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Abstract: Enormous amounts of childhood thyroid cancers, mostly childhood papillary thyroid
carcinomas (PTCs), after the Chernobyl nuclear power plant accident have revealed a mutual
relationship between the radiation exposure and thyroid cancer development. While the internal
exposure to radioactive 131I is involved in the childhood thyroid cancers after the Chernobyl accident,
people exposed to the external radiation, such as atomic-bomb (A-bomb) survivors, and the patients
who received radiation therapy, have also been epidemiologically demonstrated to develop thyroid
cancers. In order to elucidate the mechanisms of radiation-induced carcinogenesis, studies have
aimed at defining the molecular changes associated with the thyroid cancer development. Here,
we overview the literatures towards the identification of oncogenic alterations, particularly gene
rearrangements, and discuss the existence of radiation signatures associated with radiation-induced
thyroid cancers.
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1. Introduction

Radiation exposure has been well documented to take part in cancer development in the human
body. Increased risks in a variety of cancer mortality/incidences, including the thyroid cancer incidence,
have been demonstrated among the Life Span Study (LSS) cohort of the A-bomb survivors in Hiroshima
and Nagasaki [1,2]. The accident in the Chernobyl nuclear power plant (CNPP), which released
large amounts of radioactive materials into the environment, has caused the excess cases of thyroid
cancers among children living in the contaminated areas nearby the CNPP [3–6]. Epidemiological
studies have indicated an apparent dose-dependent induction of thyroid cancers, confirming that the
radiation exposure is the primary cause of thyroid cancer induction [7–9]. Other examples include the
increased thyroid cancer incidence in the patients who received medical radiation therapy for diseases,
such as tinea capitis, enlarged thymus glands, and tonsils [10]. Thus, radiation-induced thyroid
cancers have provided unequalled examples to unveil the molecular mechanisms of radiation-induced
carcinogenesis, as well as a role of radiation exposure in thyroid carcinogenesis.

2. Childhood Thyroid Cancers after the Chernobyl Accident

During the accident at the CNPP on 26 April 1986, a large amount of radioactive materials were
released into the environment leading to the radiation exposure of some 5 million of residents in the
most affected areas of Ukraine, Belarus, and Russia [3–6]. In particular, the fallout of radioactive iodine
resulted in significant internal exposures in children mainly through the ingestion of contaminated
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milk. As a result, unprecedentedly high numbers of childhood thyroid cancer have been diagnosed,
which are the main health effects of the accident in the population [11–13]. Four to five years after the
accident, excess cases of childhood thyroid cancers were first reported. Thyroid cancer cases were
particularly profound among the youngest children aged 0–5 years at exposure, while no such dramatic
increase was observed in the adults. Between 1991 and 2005, 6848 cases were diagnosed among
those exposed at the age under 18 years in 1986, and according to the recent WHO report update,
more than 11,000 thyroid cancer cases were documented by 2016 in the individuals exposed during
childhood in the three affected countries [14]. Note that the incidence of thyroid cancer in children
born after the Chernobyl accident was significantly lower, almost the background level, indicating that
the considerable increase in childhood thyroid cancer cases was evidently due to the internal exposure
to the radioactive iodine [3,4,9,15].

The relationship between the internal exposure to radiation (β-rays and γ-rays) from 131I and the
risk for thyroid cancer has been demonstrated to be dose-dependent [16–20]. For example, a large
epidemiological case-control study of Belarusian and Russian children showed a strong dose-dependent
increase in the risk for developing thyroid carcinomas, and the risk seemed to increase linearly with
the dose in the examined dose range [16]. Recent analysis of the thyroid cancer prevalence in the
Belarusian and the Ukrainian Chernobyl cohorts also found a linear dose-response relationship [7,9].
Thus, there is solid evidence that the radiation exposure is a causal factor associated with childhood
thyroid cancer.

