Research article

Structure of Genetic Loci for Capsular Polysaccharide Biosynthesis in *Streptococcus parauberis* isolated from Japanese flounder

Chuandeng Tu, Koushirou Suga and Kinya Kanai*

Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan

(Received June 19, 2015)

ABSTRACT—*Streptococcus parauberis* is a pathogen of streptococcosis in turbot *Scophthalmus maximus* and the Japanese flounder *Paralichthys olivaceus*. *S. parauberis* isolates from diseased Japanese flounder have been classified into several serological phenotypes. In this study we analyzed the DNA sequence of the genetic locus for capsular polysaccharide (CPS) biosynthesis of *S. parauberis* KRS02083 (subserotype Ia), NUF1003 (subserotype Ib), NUF1071 (subserotype Ic), NUF1032 (serotype II), 2007-1 (nontypeable/PFGE cluster I) and NUF1095 (nontypeable/PFGE cluster III) to elucidate the genetic basis for serological diversity. As a result, three kinds of *cps* locus were revealed among sero-types and subserotypes, namely the loci for subserotype Ia, subserotypes Ib/Ic and serotype II. The genetic structure of *cps* loci suggests that the capsules of *S. parauberis* are synthesized through the Wzy-dependent pathway. Subserotypes Ib and Ic possessed the same genetic structure, although single-base substitution at several regions or insertion of an *IS* (insertion sequence) element was found in subserotype Ic. The nontypeable strains, which agglutinated with both serotypes I and II antisera, possessed the same genetic structure as subserotype Ib/Ic or serotype II with single-base substitution at several regions.

Key words: Streptococcus parauberis, streptococcosis, serotype, capsular polysaccharide biosynthesis, cps locus, structure, Paralichthys olivaceus

Polysaccharide capsules are particular structure found on the cell surface of many bacterial species. They are usually regarded as crucial virulence factors and have antigenicity, which can be used for serotyping of bacteria. The diversity of capsular polysaccharide (CPS) structure due to a variety of sugars and glycosidic linkages is reflected in the differences of serotype (Okura et al., 2013). Generally, the CPS biosynthetic genes are clustered at a single locus (cps locus) on the chromosome (Roberts, 1996) with a rare exception (Patrick et al., 2010). The biosynthesis of CPS requires a complex pathway, where there are two major pathways termed synthase-dependent pathway and Wzy-dependent pathway, which are responsible for polymerization of individual sugars in a processive reaction and discrete repeat units in a nonprocessive reaction, respectively, in Gram-positive bacteria (Yother, 2011).

Streptococcus parauberis, a Gram-positive coccus, can cause mastitis in cows (Williams and Collins, 1990) and is known as a pathogen in turbot Scophthalmus maximus and the Japanese flounder Paralichthys olivaceus (Domeénech et al., 1996; Kanai et al., 2009). Our previous studies demonstrated that the isolates from diseased flounder were classified into two serotypes, designated I and II, and that the serotype I was subdivided into three subserotypes, designated Ia, Ib and Ic, while nontypeable strains, which agglutinated with both serotypes I and II antisera, were also found (Kanai et al., 2009, 2015). It is suggested that the serological diversity arise from difference of CPS and that the nontypeable strains do not produce CPS or produce a negligible amount of CPS on their cell surface (Kanai et al., 2009). The existence of serological diversity suggests the presence of distinct features of cps locus according to serotypes of this pathogen. To investigate the correlation between the serotypes and structure of cps loci of S. parauberis, we sequenced and analyzed the cps loci of the representative strain of each serotype and two nontypeable strains. The possible biosynthetic pathway and mechanisms by which the diversity arises in S. parauberis were also discussed.

^{*} Corresponding author

E-mail: kanai@nagasaki-u.ac.jp

Materials and Methods

Bacterial strains and genomic DNA isolation

For DNA sequencing, four *S. parauberis* strains, KRS02083, NUF1003, NUF1071 and NUF1032, were selected as the representatives of subserotypes Ia, Ib and Ic and serotype II, respectively. Two nontypeable (NT) strains, 2007-1 and NUF1095, which belonged to the clusters I and III in *sma*I-PFGE analysis (Kanai *et al.*, 2015), respectively, were also included (Table 1). For PCR scanning (verification of the structure of the *cps* loci by amplifying the parts of the entire *cps* locus), remaining 182 *S. parauberis* strains were used (Kanai *et al.*, 2015). All the strains were cultured on Todd Hewitt (Difco) agar at 27°C for 24 h, and genomic DNA was prepared using Wizard Genomic DNA Purification kit (Promega) according to the manufacturer's instructions.

