter in plasma display panel," IEEE Trans. on Power Electronics, vol. 23, no. 2, pp. 627–634, Mar. 2008.
- (76) G. Zhou, J. Xu, Y. Jin, and W. Wang, "Transient performance comparison on digital peak current controlled switching dc-dc converters in DCM with different digital pulse-width modulations," Proc. of. IEEE International Power Electronics and Motion Control Conference, pp. 315–319, May 2009.
- (77) G. Zhou, J. Xu, C. Mi, and Y. Jin, "Effects of modulations on the sub-harmonic oscillations of digital peak current and digital valley current controlled switching dc-dc converters," Proc. of. IEEE International Power Electronics and Motion Control Conference, pp. 1347–1352, May 2009.
- (78) Y. S. Lai and C. A. Yeh, "Predictive digital-controlled converter with peak current-mode control and leading-edge modulation," IEEE Trans. on Industrial Electronics, vol. 56, no. 6, pp. 1854–1863, Jun. 2009.
- (79) Y.-T. C. Y.-T. Chang and Y.-S. L. Y.-S. Lai, "Parameter tuning method for digital power converter with predictive current-mode control," IEEE Trans. on Power Electronics, vol. 24, no. 12, pp. 2910–2919, Dec. 2009.
- (80) G. Zhou and J. Xu, "Digital average current controlled switching dc-dc converters with single-edge modulation," IEEE Trans. Industrial Electronics, vol. 25, no. 3, pp. 786–793, Mar. 2010.
- (81) Y. Qiu, H. Liu, and X. Chen, "Digital average current-mode control of PWM dc-dc converters without current sensors," IEEE Trans. Industrial Electronics, vol. 57, no. 5, pp. 1670–1677, May 2010.
- (82) Y. Qiu, X. Chen, H. Liu, Y. Qie, X. Chen, and H. Liu, "Digital average current-mode control using current estimation and capacitor charge balance principle for dc-dc converters operating in DCM," IEEE Trans. on Power Electronics, vol. 25, no. 6, pp. 1537–1545, Jun. 2010.
- (83) Z. Shen, X. Chang, W. Wang, X. Tan, N. Yan, and H. Min, "Predictive digital current control of single-inductor multiple-output converters in CCM with low cross regulation," IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 1917–1925, Apr. 2012.
- (84) M. Hallworth and S. A. Shirsavar, "Microcontroller-based peak current mode control using digital slope compensation," IEEE Trans. on Power Electronics, vol. 27, no. 7, pp. 3340–3351, Jul. 2012.

- (85) P. E. Kakosimos, A. G. Kladas, and S. N. Manias, "Fast photovoltaic-system voltage-or current-oriented MPPT employing a predictive digital current-controlled converter," IEEE Trans. on Industrial Electronics, vol. 60, no. 12, pp. 5673–5685, Dec. 2013.
- (86) Q. Zhang, R. Min, Q. Tong, X. Zou, Z. Liu, and A. Shen, "Sensorless predictive current controlled dc-dc converter with a self-correction differential current observer," IEEE Trans. on Industrial Electronics, vol. 61, no. 12, pp. 6747–6757, Dec. 2014.
- (87) L. Jia, D. Wang, J. Fu, Y.-F. Liu, and P. C. Sen, "A novel parameter-independent digital optimal control algorithm for DC-DC Buck converters based on parabolic curve fitting," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 500–507. Sept. 2010.
- (88) L. Jia, D. Wang, E. Meyer, Y. F. Liu and P. C. Sen, "A novel digital capacitor charge balance control algorithm with a practical extreme voltage detector," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 514–521, Sept. 2010.
- (89) E. Meyer and Y. F. Liu, "Digital charge balance controller with an auxiliary circuit for improved unloading transient performance of buck converters," IEEE Trans. on Power Electron., vol. 28, no. 1, pp. 357–370, Jan. 2013.
- (90) L. Jia and Y. F. Liu, "Voltage-based charge balance controller suitable for both digital and analog implementations," IEEE Trans. Power Electron., vol. 28, no. 2, pp. 930–944, Feb. 2013.
- (91) Z. Wang, X. Shi, L. M. Tolbert, F. Wang, and B. J. Blalock, "A di/dt feedback-based active gate driver for smart switching and fast overcurrent protection of IGBT modules," IEEE Trans. on Power Electronics, vol. 29, no. 7, pp. 3720-3732, Jul. 2014.