It is well established that the most prevalent types of thyroid cancers are the papillary and
follicular thyroid carcinomas (PTC and FTC, respectively) both in children and adults [20]. After the
Chernobyl accident, almost all childhood thyroid cancers were PTCs [8,21]. In earlier cases, a large
proportion of the PTCs were of the solid subtype, which was a unique characteristic observed after
the Chernobyl accident [8,20]. Subsequently, the growth pattern was shifted to the classic subtype,
which is less aggressive and metastatic, and importantly, it is quite common in a sporadic childhood
PTC [8,20–22]. A recent comparative histological study in the Ukraine cases reported that a dominant
papillary growth pattern was less frequent, and an aggressive tumor behavior was more frequent than
the sporadic PTCs [23].

3. Oncogenic Rearrangements in Childhood Thyroid Cancer

Since sporadic childhood thyroid cancers in the affected areas was quite rare, most cancer cases
diagnosed after the Chernobyl accident could be attributable to the radiation exposure. Therefore,
thyroid cancers diagnosed in children were expected to provide unique opportunities to scrutinize
molecular radiation signatures associated with malignant conversion of the normal thyroid follicular
cells [24].

Molecular analyses in early childhood thyroid cancer cases demonstrated a very high prevalence
of genome rearrangements between the Rearranged During Transfection (RET) gene and the PTC3 gene
(RET/PTC3 rearrangement) located on the same chromosome 10 [25–27]. Subsequent studies have
shown that the RET/PTC1 rearrangement is also a common type of oncogenic mutation in the childhood
thyroid cancers after the Chernobyl accident [28], and the RET/PTC rearrangements are now recognized
as predominant driver mutations in both radiation-related and sporadic childhood papillary thyroid
cancers [29,30].

The RET gene encodes a transmembrane receptor tyrosine kinase, whose endogenous ligand is
the glial cell-derived neurotrophic factor (GDNF). The RET protein is principally expressed in the
nervous system, and therefore, the expression in the thyroid follicular cells has never been reported.
The binding of GDNF, mediated by the GDNF-family receptor-alpha (GFR-alpha), stimulates the
receptor dimerization, which is a critical step for activation of the RET tyrosine kinase activity [31]. In
thyroid cancers, the 3′ part of the RET proto-oncogene, which encodes the kinase domain, is fused
to the 5′ regions of various partner genes, which have collectively been designated as the PTC genes
(Table 1). The PTC1 gene, also called the Coiled-Coil Domain Containing 6 (CCDC6) gene, as well as the
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PTC3 gene, alternatively named the Nuclear Receptor Coactivator 4 (NCOA4) gene, are those ubiquitously
expressed in a variety of tissues and organs including thyroid.

Table 1. Oncogenic rearrangements in childhood thyroid cancers related to the Chernobyl accident.

Oncogenes Rearrangement Partners Chromosome Location Type of
Rearrangements

RET rearrangements

RET/PTC1 CCDC6 (also H4) 10q11.21/10q21 Inversion
RET/PTC2 PRKAR1A 10q11.21/17q24.2 Translocation
RET/PTC3 NCOA4 (also Ele) 10q11.21/10q11.22 Inversion
RET/PTC4 NCOA4 (also Ele) 10q11.21/10q11.22 Inversion
RET/PTC5 GOLGA5 (also RFG5) 10q11.21/14q32.12 Translocation
RET/PTC6 TRIM24 10q11.21/7q32-q34 Translocation
RET/PTC7 TRIM33 (also RFG7) 10q11.21/1p13.1 Translocation
RET/PTC8 KTN1 10q11.21/14q22.1 Translocation
RET/PTC9 RFG9 (also MBD1) 10q11.21/18q21 Translocation
SPECC1L-RET SPECC1L 22q11.23/10q11.21 Translocation
SQSTM1-RET SQSTM1 5q35.3/10q11.21 Translocation