Sequencing of the cps loci of S. parauberis NUF1003 and NUF1032

Initial PCR amplification and sequencing: The primer pair SP1F (5'-TATYAGYGGTATTGATAC) and SP2R (5'-GGTGGRGTATCRATGAT) was designed from the conserved region of cps loci of S. agalactiae serotype Ia (GenBank accession no., AB028896) and III (AF163833), S. thermophilus (DQ393658) and S. iniae (AY904444), and the initial PCR was conducted to amplify a partial sequence of the cps loci of S. parauberis NUF1003 and NUF1032. The PCR was performed on C1000 Thermal Cycler (Bio-Rad) using TaKaRa Ex Taq Hot Start Version (Takara). The PCR reaction mixture (a total volume of 50 μ L) contained 5 μ L of ×10 Ex Tag buffer (Mg²⁺ plus), 4 μ L of dNTP mixture (0.2 mm each), SP1F and SP2R primers (0.5 μ M each), 1 µL of template DNA and 1.25 U of Ex Taq DNA polymerase. The condition of PCR amplification was denaturation at 95°C for 5 min, 30 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s and extension at 72°C for 3 min. The PCR products were cloned into pGEM-T Easy vector using pGEM-T Easy Vector System (Promega) with Escherichia coli JM109 competent cells (Promega), and three clones per strain were sequenced using BigDye Terminator v3.1 Cycle Sequencing kit and ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems).

Inverse PCR and sequencing: The adjacent upstream and downstream regions of the sequenced site of the cps locus were amplified and sequenced successively using inverse PCR technique (Ochman et al., 1988). Briefly, genomic DNA was digested with each of restriction enzymes (BamHI, Bg/II, EcoRI, EcoRV, HindIII, KpnI, PstI, PvuII, SphI) and self-ligated using DNA Ligation kit ver. 2.1 (Takara). Inverse PCR was performed using TaKaRa Ex Tag Hot Start Version with the self-ligated (looped) DNA and oppositely directed primer pair designed from the sequenced region of the cps locus by the PCR condition mentioned above, except that the extension time was changed to 5 min. The PCR products obtained were cloned and sequenced as above. Inverse PCR was repeated using primers newly designated from the sequenced region until the entire sequence data of cps locus was obtained. DNASIS program (Hitachi Software Engineering) was used for the DNA sequence assembling.

Sequencing of the cps loci of S. parauberis KRS02083, NUF1071, 2007-1 and NUF1095

Primer pairs were designed from the sequence data of NUF1003 and NUF1032, and PCRs were performed to amplify the parts of entire *cps* loci of KRS02083, NUF1071, 2007-1 and NUF1095 using PrimeSTAR HS DNA Polymerase (Takara). The PCR products were sequenced directly using BigDye Terminator v3.1 Cycle Sequencing kit and ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems). In the case of KRS02083, inverse PCR technique was also applied, since several parts could not be amplified.

Analysis of sequence data

Open reading frames (ORFs) were predicted using NCBI ORF finder (http://www.ncbi.nlm.nih.gov/gorf/ orfig.html) which could link to the BLAST network server (http://blast.ncbi.nlm.nih.gov/Blast.cgi). All predicted genes were named in alphabetical order in each sero-

Table 1.	Representative	Streptococcus	parauberis	strains us	ed for cps	locus analy	yses
----------	----------------	---------------	------------	------------	------------	-------------	------

	Origin			Affiliation in	cps locus		
Strain	Prefecture	Year	Serotype*	Smal-PFGE analysis*	Length (bp)	No. of ORF	G+C content (%)
KRS02083	Kagawa	2002	la	Cluster II	18,910	19	31.14
NUF1003	Shimane	2004	lb	Cluster I	19,334	18	31.07
NUF1071	Nagasaki	2008	lc	Cluster I	19,334	18	31.07
NUF1032	Nagasaki	2006	П	Cluster III	19,920	19	31.51
2007-1	Oita	2007	NT	Cluster I	19,334	18	31.07
NUF1095	Nagasaki	2009	NT	Cluster III	19,920	19	31.51

* Kanai et al., 2015; NT, nontypeable; All the strains were isolated from diseased Japanese flounder.

type (e.g. *cpsA-cpsR*). ClustalW2.1 network version on DDBJ (http://clustalw.ddbj.nig.ac.jp/index.php?lang= en) was used for nucleotide and amino acid sequence alignments.

