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A Dynamic Bond Pricing Model with Application

to the Japanese Government Bonds

Kenji Kamizono*, Takeaki Kariya† and Yoshiro Yamamura‡

Abstract

In this paper, we generalize the cross-sectional fixed-coupon bond pricing model of Kariya et.

al．(2012) to a dynamic one. The bond prices are modeled as the present values of the future

cash-flows where the discount functions are stochastic and may depend on the bond attributes. In

our framework, the cross-sectional and time-series covariance structure among the stochastic dis-

count functions depends on the difference of the time-to-maturity of the bonds. We also propose

a bond price forecast method using our model. The empirical result and the forecast performance

on the Japanese government bonds are presented.

Key words: Fixed-coupon bond pricing model. Japanese government bonds. Generalized least

squares.
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１ Introduction

Early in 1990's, Kariya [1] proposed a statistical approach to a bond pricing model. There, the

bond price was modeled as the present value of the future cash-flows for which the discount

functions, in general, are stochastic and attribute dependent. Kariya and Tsuda [2]，[3] then

demonstrated that this model was empirically effective for pricing Japanese government

bonds. Recently, Kariya et. al．[4] claried the theoretical relation between this model and the

traditional spot rate approach, and also proposed a specic formulation with a polynomial mean

discount function as well as a cross-sectional correlation structure depending on the difference

of the time-to-maturity of the bonds. Their model was cross-sectional and one of the remaining

issues there was generalization to a dynamic model which can incorporate time-series correla-
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tion among the bond prices.

One of the main features of the cross-sectional model of [4] is the specication of the covari-

ance structure of the stochastic discount functions. There, the discount functions of different

bonds may be different, which means that the discount function used for discounting the cash-

flows of a single bond may be different from those used for discounting the cash-flows of other

bonds. Each of these attribute-dependent discount functions consists of a deterministic part

and a stochastic part. The stochastic part of the discount functions of two different bonds may

be correlated with each other. The correlation structure specied by [4] is such that the correla-

tion between the discount functions of two bonds is higher as the time-to-maturity of these

bonds is closer to each other. The correlation decays exponentially as the difference of the

time-to-maturity of the bonds is larger.

In this paper, we generalize this specication of the cross-sectional covariance structure of the

stochastic discount functions to a dynamic one. We adopt a similar covariance structure be-

tween the discount functions viewed from time t -1 and t, for each t. That is, the correlation be-

tween two discount functions viewed from these two different time points is large as the time-

to-maturity of the bonds is closer to each other, and the correlation decays exponentially as the

difference of the time-to-maturity is larger. With such a dynamic covariance structure in the

stochastic discount functions, the bond pricing model takes the form of a seemingly unrelated

regression (SUR)model, where we have one regression model for each time point and these

regression models are correlated to each other through the stochastic part of the discount func-

tions. In such a situation, although each regression model can be estimated separately as in the

cross-sectional model of [4]，it is more efficient to consider the dynamic correlation between

the cross-sectional regression. However, if the number of the bonds at each time point is large,

as is the case of Japanese government bonds, then it is difficult to perform numerical calcula-

tion. Therefore, we will propose to estimate the model by using the data of adjacent three time

points at one time. Our model can be used to forecast the future bond prices. First, the estimat-

ed regression coefficients form time-series data by which we can forecast the mean discount

function in future. Second, by using the estimated dynamic covariance structure as well as the

regression residual of the most recent time point, we can forecast the stochastic discount func-

tion in future. Then, by combining these two components, we can forecast the bond price in fu-

ture. In this paper, we will investigate the forecast performance for the Japanese government

bonds.

This paper is organized as follows. In Section 2，we describe the model specication. The es-

timation method of this model will be presented in Section 3．Section 4 will describe the

Japanese government bond price data we have used and then present the model performance

and the estimation result. Finally, we will explain the forecast method and the forecast perfor-

mance for the Japanese government bonds in Section 5.
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２ Model Specication

In this section, we will define our government bond pricing model. Suppose that for each time

t, we have Gt non-defaultable government bonds bearing fixed coupons. For each 1�g�Gt, let

