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Abstract: Using a mouse model, we previously demonstrated that subcutaneous infection with the JaTH160
strain of Japanese encephalitis virus (JEV) causes significantly higher virulence and stronger virus propagation in
the brain compared with that of the JaOArS982 strain. We also showed that the JaTH160 strain, but not
JaOArS982, expresses the NS1’ protein and that NS1’ enhances JEV production in avian cells and embryonated
chicken eggs. In this study, we examined whether NS1’ expression affects virulence in mice infected with the
JaOArS982 and JaTH160 strains using the corresponding recombinant viruses S982-IC and JaTH-IC. Expression
of the NS1’ protein in S982-IC diminished the mortality in mice, whereas S982-IC viruses without NS1’ caused
40–60% mortality. However, the viral loads in the brains of these mice were not significantly different despite the
dvariation in NS1’ expression. JaTH-IC viruses depleted of the NS1’ protein exhibited high mortality levels,
similar to those of the virus expressing NS1’. Previous studies showed that the NS1’ protein plays a role in the
enhanced virulence of the JEV SA14 strain in mice. However, our current data suggest that NS1’ protein
expression in S982-IC reduces, rather than enhances, the mortality in mice. Thus, the effect of NS1’ on
pathogenicity in vivo may vary among virus strains. Our data also suggest that the reduced mortality resulting from
NS1’ expression in S982-IC is not simply due to viral replication in the brains. Further investigation is needed to
uncover the mechanism by which NS1’ affects pathogenicity in JEV-infected animals.
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INTRODUCTION

Japanese encephalitis virus (JEV) causes clinical
symptoms in humans, including a non-specific febrile ill-
ness, meningitis, encephalitis and meningoencephalitis [1,
2]. JEV belongs to the family Flaviviridae, genus Flavivi-
rus [3], which comprises enveloped viruses containing a
single-stranded, positive-sense RNA genome of 11 kb in
length. The genomic RNA contains a 5′ untranslated re-
gion (UTR), a single open reading frame (ORF) and a 3′
UTR. The ORF encodes a long polyprotein, which is co-
and post-translationally processed by a combination of vi-
ral and cellular proteases into three structural (C, prM and
E) and seven nonstructural (NS1, NS2A, NS2B, NS3,
NS4A, NS4B and NS5) proteins [4, 5].

To investigate pathologies of the central nervous sys-

tem (CNS) caused by JEV infection, mouse models have
been employed [6, 7]. We previously showed that the viru-
lence of the JaTH160 strain is significantly higher than that
of the JaOArS982 strain in mice [7]. Thus, a genetics-
based comparison between these strains appears to be an
effective approach for identifying viral factors that contrib-
ute to disease severity.

Our previous study showed that the JaTH160 strain
produces the NS1’ protein (55 kDa) in addition to the NS1
protein (48 kDa), whereas the JaOArS982 strain expresses
only NS1 [8]. The NS1’ protein has been detected among
members of the JEV subgroup, including West Nile virus
(WNV) and Murray Valley encephalitis virus (MVEV) [9–
12]. This protein is produced as a result of −1 programmed
ribosomal frameshifting (−1PRF) at the conserved slippery
heptanucleotide (YCCUUUU) and 3′-adjacent potential
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pseudoknot near the beginning of the NS2A coding gene
[12]. The NS1’ protein co-localizes with the NS1 protein
and can substitute for NS1 in WNV replication [13].

We demonstrated that NS1’ protein expression ele-
vates JEV production in avian cells and embryonated
chicken eggs [8]. It was shown that abolishing NS1’ re-
duced WNV production in mosquitos and house sparrows
[14]. These findings suggest that the NS1’ protein may fa-
cilitate the amplification/maintenance role of birds in the
virus transmission cycle in nature.

Using a mouse model, it was shown that the NS1’
protein plays an important role in enhancing the virulence
of WNV and JEV [15, 16], although the mechanisms by
which NS1’ expression influence viral pathogenicity have
not been identified. These findings raise the possibility that
NS1’ expression in the JaTH160 strain contributes to its
higher virulence in mice compared with the JaOArS982
strain. Here, therefore, we examined whether NS1’ expres-
sion affects the difference in virulence between
JaOArS982 and JaTH160.

METHODS

The expression of NS1’ in JEV is regulated by the nu-
cleotides at positions 66 and 67 of the NS2A gene [8, 16].
Thus, we developed NS1’-expressing and -non-expressing
viruses, based on the full-length cDNA of the infectious
clones S982-IC and JaTH-IC [8], by substitution of nu-
cleotides 66 and/or 67 of the NS2A gene [17] as indicated
in Fig. 1. Recombinant viruses of S982_I23-NS1 and
JaTH_V23-NS1’ have identical nucleotide sequences of
wild type JaOArS982 and JaTH160, respectively. Nucleo-
tide sequence of each virus was confirmed by conventional
sequencing. BHK cells were infected with each virus at a
multiplicity of infection of 10. The expression of the NS1
and NS1’ proteins was confirmed by western blot analysis,
as previously done (Fig. 1) [8]. The anti-NS1 polyclonal
antibodies and anti-β-Actin antibodies (Santa Cruz) were
used for detection.