PCR scanning

To verify whether the structure of *cps* loci of the remaining 182 *S. parauberis* strains was the same as the representative strains of respective serotype, PCR that spanned the entire region of *cps* locus was conducted with primer pairs listed in Table 2. The primers

Primer	Sequence (5´-3´)	Region	Approximate size of amplicon (bp)	Annealing temperature (°C)
Sp-cps21 Sp-cpsR	GACATCACGGTTATAGTC GTTCGATATGCGCGAC	LysR-cpsB	2,600	55
5sp-IP6 3sp-IP1	CTAGATGATCAGAGTGTC GATGTTAGTCCGAATGGAG	cpsA-cpsD	1,600	51
I-1-3sp2 Sp-cps26	GACCGCGTGAAACGCCCAG TGAATGACAAGACGACTAGC	cpsC-cpsE	2,300	61
3sp-IP5 Sp-cps47	GTACTCGATTAAGCGAC CTGATAATTCCCGATCAATG	cpsE-cps1aG	3,000	49
Sp-cps32 Sp-cps48	ACTAGCAGCTGAGAATGG GCCATCAGCAATAGAAATAC	cps1aG-cps1al	1,900	55
Sp-cps38 Sp-cps49	ATCCTTCTGTAGTATTAGGC GAACCTTGTATAACGTCAAC	cps1aH-cps1aK	3,300	51
Sp-cps41 Sp-cps50	CTAACGAAATCGGAGCTG TGAGACTACTGAACCTGCAG	cps1aK-cps1aM	2,200	55
Sp-cps45 Sp-cps42	TACGTGGGATTCTAATC GATTTTACGAATTCTTGTTC	cps1aL-cps1aN	2.900	51
Sp-cps51 Sp-cps52	ATTGCAACAGCAGCTATTTC ACACCAGCAGAAATTAGTTC	cps1aN-cps1aP	2,300	55
Sp-cps36 3sp-IP85	TAGCAGCACAAGCAGGAG CACAATGATTTTCAAAGATG	cps1aP-cps1aR	2,600	55
3sp-IP7 3sp-IP38	CATGGTCTCAACTGAC AGGTCTAACTTCATGTCTAC	cpsE-cps1bG	2,300	50
3sp-IP17 3sp-IP36	GAAAGAGGACTTTGCTTGCC GTCAAAGTGTCATCGACAATCTC	cps1bF-cps1bl	2,200	59
3sp-IP23 3sp-IP45	TACGGTGCAATAGTTGCC GTTTTTACCTAATCTATCCTTACTA	cps1bl-cps1bK	2,800	56
3sp-IP39 3sp-IP53	GAACATCATCATATTGATCG TACATACCACAAACATAATCC	cps1bK-cps1bM	2,700	54
3sp-IP50 Sp-cps52	AGTGCTCTCGTAATAGCTCTGG ACACCAGCAGAAATTAGTTC	cps1bM-cps1bO	2,800	56
3sp-IP58 3sp-IP85	GAATGACTATTACGATGTCTC CACAATGATTTTCAAAGATG	cps1bO-cps1bQ	2,700	54
3sp-IP5 Sp-cps7	GTACTCGATTAAGCGAC GGACATACCATTTGCAGTA	cpsE-cps2F	2,200	53
3sp-IP14 3sp-IP72	GAATCAGGAATCAGACCTGG TGAACATTGCAGGCTATACC	cps2E-cps2G	1,900	58
Sp-cps8 3sp-IP67	TAGCTGATGGTGCTCATG GTACTTGCCGAAACTATTGTG	cps2G-cps2l	1,500	55
3sp-IP61 3sp-IP68	GGIAGAGAAAIGAAIGAAIAICG TTCAGGTCCACCACCGATG	cps2H-cps2J	2,100	55
3sp-1P65 3sp-1P66	CACCAATATACACAGTCTAAATC	cps2J-cps2L	2,200	55
Sp-cps23 Sp-cps53	CTGGTATGCCACCAACAATC	cps2L-cps2N	2,300	55
3sp-IP78 Sp-cps12	TGAGCATCGAACAGATACAG TTTTGAATCATTGAAGTCG	cps2N-cps2P	2,900	55
3sp-IP86 3sp-IP85	CI TAATGATACATTTGCAACAG CACAATGATTTTCAAAGATG	cps2P-cps2R	2,000	55