(1) sgt1＜…＜sgt Mgt

be the sequence of future time points, viewed from time t, on which the coupon and principal

payments of the bond g are supposed to be paid. By denition, sgt Mgt is the time-to-maturity of

the bond g from time t. Let cgtj be the amount of payment paid at time point sgtj in future from

time t. If the interest payments are to be paid semi-annually with a coupon rate c％ and if the

face value of the bond is 100，as is the case for the Japanese government bonds, then

(2) cgtj＝

�
�
�
�
�

0.5c－(accrued interest)＝sgt1c

0.5c

100＋0.5c

if j＝1

if 1＜j＜Mgt

if j＝Mgt

�
�
�
�
�

The bond price Pgt, after subtracting the accrued interest paid from the buyer to the seller, is

modeled as the present value of the cash-flows of the bond as

(3) Pgt＝
Mgt

∑
j=1

Cgtj Dgtj.

Here, Dgtj denotes the discount function of the bond g for the cash-flow occurring at sgtj-period

future from time t. Notice that Dgtj may depend on g, which means that the discount functions

may be different for different bonds. We assume that Dgtj can be written as

Dgtj＝Dgtj＋Δgtj

(4)
Dgtj＝

p

∑
i=1
βtisi

gtj．

Here, the βti are unknown parameters and theΔgtj are random variables with expectation

0 and

(5) Cov(Δgtj,Δhtk)＝σ
2
tλght，

where

(6) λght＝
�
�
�

1

ρt exp(－ξt｜sgtMgt－shtMht｜)

if g＝h

if g≠h

�
�
�
．

In a more general framework, Dgtj may depend on the bond attribute as in [4]．In this paper,

however, we assume for simplicity that theβti, and thus the Dgtj, are common for all bonds.

In addition to the cross-sectional covariance structure given in the above, we assume that
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the Δgtj have a time-series covariance structure which can be written as

(7) Cov(Δgt -1j,Δhtk)＝σt -1σtτt exp(-�t｜sgt -1Mgt -1－sht Mht｜－κt｜sgt -1j－shtk｜)

and

(8) Cov(Δgtj,Δhuk)＝0 for｜t－u｜�2．

In the covariance structure (5)－(8)，we assume thatσt＞0，0�ρt�1，ξt�0，－1�τt�1，

κt�0 and �t�0 are unknown parameters. As in [4]，the mean discount function is a poly-

nomial function and covariance structure reflects the difference of the maturities and the

coupon payment dates. Let

(9) yt＝

�
�
�
�
�

y1t

…

yGtt

�
�
�
�
�

，Xt＝

�
�
�
�
�

X11t

…

XGt1t

…

…

X1pt

…

XGtpt

�
�
�
�
�

，βt＝

�
�
�
�
�

β1t
…

βpt

�
�
�
�
�

，ηt＝

�
�
�
�
�

η1t
…

ηGt t

�
�
�
�
�

，

where

ygt＝Pgt－
Mgt

∑
j=1

Cgtj

(10) Xgti＝
Mgt

∑
j=1

Cgtjsi
gtj

ηgt＝
Mgt

∑
j=1

CgtjΔgtj．

Then, for each time t, we obtain the multiple regression model

(11) yt＝Xtβ1t＋ηt．

The covariance matrix ofηt can be written as

(12) Cov(ηt)＝σ
2
tΦtt，

where

Φtt＝(Φttgh)

(13)

Φttgh＝(
Mgt

∑
j=1

Chtk)(
Mht

∑
k=1

Cgtj)λght．

On the other hand, according to our time-series covariance structure (8) of the stochastic dis-

count functions, the error-termsηt -1 andηt are correlated to each other as

(14) Cov(ηt -1,ηt)＝σt -1σtΦt -1t，

where
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Φt -1t＝(Φt -1tgh)

(15) Φt -1tgh＝
Mgt -1

∑
j=1

Mht

∑
k=1

Cgt -1jChtkτt exp(-�t｜sgt -1Mgt -1－sht Mht｜－κt｜sgt -1j－shtk｜).