- (92) R. Grinberg, E. Bjornstad, P. Steimer, A. Korn, M. Winkelnkemper, D. Gerardi, O. Senturk, O. Apeldoorn, and J. Li, "Study of overcurrent protection for modular multilevel converter," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 3401-3407, Sept. 2014.
- (93) Z. Wang, X. Shi, Y. Xue, L. M. Tolbert, B. J. Blalock, and F. Wang, "Design and performance evaluation of overcurrent protection schemes for silicon carbide (SiC) power MOSFETs," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 5418–5425, Sept. 2013.
- (94) K. Kajiwara, T. Ueki, Y. Shibata and F. Kurokawa, "Digital overcurrent detector for peak current mode dc-dc converter," Proc. of IEEE International Telecommunications Energy Conference, pp. 1158-1162, Oct. 2015. (1-1)(5)
- (95) K. Kajiwara, T. Ueki, Y. Shibata, H. Maruta and F. Kurokawa "Overcurrent limitation for digital peak current mode dc-dc converter," International Journal of Renewable Energy Research (IJRER), Accepted. (1-1 (6))

- (96) T. Ueno and T. Itakura, "A multimode, switching-surface controlled dc-dc converter with improved light-load efficiency," Proc. of IEEE Energy Conversion Congress and Exposition, pp.1078-1081, Sept. 2012.
- (97) Y. Kang, C. Chiu, M. Lin, C. Yeh, J. Lin,and K. Chen, "Quasiresonant control with a dynamic frequency selector and constant current startup technique for 92% peak efficiency and 85% light-load efficiency flyback converter," Trans. on IEEE Power Electronics, vol. 29, no. 9, pp. 4959-4969, Sept. 2014.
- (98) J. Choi, D. Huh and Y. Kim, "The improved burst mode in the stand-by operation of power supply," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 426-432, Feb. 2004.
- (99) R. Surend, N. Mohan, R. Ayyanar, R. M. Button, "Analysis of a hybrid phase modulated converter with a current doubler rectifier in discontinuous conduction mode," Proc. of IEEE Power Electronics Specialists Conference, pp. 359-364, Jun. 2003.
- (100) M. Zhu, F. L. Luo and Y. He, "Remaining inductor current phenomena of complex dc-dc converters in discontinuous conduction mode: general concepts and case study," Trans. on IEEE Power Electronics, vol. 23, no. 2, pp. 1014-1018, Mar. 2008.
- (101) H. Matsuo and K. Harada, "New dc-dc converters with an energy storage reactor," Trans. on IEEE Magnetics, vol. 13, no. 5, pp. 1211-1213, Sep. 1977.
- (102) H. Matsuo and K. Harada, "New energy-storage dc-dc converter with multiple outputs," Trans. on IEEE Magnetics, vol. 14, no. 5, pp. 1005-1007, Sep. 1978.
- (103) J.A. Abu Qahouq, "Digital power controller with sensorless DCM operation," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 234-236, Sept. 2010.
- (104) K. Shenai, "Accurate design of high-performance synchronous buck dc-dc power converters," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 435-438, Mar. 2013.
- (105) B. Lee, K. Park, C. Kim, G. Moon, "No-load power reduction technique for ac/dc adapters," Trans. on IEEE Power Electronics, vol.27, no. 8, pp. 3685-3694, Aug. 2012.
- (106) A. Zhao and J.C.W., Ng, "An energy conservation based high-efficiency dimmable multi-channel LED driver," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 2576-2580, Sept. 2011.
- (107) N. Shafiei and M. Ordonez, "Improving the regulation range of EV battery chargers with L3C2 resonant converters," Trans. on IEEE Power Electronics, vol. 30, no. 6, pp. 3166-3184, Jun. 2015.
- (108) D. Vasic, Y. Liu, F. Costa and D. Schwander, "Piezoelectric transformer-based dc/dc converter with improved burst-mode control," Proc. of IEEE Energy Conversion Congress and Exposition, pp.140-146, Sept. 2013.