C57BL/6j (B6) mice (Japan SLC Cooperation, Japan
CLEA Cooperation) were subcutaneously inoculated with
104 pfu of the recombinant viruses and were observed for
clinical signs and lethality. The experimental protocols in-
volving animals were approved by the Animal Care and
Use Committee, Nagasaki University (approval number:
091130-2-7/0912080807-9, 100723-1-3/1008050873-3).

RESULTS AND DISCUSSION

We first examined the propagation of recombinant vi-
ruses in baby hamster kidney (BHK) and mouse neuroblas-

toma (N2a) cells. However, there were no significant
differences of viral yields in the culture fluids between the
viruses (data not shown).

Interestingly, no mice died following infection with
S982_V23-NS1’ (Fig. 2A), which caused a slight weight re-
duction (Fig. 2B). The survival curves and weight changes
of the S982_V23-NS1-inoculated mice were similar to
those inoculated with S982_I23-NS1 (Fig. 2A and 2B).
These observations suggest that NS1’ expression did not
increase the mortality in mice infected with JaOArS982
and that NS1’ may in fact reduce virulence. However,
there were no significant differences in the viral loads in
the brains among the S982_I23-NS1, S982_V23-NS1’ and
S982_V23-NS1 viruses at 11 days post-inoculation (pi)
(Fig. 2C). These observations suggest that the reduced
mortality upon infection with S982_V23-NS1’ was not sim-
ply due to viral replication in the brains.

Following infection with the JaTH_V23-NS1’,
JaTH_I23-NS1 and JaTH_V23-NS1 viruses, mouse fatalities
were 100%, 90% and 80%, respectively (Fig. 3A). The
weight changes of the dead mice were similar among these
viruses (Fig. 3B). There were no significant differences in
the viral loads in the brains among the mice infected with
JaTH_V23-NS1’, JaTH_I23-NS1 and JaTH_V23-NS1
(Fig. 3C). These observations suggest that NS1’ expression
did not significantly affect the pathogenicity or viral titers

Fig. 1. NS1 and NS1’ protein expression. BHK cells were
infected with each virus at a multiplicity of infection
of 10. Western blotting was performed on the
extracted proteins. The anti-NS1 polyclonal
antibodies and anti-β-Actin antibodies (Santa Cruz)
were used for detection. Mutated nucleotide
sequences (NS2A nt66–67) and amino acids (NS2A
aa22–23) of each recombinant virus were indicated.
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in the CNS in mice infected with the JaTH160 strain.
It has been shown that abolishing the expression of

PRF and NS1’ attenuates the virulence of the SA14 strain
of JEV in mice [16]. Although the mechanism by which
NS1’ affects virulence is still unclear, the functions of
NS1’ in pathogenicity may vary among virus strains.

It was recently shown that C-terminal truncation of
the NS1’ protein and loss of heat-stable NS1’ dimers of
WNV had no effect on viral pathogenesis in mice, suggest-
ing that mammalian hosts are unlikely to be the primary
driver for the evolution of the PRF mechanism for NS1’
expression [18]. On the other hand, NS1’-expressing JEV
and WNV showed efficient virus production in avian and
Culex mosquito hosts, and an important role for PRF in
avian and mosquito hosts was demonstrated [8, 14]. Thus,

it is suggested that the PRF mechanism is more likely to
evolve in avian and mosquito hosts.

Our current study suggests that NS1’ protein expres-
sion does not affect neuronal viral infections in mice in-
fected with the JaOArS982 or JaTH160 strains. Further
detailed analysis of the different steps in the pathway
should help elucidate the precise pathogenic mechanisms
of JEV infection.

ACKNOWLEDGMENTS

We thank Dr. Tomohiko Takasaki from the National
Institute of Infectious Diseases, Tokyo, Japan, for
providing the JaTH160 strain. This work was supported by
KAKENHI [Grant-in-Aid for Scientific Research (B)

Fig. 2. Pathogenicity of S982-IC and derivative viruses in mice. (A) Survival rates of B6 mice following subcutaneous infection
with 104 pfu of the S982_I23-NS1 (S982-IC), S982_V23-NS1’ and S982_V23-NS1 viruses. Infected mice were monitored
until 21 days post-inoculation (n = 10). p: Gehan-Breslow-Wilcoxon Test. (B) Average weight-change ratios in the groups
of live and dead mice at the different time-points compared with those of day 0. Error bars represent the standard
deviations. Closed and open symbols identify mice that died or survived, respectively, during the observation period. (C)
Viral loads in the brain cortex at 11 days post-inoculation (n = 5).
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