３ Estimation Method

Suppose that the bond prices are observed at each time t＝1,...,T. Then we have a cross-sec-

tional bond pricing model (11) for each t, where the regression models are correlated to each

other through their error termsηt. Such a model is called a seemingly unrelated regression

(SUR) model, and it is known that although each regression coefficientβt can be estimated

separately from the cross-sectional regression, it is more efficient to estimate theβt simultane-

ously using the covariance structure among the error termsηt. However, the number of bonds

at each time t may often be too large to perform numerical calculation. For instance, it is typi-

cally more than 200 for the case of Japanese government bonds. In such a case, it takes too

much time to estimate the parameters if we pool all the data through the sample period. There-

fore, in this paper, we shall propose to estimate the parameters at each time t by using the ad-

jacent three times t－1，t and t＋1．For this purpose, write

(16) ��t＝

�
�
�
�
�

yt -1

yt

yt+1

�
�
�
�
�

， ��t＝

�
�
�
�
�

Xt -1t -1

O

O

O

Xtt

O

O

O

Xt +1t +1

�
�
�
�
�

， �βt＝

�
�
�
�
�

βt -1

βt

βt +1

�
�
�
�
�

， �ηt＝

�
�
�
�
�

ηt -1

ηt

ηt +1

�
�
�
�
�

．

Then, we have

(17) ��t＝ ��t �βt＋ �ηt

with

Cov( �ηt)＝σ
2
t -1Dt �ΦtDt

(18) Dt＝

�
�
�
�
�

IGt -1

O

O

O

vt IGt

O

O

O

vt +1 IGt +1

�
�
�
�
�

�Φt＝

�
�
�
�
�

Φt -1t -1

Φ′t -1t
O

Φt -1t

Φtt

Φ′tt +1

O

Φtt +1

Φt +1t +1

�
�
�
�
�

，

where

(19) vt＝
σt

σt -1
，vt +1＝

σt +1

σt -1
．

For the moment, write
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��t＝Gt -1＋Gt＋Gt +1

(20)
Qt＝Ct－Ct Bt Ct

Ct＝(Dt �Φt Dt)-1

Bt＝ ��t( ��t′Ct ��t)-1 ��t′，

Then, if the error term �ηt is normally distributed, the log likelihood function log L can be writ-

ten as

(21) log L＝const－ 1
2 log｜ �Φt｜－

1

∑
h=-1

Gt +h log vt +h－
1
2 logσ2t-1－

1
2σ2t -1

( ��t－ ��t �βt)′Ct( ��t－ ��t �βt).

In this case, the maximum likelihood estimators of �βt andσt -1 are, as usual, given by

�βt＝( ��t′Ct ��t)-1 ��t′Ct ��t

(22)

�σt -1＝
1
��t

��t′Qt ��t，

By substituting (22) to (21)，we see that the concentrated log maximum likelihood function

is, except for a constant, equal to

(23) ψ( �θt, �	t)＝－
1
2 log｜ �Φt｜－

1

∑
h=-1

Gt+h log vt+h－
��t

2
��t
t′Qt ��t，

where �θt＝(ρt -1,ρt,ρt +1,ξt -1,ξt,ξt +1,τt,τt +1,κt,κt +1,�t,�t +1) and �	t＝(vt,vt +1)．The maxi-

mum likelihood estimators ofθt and �	t are then defined to be the maximizers of (23)．

However, the size of the matrix �Φt is typically large and we cannot expect to compute numeri-

cally its determinant with satisfactory accuracy. On the other hand, we see that �Φt depends

only on �θt and is bounded. Therefore, ignoring the first term of (23)，we propose to estimate

�θt and �	t by maximizing

(24) ψ1( �θt, �	t)＝－
1

∑
h=-1

Gt+h log vt +h－
��t

2
��t′Qt ��t．

Our method is analogous to the quasi maximum likelihood estimation of time series model,

and, as is usual, it is expected to be efficient for a larger class of distribution than the normal

distributions. Once we obtain estimates ofσt -1，vt and vt +1，we may estimateσt andσt +1 by

using (19).

４ The Data and Empirical Result

In this research, we have used the monthly data of the closing prices of the Japanese govern-

ment fixed-coupon bonds from September 1995 to August 2010．We exclude the bonds with

maturity shorter than one year and longer than twenty years since the former are susceptible

to the effect of the monetary policy while the latter have low trading volume. In our data set,
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there are 220 bonds on average in each month with coupon rate ranging from 0.1％ to 7.3％

per annum. We estimated the model by using the method described in Section 3．For in-

stance, by using the bond price data of September, October and November of 1995，we obtain

the parameter estimates for October 1995.