Table 2.	Primers	used	for PO	CR sca	nning o	of c	ps l	ocus
TODIO EI	1 1111010	aooa	101 1 1	011000			. 00	0000

were designed so that the neighbored PCR products overlapped each other. The PCR was performed on C1000 Thermal Cycler (Bio-Rad) using *TaKaRa Ex Taq* Hot Start Version (Takara) and the condition mentioned above, but the annealing temperature listed in Table 2 and extension time of 1 min/kb were employed.

Nucleotide sequence accession numbers

The nucleotide sequences of six *S. parauberis cps* loci obtained in this study were deposited in the DDBJ/EMBL/GenBank databases under accession numbers from LC060252 to LC060257 for KRS02083, NUF1003, NUF1071, NUF1032, 2007-1 and NUF1095, respectively.

Results

General features of the cps loci of the representative strains

By PCR amplification, cloning and sequencing, the constitution of *cps* loci of six representative strains became apparent (Fig. 1). The length, number of ORF and G+C content of the loci are shown in Table 1. The function of each gene was predicted based on the homology of its deduced amino acid sequence with those on the database (Tables 3 and 4). In all the six strains, predicted genes are orientated in the same direction except the first gene, and cassette-like structure was observed, i.e., conserved regions flanked serotype-specific genes. At the upper conserved region of the *cps* locus, there were five regulatory genes, *LysR* and *cpsABCD* (also known as *wzg, wzh, wzd* and *wze*), and one processing (epimerase/shortchain dehydrogenase) gene (*cpsE*) sequentially, which

Fig. 1. Structure of *cps* loci of *S. parauberis* representative strains. Putative functions of genes are differentiated using different colors. Shaded regions indicate the genes whose deduced amino acid sequences showed over 30% identity among them.

Table 3. Proteins of other bacterial species homologous to deduced amino acid sequences of the genes in the conserved region

Gene	Category -	Protein showing the highest identity					
		Organism	Product	Accession no.	luentity		
lysR		Streptococcus uberis	LysR family transcriptional regulator	WP_037627683	91%		
cpsA		Streptococcus uberis	LytR family transcriptional regulator	WP_037627066	79%		
cpsB	Regulator	Streptococcus uberis	Tyrosine protein phosphatase	WP_037627064	92%		
cpsC		Streptococcus uberis	Capsular biosynthesis protein CpsC	WP_037627063	87%		
cpsD		Streptococcus porcinus	Tyrosine-protein kinase	WP_003085167	81%		
cpsE	Enimorada	Streptococcus pseudoporcinus	Short-chain dehydrogenase	WP_007893078	80%		
cpsQ Epimerase	Epimerase	Streptococcus uberis	UDP-glucose 6-dehydrogenase	WP_046393482	86%		
cpsR	Hypothetical	Streptococcus uberis	Hypothetical protein	WP_037627032	89%		

 Table 4.
 Proteins of other bacterial species homologous to deduced amino acid sequences of the genes in the serotype-specific region