BRAF rearrangements

AKAP9/BRAF AKAP9 7q21.2/7q34 Inversion
AGK/BRAF AGK 7q34/7q34 Inversion
SND1-BRAF SND1 7q32.1/7q34 Inversion
MBP-BRAF MBP 18q23/7q34 Translocation
POR-BRAF POR 7q11.23/7q34 Inversion
ZBTB8A-BRAF ZBTB8A 1p35.1/7q34 Translocation
MACF-BRAF MACF1 1p34.3/7q34 Translocation

NTRK rearrangements

TPR/NTRK1 TPR 1q31.1/1q23.1 Inversion
BANP-NTRK1 BANP 16q24.2/1q23.1 Translocation
ETV6/NTRK3 ETV6 12p13.1/15q25.3 Translocation

PPARg rearrangements

PAX8/PPARg PAX8 2q14.1/3p25.2 Translocation
CREB3L2/PPARg CREB3L2 7q33/3p25.2 Translocation

Other rearrangements

STRN-ALK ALK 2p22.2/2p23.2-p23.1 Inversion
THADA-IGF2BP3 2p21/7p15.3 Translocation

Consequently, the expression of the chimeric RET/PTC genes is driven by the promoter of the
partner PTC genes fused to the RET gene, which results in an unscheduled expression of the kinase
domain of the RET protein [32,33]. Importantly, the N-terminal parts of the partner proteins commonly
possess coiled-coil domains or other structures that enable homodimerization of the RET kinase domain.
As a result, the RET/PTC fusion proteins are constitutively active, and stimulate the mitogen-activated
protein kinase (MAPK) pathway and other signaling cascades in a ligand-independent way [34–37].
Other types of rearrangements, such as ETV6-NTRK3 [38,39] and STRN-ALK [40,41], were also identified
in the Chernobyl childhood thyroid cancer (Table 1).

The point mutation in the BRAF gene, the T1799A, which gives rise to the BRAFV600E protein,
is another predominant oncogenic mutation in PTCs, especially in adult cases [20]. The BRAF gene
mutation and the RET/PTC rearrangement show a reciprocal age-association, and in fact, the prevalence
of the BRAF mutation in childhood thyroid cancers after the Chernobyl accident is below 10% on
average [42]. The lowest frequency of the mutant BRAF was detected in childhood PTCs developing
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after the shorter latency, and it likely is increasing in the later-onset tumors in children and young
adults, who were exposed to the Chernobyl radiation as children [43].

In relation to the Chernobyl accident, the large-scale ultrasound screening was started after
the accident at the Fukushima Daiichi nuclear power plant [44]. The first and second rounds of
screening revealed 187 cases diagnosed with the nodules categorized as malignant or suspicious for
malignancy among the cohort of approximately 300,000 subjects, covering all children aged 0–18 years
old at the time of the accident. Although the cases are very unlikely to be induced by the radiation,
driver mutations in thyroid carcinomas were investigated, and the BRAFV600E mutation was the most
prevalent genetic alteration [45].

4. Thyroid Cancers among A-Bomb Survivors

Epidemiological studies in the Life Span Study (LSS) cohort of the A-bomb survivors in Hiroshima
and Nagasaki, which include approximately 120,000 survivors in Hiroshima and Nagasaki, and the
residents who were not in the cities at the time of bombing, have been conducted since 1950 [2].
Periodic reports from the Radiation Effects Research Foundation (RERF) have shown that the radiation
exposure to the γ-rays and neutrons increases the risk of cancer mortality and incidence throughout
the life. In the early years after the bombing, the risk of leukemia showed a significant increase, and
then decreased but not to zero. Thereafter, the incidence and mortality risks for solid cancers started
to increase. The excess relative risk for all solid cancer at age 70 years after the exposure at 30 years
of age was estimated to be 0.42 per Gy [95% confidence interval: 0.32–0.53] [1]. An increase in the
mortality risk was confirmed for cancers of most of the tissues/organs, including the stomach, lung,
liver, colon, breast, gallbladder, esophagus, bladder, and ovary, and its dose-response relationship has
been reported to be linear. For several cancer types, the risks were higher in the survivors exposed as
children [1].