Figure 1 shows the cross-sectional performance of our model. The first figure shows the

fluctuation of the estimatedσt while RSD in the second figure denotes the residual standard

deviation of the model given by

Figure 1:Model Fitness

(25) RSDt＝
1
Gt
(yt－Xt �βt)′(yt－Xt �βt)．

From these figures, we see that except for a couple of years around the Lehman shock in 2008，

our model performed well with RSD less than 0.15．The maximum RSD is 0.304 in Novem-

ber 2008．The estimatedσt shows a similar fluctuation to RSD. The overall performance of the

model is similar to that of [4]．This supports the importance of the cross-sectional correlation

structure of the stochastic discount functions. Notice, in particular, that in 2010，σt decreased

whereas RSD slowly but increased. This implies that in this period, the overall magnitude of

the stochastic discount functions was small but the correlation among them was large.

Figure 2 shows the time-series fluctuation of the polynomial coefficientsβt of the mean dis-

count functions Dt(s)．From this figure, we can say that these coefficients are highly corre-lat-

ed to each other. It is observed that the coefficients of odd (even, respectively) orders are posi-

tively correlated to those of odd (even, respectively) orders, and negatively correlated to those

of even (odd, respectively) orders, which prevents the slope of the term structure of the dis-
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Figure 2: Coefficients of Polynomial Discount Function Dgt(s)＝1＋β1ts＋β2ts
2＋…＋β6ts

6

count functions from being extremely large or low. We also see that in the long run, there are

possibility of some trend or non-stationarity in these coefficients but in a shorter period such as

one year, we may regard the coefficients stationary.

Figure 3 and 4 show the time-series fluctuation of the cross-sectional and time-series covari-

ance structures. From these figures, we see that the discount functions are positively correlat-

ed both in view of cross-section and time-series. In addition, it can be seen that during the

financial crisis period of length about two years around the Lehman shock, both cross-sectional

and time-series correlations among the bonds are high. Recall that in this period,σt and RSD

Figure 3: Parameters of the Cross-sectional Covariance Structure Cov(Δgt(s),Δht(s′))＝
σ2tρt exp(－ξt｜sgtMgt－shtMht｜)(g≠h)
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Figure 4: Parameters of the Time-series Covariance Structure Cov(Δgt -1(s),Δht(s′))＝
σt -1σtτt exp(- �t｜sgt -1Mgt -1－sht Mht｜－κt｜s－s′｜)

were both high as well. Therefore, we may conclude that the magnitude of uncertainty in the

term structure of interest rate consisted of a small number of, but highly volatile, random fac-

tors in this financial crisis period. On the other hand, as we have indicated earlier by compar-

ing the fluctuations ofσt and RSD, the cross-sectional and time-series correlation are high in

2010 as well. Notice however that bothσt and RSD were relatively small in 2010．We may

conclude therefore that although European financial crisis were worried in this period, the na-

ture of its influence on the price movement of the Japanese government bonds was somewhat

different from that of the subprime loan-related problems and the Lehman shock. In conclu-

sion, we can say that both cross-sectional and time-series covariance structure in the discount

functions provide important information for analysis of the bond price movements.

５ One-Month Forecast of Bond Prices

In this section, we present a bond price forecasting method using our model as well as the fore-

cast performance of the Japanese government bonds. As we have described, in our model, the

time-series bond price fluctuations are captured by the time varying regression coefficients

and by the time-series covariance structure of the error term of the regression. We can then

forecast bond prices based on these two components.

Suppose that we are interested in forecasting the bond price at time T＋1 based on the ob-

servations from time period t＝0,1,...,T. Then, we can estimate the parameters �βt， �θt and

��t for t＝1,...,T－1 by the estimation method described in Section 3．Notice that we can also
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estimate �βT， �θT and ��T based on the observations at time T－1 and T only, in the same man-

ner as in Section 3．Let ��βt, ��θt and ���t, t＝1,...,T be the estimated parameters obtained in

such a way. First, we forecast �βT+1 by fitting some time-series model to the estimated ��θt,t＝