Cana	Cotogory	Protein showing the highest identity					
Gene	Calegory	Organism Product		Accession no.	ldentily		
cps1aF	Initial	Streptococcus uberis	UDP-phosphate galactose phosphotransferase	WP_012658534	88%		
cps1bG	glycosyltransferase	Lachnospiraceae bacterium	UDP-galactose phosphate transferase	WP_009261689	67%		
cps2F		Streptococcus suis	initial sugar transferase	FAA00872	60%		
cps1aL		Megasphaera sp.	O-antigen ligase	WP_023052747	25%		
cps1bL	Polymerase	vmerase Clostridium sp. O-antigen polymerase V		WP_022113405	25%		
cps2O	l'olymolado	Streptococcus pseudoporcinus	oligosaccharide repeat unit polymerase	WP_007893424	75%		
cps1aN					41%		
cps1bM	Flippase	Lactobacillus paraplantarum	flippase Wzx	CDF77686	42%		
cps2P					36%		
cps1aH		Streptococcus uberis	alvoosyltransferase	WP 012658532	81%		
cps1bl				WF_012050552	61%		
cps1aJ		Acetobacterium woodii	alvoosultransferase family 1	WP 0/1668735	48%		
cps1bJ		Sectobacterium woodin grycosymansieldse idining i		WI _041000733	46%		
cps1aK	Glycosyltransferase	ibrobacter succinogenes glycosyltransferase family 2	alvcosyltransferase family 2	WP 014546699	38%		
cps1bK				WI _014040000	39%		
cps2l		Streptococcus pseudoporcinus	glycosyltransferase family 1	WP_007893181	77%		
cps2J		Streptococcus pseudoporcinus	glycosyltransferase family 1	WP_007893376	70%		
cps2M		Bacteroides sp.	glycosyltransferase, group 2 family	EFI06947	49%		
cps1al		Streptococcus uberis	maltose O-acetyltransferase	WP_046388669	64%		
cps1aM		Clostridium akagii	acetyltransferase	WP_035795827	49%		
cps1bH	Acotyltransforaso	Ruminococcus albus	acetyltransferase	WP_024858893	56%		
cps2N	Acetylitarisierase	Streptococcus pseudoporcinus	acetyl transferase	WP_007893375	65%		
cps2H		Streptococcus didelphis	GNAT family acetyltransferase	WP_018366072	63%		
cps2L		Streptococcus pseudoporcinus	GNAT family acetyltransferase	WP_007893003	80%		
cps1aG		Streptococcus uberis	NAD-dependent epimerase	WP_046392145	72%		
cps1aP	Epimerase	Streptococcus porcinus	NAD dependent epimerase/dehydratase	WP 003085154	83%		
cps1bO		family protein		WI _003003134	84%		
cps1bF		Streptococcus suis	aminotransferase DegT	WP_029175971	81%		
cps2G	Aminotransferase	Streptococcus suis	aminotransferase	AKE79842	68%		
cps2K		Butyrivibrio proteoclasticus	aminotransferase	WP_026662038	69%		
cps1aO	Hypothetical	Streptococcus equipus	hypothetical protein	WP 033152408	50%		
cps1bN					45%		

were conserved with high sequence identity among all the six strains (> 99%). Each of two genes, cpsQ and cpsR, at the lower conserved region also showed high identity among the strains (> 96%). In the serotypespecific region, genes that encode the initial glycosyltransferase, polysaccharide polymerase (wzy) and flippase (wzx) were present at different locations along with genes encoding enzymes such as glycosyltransferase, acetyltransferase, aminotransferase and modifying enzymes (Fig. 1). As shown in Tables 3 and 4, most of the genes in the conserved region showed the highest identity with those of *Streptococcus uberis*, while the genes in the serotype-specific region did not necessarily show the high identity with them.

Comparison of the six cps loci

The nucleotide sequences of serotype-specific

regions of NUF1003 (subservtype lb), NUF1071 (subserotype Ic) and 2007-1 (NT type, smal-PFGE Cluster I) were almost identical, and those of NUF1032 (serotype II) and NUF1095 (NT type, smal-PFGE Cluster III) was also almost identical. The difference between NUF1003 and NUF1071 was only two singlebase substitutions found in cps1bM and cps1bN. Similarly, the difference between NUF1003 and 2007-1 was three single-base substitutions in cpsC, cps1bG and cps1bM, and the difference between NUF1032 and NUF1095 was two single-base substitutions in cpsC and cps2G (data not shown). From these it is suggested that there are three kinds of cps locus among serotypes and subserotypes in S. parauberis, namely the loci for subserotype Ia, subserotypes Ib/Ic and serotype II (Fig. 1).