- (109) S. A. Khajehoddin, M. Kaeimi-Ghartemani, P. K. Jain, and A. Bakhshai, "DC-bus design and control for a single-phase grid-connected renewable converter with a small energy storage componet," Trans. on IEEE, Power Electronics, vol. 28, no. 7, pp. 3245-3254, Oct. 2012.
- (110) M. Vulovic, D. Boroyevich and P. Mattavelli, "Digital gain-scheduled control of a high frequency parallel resontant dc-dc converter," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 1814-1820, Feb. 2012.
- (111) S. Chae, Y. Song, S. Park and H. Chung "Digital current sharing method for mulitiphase dc-dc converters using the peak input voltage," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 1307-1311, Sept. 2011
- (112) L. Corradini and P. Mattavelli "Modeling of multisampled pukse width modulators for digitally controlled dc-dc converters," Trans. on IEEE Power Electronics, vol. 23, no. 4, pp. 1839-1847, Jul. 2008.
- (113) J. Lee, J. Shin and B. H. Cho "A digital predictive critical conduction mode buck converter control method," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 709-714, Feb. 2012.
- (114) Z. Zhao and A. Prodic, "Limit-cycle oscillations based auto-tuning system for digitally controlled dc-dc power supplies," Trans. on IEEE Power Electronics, vol. 22, no. 6, pp. 2211-2222, Nov. 2007.
- (115) K. A. Cho, S. H. Ahn, S.B. Ok, H. J. Ryoo, S. R. Jang and G. H. Rim "Design of LCC resonant converter for renewable energy systems with wide-range input voltage," Proc. of IEEE Power Electronics and Motion Control Conference, pp. 1221-1228, Jun. 2012.
- (116) G. Zhou, J. Xu, F. Zhang, M. Qin and Y. Jin, "Asymmetrical leadingtriangle modulation technique for improved digital valley current controlled switching dc-dc converters," Proc. of IEEE Energy Conversion Congress and Exposition, pp. 237-241, Sept. 2010.
- (117) H. Mingzhi, X. Jianping, "Nonliner PID on Digital Controlled buck converters," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 1461-1465, Feb. 2007.
- (118) O. Trescases and W. Yue, "A survey of light-load efficiency improvement techniques for low-power dc-dc converters," Proc. of IEEE Power Electronics and & ECCE Asia, pp. 326-333, May 2011.
- (119) T. Ueno, T. Miyazaki, T, Ogawa and T. Itakura, "A 600 mA, constant on-time controlled DC-DC converter with 67% conversion efficiency at an output current of 23 μA," Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 1932-1935, Mar. 2014.

- (120) F. Kurokawa, T. Sato, H. Matsuo and H. Eto, "Output characteristics of dc-dc converter with DSP control," Proc. of IEEE International Telecommunications Energy Conference, pp. 421-426, Sept. 2002.
- (121) F. Kurokawa and S. Higuchi, "Control characteristics of dc-dc converter using digital integral gain switchover function," Proc. of IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1320-1323, Jun. 2012.
- (122) F. Kurokawa and S. Higuchi, "Improved characteristics of dc-dc converter with digital variable gain switchover function," Proc. of IEEE Vehicle Power and Propulsion Conference, pp. 508-512, Oct. 2012.
- (123) K. Kajiwara, T. Kume and F. Kurokawa, "Integral gain changeable digital control dc-dc converter for wide input and load," Proc. of International Conference on Renewable Energy Research and Applications, pp. 1063-1067, Oct. 2013. (1 1 (7))
- (124) K. Kajiwara, H. Tajima, T. Kume, and F. Kurokawa, "Transient response of integral gain switchover digital control dc-dc converter in discontinuous conduction mode," Proc. of IEEE International Telecommunications Energy Conference, pp. 1111-1115, Oct. 2015.
- (125) K. Kajiwara, H. Tajima and F. Kurokawa, "Wide input and load integral gain changeable digital control dc-dc converter," International Journal of Renewable Energy Research (IJRER), vol. 5, no. 4, pp. 1212-1219, 2015. (1-1(8))
- (126) K. Kajiwara, H. Tajima, F. Kurokawa and Ilhami Colak, "Dynamic characteristics of integral gain changeable digital control dc-dc converter for suppression of output capacitor," International Journal of Renewable Energy Research (IJRER), Accepted.
 (1-1(9))