Since thyroid cancer is rarely fatal, the mortality studies have not assessed it. However, the
LSS cohort study has demonstrated that the thyroid cancer incidence risk is significantly increased
following the radiation exposure [1]. For example, the follow-up of the thyroid cancer incidence in
the LSS cohort between 1958 and 2005 estimated the gender-averaged excess relative risk, which is
calculated as the relative risk minus one, per Gy as 1.28 [95% confidence interval: 0.59–2.70] at the age
of 60 years after the exposure at 10 years of age, although microcarcinoma with a diameter less than
10 mm was not included in the study [46]. The thyroid cancer incidence was strongly dependent on
the age-at-exposure, and there was no significant increase in the thyroid cancer incidence among those
exposed after the age of 20 [46].

Molecular analyses in the adult-onset PTC cases have demonstrated that more than half of the
exposed patients exhibited the BRAF point mutation (56%), and the RET/PTC rearrangement was
observed in 22% of the exposed patients, while more than 80% of the non-exposed cases harbored
the BRAF gene point mutation [47]. Of importance, there were the opposite trends for the oncogene
frequency associated with the radiation dose: An uptrend for RET/PTC and downtrend for the
BRAF mutation. Rearrangements of the NTRK1 and the ALK genes [48], as well as the ABCD5/RET
rearrangement [49], were also identified.

5. Thyroid Cancers among the Patients Who Received External Medical Radiation in Childhood

In addition to the LSS cohort, which includes certain, although limited, number of subjects who
were children at the time of the bombings, other groups of externally irradiated children exist. These are
patients who received medical radiation of cancer or non-cancer conditions to the head and neck area
or to the chest. A pooled analysis of seven independent studies was conducted [10], and more recently,
an updated pooled analysis of 12 studies was reported [50], in which the oldest age at exposure was 19,
mean five years old. The mean and median doses were 0.71 Gy and 0.07 Gy, respectively, for the range
from >0 to 76 Gy.



Cancers 2019, 11, 1290 5 of 12

Across the full dose range, the relative risk for thyroid cancer increased supralinearly for the doses
up to 2–4 Gy, leveled at doses between 10 to 30 Gy and declined at higher doses but remained elevated
even for the doses exceeding 50 Gy. The relative risk at 1 Gy was 6.5 [95% confidence interval: 5.1–8.5],
and increased with a younger age at exposure. The excess relative risk displayed an apparent peak of
20–30 years after exposure and remained elevated after >50 years of the follow-up [50].

The molecular changes in PTCs from the patients, who had received medical external radiation
as children, were examined in several studies. In one earlier work, the RET/PTC rearrangements
were found in 84% (16/19) of radiation-related PTCs, while only 15% (3/20) of prevalence was seen
in the sporadic cases [51]. Another study using the Chicago cohort demonstrated that the RET
immunoreactivity, which was well correlated with the RET/PTC rearrangements, was found in 86.7% of
the radiation-exposed cases and in 52.9% of tumors from the control group [52]. Many of these patients
received radiotherapy for cancer, so that the doses were relatively high compared with the tinea capitis
patients. Moreover, the distribution of age at diagnosis was much younger in the irradiated cases,
which might have influenced the mutation spectrum [53].

6. Radiation Signatures and Possible Mechanism of Radiation Carcinogenesis

After the Chernobyl accident, chromosomal rearrangements, such as the RET/PTC1 and RET/PTC3,
were identified in childhood thyroid cancers. These rearrangements are generated through the
paracentric (intrachromosomal) inversion within the long arm of chromosome 10, where the RET, the
CCDC6, and the NCOA4 genes are located (Figure 1) [29,30,36]. The inter-chromosomal translocation
is also involved in the formation of other types of rearrangements, such as ETV6-NTRK3 (Figure 1).
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Figure 1. Schematic representation of oncogenic chromosomal rearrangements. (A) Intra-chromosomal
inversion. The rearranged during transfection (RET) gene and the PTC1/3 gene (RET/PTC) rearrangements
are generated by an intra-chromosomal inversion of chromosome 10, which gives rise to the fusion
genes between the tyrosine kinase domain of the RET gene and the amino terminal region of the PTC
gene; (B) Inter-chromosomal translocation. The chromosomal rearrangements, such as ETV6-NTRK3,
are created through an illegitimate recombination between the different broken chromosomes.