Sequence homology of the deduced amino acid

Category	Predicted protein	Identity	Category	Predicted protein	Identity
	Cps1aF – Cps1bG	40%		Cps1aL – Cps1bL	31%
Initial glycosyltransferase	Cps1aF – Cps2F	18%	Polymerase Wzy	Cps1aL – Cps2O	10%
	Cps1bG – Cps2F	23%		Cps1bL – Cps2O	11%
	Cps1aH – Cps1bl	60%		Cps1aN – Cps1bM	72%
	Cps1aH – Cps2I	9%	Flippase Wzx	Cps1aN – Cps2P	37%
	Cps1aH – Cps2J	7%		Cps1bM – Cps2P	40%
	Cps1aH – Cps2M	8%	Hypothetical	Cps1aO – Cps1bN	61%
	Cps1bl – Cps2l	10%	Epimerase	Cps1aP – Cps1bO	93%
	Cps1bl – Cps2J	12%	Aminatronafaraaa	Cps1bF – Cps2G	11%
	Cps1bl – Cps2M	6%	Aminotransierase	Cps1bF – Cps2K	13%
	Cps1aJ – Cps1bJ	49%		Cps1al – Cps1bH	12%
	Cps1aJ – Cps2I	9%		Cps1al – Cps2H	9%
	Cps1aJ – Cps2J	13%		Cps1al – Cps2L	6%
Glycosyltransferase	Cps1aJ – Cps2M	8%		Cps1al – Cps2N	10%
	Cps1bJ – Cps2l	8%	-	Cps1aM – Cps1bH	7%
	Cps1bJ – Cps2J	10%	Acetyltransferase	Cps1aM – Cps2H	7%
	Cps1bJ – Cps2M	9%		Cps1aM – Cps2L	7%
	Cps1aK – Cps1bK	53%		Cps1aM – Cps2N	28%
	Cps1aK – Cps2l	11%	-	Cps1bH – Cps2H	7%
	Cps1aK – Cps2J	7%		Cps1bH – Cps2L	7%
	Cps1aK – Cps2M	5%		Cps1bH – Cps2N	8%
	Cps1bK – Cps2l	5%			
	Cps1bK – Cps2J	7%			
	Cps1bK – Cps2M	10%			

Table 5. Homology of deduced amino acid sequences between the genes in the serotype-specific region of the cps loci

sequences of the genes in the serotype-specific regions is shown in Table 5. In many genes the homology values between subserotype Ia and Ib/Ic were higher than that between subserotype Ia and serotype II or between subserotypes Ib/Ic and serotype II.

PCR scanning of cps loci

Expected sizes of amplification products listed in Table 2 were obtained in 182 *S. parauberis* strains except three strains belonged to subserotype Ic (data not shown), suggesting all the strains possess the same genetic structure of *cps* loci as representative strains of respective serological phenotypes. In the three subserotype Ic strains, one of PCR products was longer than that obtained in NUF1071. By sequencing and analyzing the PCR products, it was revealed that an *ISSdy1*like element (GenBank accession no., AJ250837) was inserted in *cps1bN* (data not shown).

Discussion

Many bacterial pathogens have a number of antigenic variants due to differences in the polysaccharides present at their cell surface. In streptococci, the cellsurface polysaccharides are most likely known as capsular polysaccharides (CPS). The biosynthesis of CPS always needs some essential enzymes with a complex pathway. The CPS of *Streptococcus pneumoniae* has been well studied and are known to be generally synthesized by the Wzy-dependent pathway (Bentley et al., 2006; Yother, 2011). In this study, the genes in the cps loci were deduced to encode the initial glycosyltransferase (Undecaprenyl-phosphate galactose phosphotransferase), Wzy polymerase and Wzx flippase, which were needed for the Wzy-dependent pathway. Capsule biosynthesis may be performed as followings: an initial galactose is linked as a galactose phosphate to a membrane-associated lipid carrier (undecaprenyl phosphate) by the initial glycosyltransferase to form the Und-P-P-Gal, to which glycosyltransferases link further monosaccharides sequentially to generate repeat units. Then, Wzx flippase transports the repeat units to the outer surface of the cytoplasmic membrane, and each repeat unit is polymerized to form the lipid-linked CPS by Wzy polymerase. Finally, mature CPS is translocated to the peptidoglycan by the membrane protein complex (Bentley et al., 2006).