1,...,T. Although we may adopt any kind of time-series models for this purpose, we have to

consider the maximum number of the parameters of the time-series model, which in turn is res-

tricted by the number T of observations. In practice, it is reasonable not to take too long a

period because of the possibility of structural changes. Taking such a restriction on the sample

period in mind, we propose to extract a small number of principal components from the ob-

served ��βt and fit a univariate time-series model of a low order such as AR(1) to each of the ex-

tracted principal components. In other words, let �Σ be the sample covariance matrix of the es-

timated beta, that is,

�Σ＝ 1
T

T

∑
t=1
( ��βt－ ��β)( ��βt－ ��β)′

(26)
��β＝ 1

T

T

∑
t=1

��βt，

and letλ1＞...＞λp andγ1,...,γp be the eigenvalues and corresponding normalized eigen-

vectors of �Σ．The i-th principal component zit of the estimatedβ is then given by

(27) zit＝
p

∑
j=1
γij

��βtj．

Let k be the number of the principal components for which the cumulative rate of contribution

first exceeds some preassigned level, say，0.9，that is

(28) k＝ min
1�m�p

∑m
i=1λi

∑p
i=1λi

＞0.9．

Then, we fit some univariate time-series model to each of zi, i＝1,...,k. For instance, we may

fit an AR (1) to each of zi as

(29) zit＝φi zit -1＋εt，t＝2,...,T．

In this case, let

(30) �φi=
∑T

t=2zit zit-1

∑T
t=2z2it

be the estimates ofφi so that we may forecast ziT +1 by

(31) �ziT +1＝ �φi ziT．

We may then forecastβT+1 by

(32) ��βT +1i＝
k

∑
j=1

λjγji ��jT +1＋ ��β．

Next, let �ηT be the residual of the regression (17) at time t＝T, that is,
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(33) ��ηT＝ ƒyT－ �XT
��βT．

In order to forecast the bond price at time T +1，we have to forecast �ηT+1．Using the estimat-

ed parameters �θT and ��T，we estimate the covariance of �ηT and �ηT +1 by �σ2T �ΦTT +1 with �ΦTT +1

computed by substitution of estimated �θT into (15)．Then, we may forecast �ηT +1 by

(34) ��ηT +1＝ �ΦTT +1 �Φ
-1
TT

��ηT．

We finally forecast the bond price at time T+1 by

(35) �PT +1＝αT +1＋ ��T +1
��βT +1＋ ��ηT+1

By using the forecast method described in the above, we have investigated the forecast per-

formance of the Japanese government bond prices. For each month T from August 1996 to Au-

gust 2010，we have computed bond price forecast at T +1 based on the observations for t＝T

－11,...,T. The forecast performance has been measured by the mean squared error (MSE)，

which is defined by

Table 1: Term-Specic Portfolios of the Japanese Government Bond

Portfolio Short Medium Long Super Long

Time-to-Maturity (yrs) 1 to 3 3 to 7 7 to 10 10 to 20

Ave. Num. of Bonds 55 69 33 66

(36) MSET +1＝
1

GT +1

GT +1

∑
g=1
(PgT +1－ ��gT +1)2．

Here, PgT +1 denotes the observed bond price and ��gT +1 denotes the forecasted price of the

bond. Figure 5 shows the MSE of our model for the Japanese government bonds. It can be

seen that the MSE is less than 1 (Japanese yen)most of the time. The performance is not good

when the bond price fluctuation is high, such as in December 2008 (see Figure 1 as well)．It

should be noted, however, that even in such a case, the forecast performance tends to improve

rapidly within a few months.

Figures 6 and 7 show the forecast performance for bond portfolios with different terms. For

the convenience, we have construct four bond portfolios of short, medium, long and super-long

terms. The components of these bond portfolios are given by Table 1．For instance, the por-

tfolio of short term bonds consists of the bonds with time to maturity from one to three years.

From these figures, we see that the forecasting performance is good enough for the short and

medium term bonds. It is relatively difficult to forecast the prices of the long and super-long

term bonds since the price movement of these bonds are relatively large. In particular, it

seems that the bonds with super long term, which are less liquid than other bonds, tend to be
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Figure 5:Mean-Squared Error (MSE) of The Bond Forecast

Figure 6: The Forecast Performance of the Bond Portfolios (Short and Medium Terms)

Figure 7: The Forecast Performance of the Bond Portfolios (Long and Super Long Terms)
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preferred when the financial market is instable, which makes the price of these bonds rise too

rapidly to follow.
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