Theoretically, rearrangements need at least two DNA double-strand breaks, so that exposure to the
radiation, which is a well-known inducer for DNA double-strand breaks, has been assumed to cause
such rearrangements through an illegitimate recombination of the broken DNA ends [24]. Furthermore,
it has been proposed that the folding of the chromosomal 10q11.2–21 region facilitates a spatial proximity
of the RET and PTC genes, which could be a structural basis for the RET/PTC rearrangements [54,55].
The close connection between the radiation exposure and the induction of chromosomal rearrangement
was demonstrated experimentally. For example, the RET/PTC rearrangements were detected in the
X-irradiated primary thyroid cells and tissues [56,57]. While the initial studies used a high-dose over
50 Gy, the generation of the RET/PTC rearrangements were also identified in the thyroid epithelial
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cells receiving lower doses [58]. The induction of other chromosomal rearrangements has also been
demonstrated in vitro [39].

Although the experiments have proven that the RET/PTC rearrangements are induced by the
radiation exposure, in vitro studies are unable to evaluate a spontaneous incidence of the RET/PTC
rearrangements, as the frequency of those in the absence of the genotoxic stimuli is too low. Therefore,
the information from human studies, which analyzed the RET/PTC rearrangements in sporadic
childhood thyroid cancers, is indispensable. While several independent groups have evaluated the
prevalence of the RET/PTC rearrangements in childhood thyroid cancer after the Chernobyl accident,
only some studies have compared the results with the frequency of the RET/PTC rearrangements
in sporadic childhood PTCs [27,38,43,59]. The compiled data demonstrated that except for the
RET/PTC3 in tumors developing within the first decade after the Chernobyl accident, the frequency of
rearrangements, in particular that of the RET/PTC1 rearrangement, was comparable between childhood
thyroid cancers after the Chernobyl accident and those occurring irrespectively of the radiation
exposure (Table 2) [42,60–63]. This suggests that the RET/PTC rearrangements in radiation-related
cases might not be the radiation signature. Rather, the radiation exposure could unveil the RET/PTC
rearrangements that occurred spontaneously [24]. Considering that thyroid cancers in children began
to manifest 4–5 years after the Chernobyl accident, it would be reasonable to hypothesize that thyroid
follicular cells with the RET/PTC rearrangements already existed, and the radiation exposure could
provide a chance for the cells with such cancer signatures to proliferate [24].

Table 2. Prevalence of oncogenic mutations in childhood papillary thyroid carcinomas.

Studies
Prevalence (Positive Cases/Total (%))

RET/PTC1 Rearrangement
Ref

Chernobyl-related Sporadic

Nikiforov et al. (1997) 5/22 6/14 27
Thomas et al. (1999) 12/63 61
Rabes et al. (2000) 40/172 62
Elisei et al. (2001) 6/25 5/25 63
Ricarte-Filho et al. (2013) 3/18 1/18 38
Leeman-Neill et al. (2013) 14/62 76
Total 80/362 (22.1) 12/57 (21.1)

It is well-documented that RET/PTC1 is the predominant type of gene rearrangements in the
pediatric PTC [64–67], and that the frequency of sporadic thyroid cancer cases harboring the RET/PTC
rearrangements decreases with age, while those with the BRAF mutation becomes more common [20].
These two genetic changes are mutually exclusive. Individuals born before the accident are now at least
thirty-three years old, and recent reports demonstrate that the frequency of thyroid cancer driven by the
BRAF mutation tends to grow in the affected group [68,69]. This is an important observation indicating
that molecular changes in the radiation-related thyroid cancer mirror those occurring spontaneously,
although we also need to bear in mind that there were studies reporting a decrease of the RET/PTC
rearrangements over the years in adult PTCs [70,71].