The genes involved in CPS biosynthesis of *S. parauberis* comprised a gene cluster of cassette-like structure, i.e., conserved genes flanked serotype-specific genes, which is also found in other streptococcal species, such as *S. pneumoniae*, *S. agalactiae* and *S. thermophilus* (Wessels, 1997). *IysR* encoding a transcriptional regulator that belongs to the type 2 periplasmic binding fold protein superfamily can control the synthesis of virulence factors and may play the regula-

tory role in the CPS biosynthetic operon. CpsA is similar to LytR of Bacillus subtilis and could be a transcriptional regulator. cpsA-deleted mutants of S. pneumoniae and S. agalactiae have been proved to produce less capsule (Cieslewicz et al., 2001). CpsBCD are considered to be a tyrosine kinase phosphoregulatory system which can affect the polymer length. CpsD with the activity of initial phosphorylation requires intracellular interaction with CpsC, while CpsB can block the initial phosphorylation of CpsD, as a kinase inhibitor (Bender and Yother, 2001). The CpsBCD system can be affected by oxygen levels, and reduced aeration conditions were found to correlate with increases in both CpsD phosphorylation levels and capsule production (Weiser et al., 2001). cpsE identified in Campylobacter jejuni encodes sugar-nucleotide-modifying enzyme involved in the biosynthesis of surface carbohydrates (Creuzenet, 2004). It can affect the synthesis of branched chain. In the serotype-specific region, the genes encode the enzymes to construct the repeat units, including an initial glycosyltransferase, additional glycosyltransferases, Wzx flippase, Wzy polymerase and enzymes to modify the repeat units (Yother, 2004). At the lower conserved region, there are two genes, one of which (cpsQ) encodes a protein similar to WbpA, an enzyme involved in the biosynthesis of unusual di-N-acetyl-d-mannosaminuronic acid-derived sugar nucleotides found in the O antigen of Pseudomonas aeruginosa PAO1 (Miller et al., 2004), while the other one encodes hypothetical protein.

The result of PCR scanning suggests that the cps locus of S. parauberis is generally conserved among different strains of the respective serotypes. The G+C contents of cps loci (31.07%-31.51%) were lower than those of whole-genome (35.48%-35.60%) (Nho et al., 2013) indicated that the genes of cps loci may be imported from other sources. With comparing the structure of the cps locus, the distinct features of the cps locus were observed in serologically different phenotypes except subserotypes Ib and Ic. Between subserotypes Ib and Ic and between nontypeable strains and serotypes lb/ll, there are several single-base substitution, which may lead to the change of amino acid or the appearance of earlier stop codon, and insertion events in the case of subservtype Ic strains. They could affect the biosynthesis and structure of CPS and lead to reflect in the generation of nontypeable phenotype and subserotypes (Wang et al., 2011; Lakkitjaroen et al., 2014). High similarities of genes in the serotypespecific region of subserotypes Ia and Ib/Ic could participate in construction of common CPS structure, which resulted in antigenic cross reactivity between them (Kanai et al., 2015).

In this study we demonstrated the three kinds of serotype-associated *cps* locus in *S. parauberis* and discussed the CPS biosynthesis pathway and the function

of most *cps* genes. In order to better understand the mechanism of diversity arisen among the serological phenotypes of this pathogen, studies on the CPS structure and activity of each gene product will be necessary by biochemical and genetic research such as mutant construction. In this regard, the present works will be an important base for further studies. On the other hand, current works may also contribute to the development of a novel molecular method which can diagnose serotypes rapidly and less expensively.