Thus, the spectrum of genetic alterations identified in thyroid cancers related to the Chernobyl
accident are not very different from that found in the sporadic cases. Since exposures to natural reactive
oxygen species and environmental chemicals may occur any time during the life, including the in utero
period, it cannot even be ruled out that Chernobyl childhood PTCs could originate from the thyroid
follicular cells that had already carried spontaneous RET/PTC rearrangements before the exposure.

Undoubtedly, there is considerable evidence of a link between the chromosomal rearrangements
and radiation dose. For example, a recent publication analyzed driver mutations in a series of 65 PTCs
diagnosed after the Chernobyl accident, with the individual doses available [41]. Chromosomal
rearrangements, including RET/PTC1, ETV6-NTRK3, STRN-ALK, and RET/PTC3, and point mutations,
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such as BRAFV600E, were found in 70.8% and 26.2% of the cases, respectively. A significant
positive correlation between the 131I thyroid dose and the incidence of chromosomal rearrangements
was found, and the study reasonably claimed these could be induced by the radiation exposure.
The dose-dependent incidence of the gene rearrangement was also reported for the ETV6-NTRK3
and STRN-ALK rearrangements [39,40]. By contrast, other reports concluded that the prevalence
of the RET/PTC rearrangements were not associated with the exposure [72] or individual radiation
doses [73]. The dose-dependency of RET/PTC and PAX8/PPARγ, which is the fusion occurring in the
follicular thyroid carcinoma, between PAX8, a transcription factor involved in the thyroid development
and PPARγ, the master transcriptional regulator of adipogenesis [74,75], was also determined in
radiation-related Chernobyl cases but the decline in the rearrangement frequency at higher doses was
modelled and the confidence interval was very wide [76].

Recent studies have analyzed various molecular changes besides the chromosomal
rearrangements [44]. For example, certain differences in the gene expression profiles between
radiation-related and sporadic cancers were reported, although there is a lack of consistency between
the gene signatures. Possible confounding factors, including pathological features of the tumors,
could cause discrepancies between the studies, and the gene signatures might reflect the results of
the radiation exposure. In addition, there has been a gain of chromosome 7q11.23, where the CLIP2
gene is located, associated with radiation-related cases [77,78]. ClIP2 (CAP-Gly domain containing
linker protein 2) is a member of the cytoplasmic linker protein families, which might link organelles
with microtubules. The CLIP2 protein also contains a SMC (structural maintenance of chromosomes)
domain involved in the chromosome segregation and cell division. Its overexpression could be a marker
of the radiation etiology of thyroid cancer, however, an involvement into the molecular mechanisms of
radiation-induced thyroid carcinogenesis needs to be established. Furthermore, genetic determinants
connected to the individual predisposition to thyroid cancer were reported. Genome-wide association
studies using Chernobyl cases have identified common single nucleotide polymorphism markers, such
as rs965513, located in the FOXE1 region, while there is no marker specific for the radiation-related
cancers [79]. Thus, analyses with advanced technologies are necessary to obtain more information
on molecular structures, which should be needed for determining molecular radiation signatures in
childhood thyroid cancers related to the radiation exposure.

7. Conclusions

Internal exposure to the radioactive iodine as well as the external radiation exposure increase the
risk for childhood papillary thyroid cancer. Molecular analyses have shown that RET/PTC and other
gene rearrangements are the most prevalent oncogenic alteration in both the radiation-induced and
sporadic childhood thyroid cancer. While the contribution of the radiation exposure to the induction
of oncogenic rearrangements in PTC in exposed patients still needs to be clarified, further molecular
approaches are expected to provide clues to untangle our debates on the role of radiation exposure in
the development of childhood thyroid cancer.
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