References

- Bender, M. H. and J. Yother (2001): CpsB is a modulator of capsule-associated tyrosine kinase activity in *Streptococcus pneumoniae*. J. Biol. Chem., 276, 47966– 47974.
- Bentley, S. D., D. M. Aanensen, A. Mavroidi, D. Saunders, E. Rabbinowitsch, M. Collins, K. Donohoe, D. Harris, L. Murphy, M. A. Quail, G. Samuel, I. C. Skovsted, M. S. Kaltoft, B. Barrell, P. R. Reeves, J. Parkhill and B. G. Spratt (2006): Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. *PLoS Genet.*, 2, e31.
- Cieslewicz, M. J., D. L. Kasper, Y. Wang and M. R. Wessels (2001): Functional analysis in type Ia group B *Streptococcus* of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. *J. Biol. Chem.*, **276**, 139–146.
- Creuzenet, C. (2004): Characterization of CJ1293, a new UDP-GlcNAc C6 dehydratase from *Campylobacter jejuni*. *FEBS Lett.*, **559**, 136–140.
- Domeénech, A., J. F. Dernández-Garayzábal, C. Pascual, J. A. Garcia, M. T. Cutuli, M. A. Moreno, M. D. Collins and L. Dominguez (1996): Streptococcosis in cultured turbot, *Scopthalmus maximus* (L,) associated with *Streptococcus parauberis. J. Fish Dis.*, **19**, 33–38.
- Kanai, K., M. Yamada, F. Meng, I. Takahashi, T. Nagano, H. Kawakami, A. Yamashita, S. Matsuoka, Y. Fukuda, Y. Miyoshi, I. Takami, H. Nakano, T. Hirae, K. Shutou and T. Honma (2009): Serological differentiation of *Streptococcus parauberis* strains isolated from cultured Japanese flounder in Japan. *Fish Pathol.*, 44, 33–39 (In Japanese with English abstract).
- Kanai, K., C. Tu, N. Katayama and K. Suga (2015): Existence of subserotypes in *Streptococcus parauberis* serotype I. *Fish Pathol.*, **50**, 75–80.
- Lakkitjaroen, N., D. Takamatsu, M. Okura, M. Sato, M. Osaki and T. Sekizaki (2014): Capsule loss or death: The position of mutations among capsule genes sways the destiny of *Streptococcus suis. FEMS Microbiol. Lett.*, **354**, 46–54.
- Miller, W. L., C. Q. Wenzel, C. Daniels, S. Larocque, J. R. Brisson and J. S. Lam (2004): Biochemical characterization of WbpA, a UDP-N-acetyl-D-glucosamine 6-dehydrogenase involved in O-antigen biosynthesis in *Pseudomonas aeruginosa* PAO1. J. Biol. Chem., 279, 37551–37558.
- Nho, S. W., J. Hikima, S. B. Park, H. B. Jang, I. S. Cha, M. Yasuike, Y. Nakamura, A. Fujiwara, M. Sano, K. Kanai, H. Kondo, I. Hirono, H. Takeyama, T. Aoki and T. S. Jung (2013): Comparative genomic characterization of three *Streptococcus parauberis* strains in fish pathogen, as assessed by wide-genome analyses. *PLoS One*, 8,

e80395.

- Ochman, H., A. S. Gerber and D. L. Hartl (1988): Genetic applications of an inverse polymerase chain reaction. *Genetics*, **120**, 621–623.
- Okura, M., D. Takamatsu, F. Maruyama, T. Nozawa, I. Nakagawa, M. Osaki, T. Sekizaki, M. Gottschalk, Y. Kumagai and S. Hamada (2013): Genetic analysis of capsular polysaccharide synthesis gene clusters from all serotypes of *Streptococcus suis*: potential mechanisms for generation of capsular variation. *Appl. Environ. Microbiol.*, **79**, 2796–2806.
- Patrick, S., G. W. Blakely, S. Houston, J. Moore, V. R. Abratt, M. Bertalan, A. M. Cerdeño-Tárraga, M. A. Quail, N. Corton, C. Corton, A. Bignell, A. Barron, L. Clark, S. D. Bentley and J. Parkhill (2010): Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of *Bacteroides fragilis*. *Microbiology*, **156**, 3255–3269.
- Roberts, I. S. (1996): The biochemistry and genetics of capsular polysaccharide production in bacteria. *Annu. Rev. Microbiol.*, **50**, 285–315.
- Wang, K., W. Fan, L. Cai, B. Huang and C. Lu (2011): Genetic

analysis of the capsular polysaccharide synthesis locus in 15 *Streptococcus suis* serotypes. *FEMS Microbiol. Lett.*, **324**, 117–124.

- Weiser, J. N., D. Bae, H. Epino, S. B. Gordon, M. Kapoor, L. A. Zenewicz and M. Shchepetov (2001): Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of *Streptococcus pneumoniae*. *Infect. Immun.*, **69**, 5430–5439.
- Wessels, M. R. (1997): Biology of streptococcal capsular polysaccharides. Soc. Appl. Bacteriol. Symp., 83, 20– 31.
- Williams, A. M. and M. D. Collins (1990): Molecular taxonomic studies on *Streptococcus uberis* types I and II. Description of *Streptococcus parauberis* sp. nov. *J. Appl. Bacteriol.*, **68**, 485–490.
- Yother, J. (2004): Capsules. In "The pneumococcus" (ed. by E. I. Tuomanen, T. J. Mitchell, D. Morrison and B. G. Spratt). ASM Press, Washington D.C., pp. 30–48.
- Yother, J. (2011): Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu. Rev. Microbiol., 65, 563–581.