SYNTHESIS AND EVALUATION OF TOPOISOMERASE I INHIBITORS POSSESSING THE 5,13-DIHYDRO-6H-BENZO[6,7]INDOLO[3,2-c]-QUINOLIN-6-ONE SCAFFOLD

Tsutomu Fukuda, ${ }^{\text {a }}$ * Yuri Matsuo, ${ }^{a}$ Fuyuki Matsuoka, ${ }^{\text {a }}$ Naoki Yoshioka, ${ }^{\text {a }}$ Gen Onodera, ${ }^{\text {a }}$ Masanari Kimura, ${ }^{\text {a }}$ Fumito Ishibashi, ${ }^{\text {b }}$ and Masatomo Iwao ${ }^{\text {a }}$

${ }^{\text {a }}$ Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan. ${ }^{\text {b }}$ Division of Marine Life Science and Biochemistry, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan. E-mail: t-fukuda@nagasaki-u.ac.jp

Abstract

Novel topoisomerase I inhibitors possessing the 5,13-dihydro6 H -benzo[6,7]indolo[3,2-c]quinolin-6-one (BIQ) scaffold were designed and synthesized. This scaffold was constructed using sequential and regioselective functionalization of the pyrrole core through palladium-catalyzed cross-coupling, conventional electrophilic substitution, directed lithiation, and subsequent diphenylphosphoryl azide (DPPA)-mediated lactam ring construction. The obtained BIQs were evaluated for their topoisomerase I inhibitory activities and their antiproliferative activities in the panel of 39 human cancer cell lines established by the Japanese Foundation for Cancer Research (JFCR39).

INTRODUCTION

Lamellarin D (1) is a marine alkaloid that was isolated from the marine prosobranch mollusc Lamellaria sp. by Faulkner and co-workers in 1985 (Figure 1). ${ }^{1}$ Since then, it has attracted considerable attention due to possessing a unique 14-phenyl-6H-[1]benzopyrano[$\left.4^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo[2,1- a]isoquinoline scaffold, in addition to its potent antitumor activity. ${ }^{2}$ For example, in 1996, Quesada et al. reported that the triacetate of lamellarin D exhibits potent cytotoxicity against a range of cancer cell lines, including multidrug-resistant (MDR) phenotypes. ${ }^{3}$ In addition, in 1997, we achieved the first total synthesis of 1 using an N-ylide-mediated cyclization as the key reaction step. ${ }^{4}$ This synthetic method allowed the
preparation of ten non-natural analogues of $\mathbf{1}$, the cytotoxicities of which were evaluated against the HeLa cell line. ${ }^{5}$ Examination of the structure-activity relationship (SAR) revealed that the hydroxy groups at the C8 and C20 (lamellarin numbering ${ }^{1}$) positions of $\mathbf{1}$ are essential for such potent cytotoxicity, whereas the hydroxy group at the C14 position is less important. Later, Ploypradith and co-workers performed a more precise SAR study using twenty-two naturally occurring and three unnatural lamellarins, where they employed eleven cancer cell lines to confirm our results. ${ }^{6}$

Figure 1. The structure of lamellarin D (1)

In 2003, Bailly and coworkers suggested that DNA topoisomerase I is a major molecular target of $\mathbf{1}$ in cancer cells owing to the strong correlation observed between the cytotoxicity and topoisomerase I inhibition. ${ }^{7}$ They also proposed a theoretical model of a 1 -DNA-topoisomerase I ternary complex, ${ }^{78}$ where 1 intercalates at the site of DNA cleavage and is stabilized with both the $+1(C \cdot G)$ and the $-1(A \cdot T)$ base pairs to form stacking interactions. Hydrogen bonds between 1 and the specific amino acid residues of topoisomerase I further stabilize the ternary complex. More specifically, from their predicted distances, the hydroxy groups at the C8 and C20 positions and the carbonyl oxygen atom appear to hydrogen bond to the Asn722, Glu356, and Arg364 residues, respectively. In contrast, the aryl group at the C 1 position (i.e., the F-ring) is directed toward the major groove cavity, and does not exhibit any direct interaction with the protein, thereby suggesting that the F-ring of $\mathbf{1}$ may not be essential for topoisomerase I inhibition and could be replaced by other groups.

To confirm this speculation, we synthesized a series of F-ring-defected lamellarin D analogues $2(\mathrm{R}=\mathrm{H}$, $\left.\mathrm{Me}, \mathrm{CH}_{2} \mathrm{NMe}_{2}, \mathrm{CHO}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}\right)$ (Figure 2). ${ }^{9}$ Indeed, the antiproliferative activities of $\mathbf{2}$ were found to be as potent as that of $\mathbf{1}^{10}$ in the panel of 39 human cancer cell lines established by the Japanese Foundation for Cancer Research (JFCR39). ${ }^{11}$ Based on these results, we also designed a benzo $[g][1]$ benzopyrano $[4,3-b]$ indol- $6(13 H)$-one (BBPI) scaffold through scaffold-hopping of 2. ${ }^{12}$ This scaffold can be regarded as a regioisomer of the pentacyclic core (ABCDE-ring) of $\mathbf{2}$ with respect to the position of the ring-nitrogen atom (Figure 2). Since the positions of the hydroxy groups in the BBPI scaffold (i.e., at the C 10 and C 3 positions) are similar to those of the hydroxy groups at the C 8 and C 20 positions of $\mathbf{2}$, we expected that the BBPI derivatives could maintain the potent cytotoxicity of $\mathbf{1}$ and $\mathbf{2}$. Indeed,

N13-substituted BBPI derivatives $3\left[\mathrm{R}=\mathrm{Me}\right.$, Et, allyl, propargyl, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{2}\right]$ exhibited potent antiproliferative activities at low nanomolar concentrations in addition to a potent topoisomerase I inhibitory activity in a DNA relaxation assay. ${ }^{13,14}$ In contrast, Ruchirawat and co-workers designed and synthesized azalamellarins, which are artificial analogues of lamellarins, through simple replacement of the lactone moiety with a lactam moiety (Figure 2). ${ }^{15,16}$ The screening of these azalamellarins against four cancer cell lines revealed that azalamellarin D (4) exhibits a potent cytotoxicity comparable to that of 1. ${ }^{15,16}$ Thus, from a series of studies into BBPIs and azalamellarins, we speculated that a 5,13-dihydro- 6 H -benzo[6,7]indolo[3,2-c]quinolin-6-one (BIQ) scaffold (a lactam congener of BBPIs) would also exhibit an antiproliferative activity based on topoisomerase I inhibition (Figure 2). Thus, we herein describe the synthesis and evaluation of BIQ derivatives 5 .

Figure 2. Structures of the various compounds of interest

RESULTS AND DISCUSSION

Initially, we selected BIQ $\mathbf{6}$ as the synthetic target, and the corresponding retrosynthetic analysis is outlined in Scheme 1. Thus, the synthesis of BIQ 6 can be completed by diphenylphosphoryl azide (DPPA) ${ }^{17}$-mediated lactam ring construction involving acyl azide formation from carboxylic acid 7. This can be followed by a subsequent cascade Curtius rearrangement/ 6π-electrocyclization under thermal conditions ${ }^{18}$ and deprotection of the O-isopropyl groups. The carboxylic acid 7 can be produced by the N-methylation of $\mathbf{8}$ and subsequent hydrolysis, where compound $\mathbf{8}$ can be prepared from stannane $\mathbf{9}$ and bromide 10 via a Migita-Kosugi-Stille cross-coupling reaction followed by tert-butoxycarbonyl (Boc) deprotection. In addition, stannane $\mathbf{9}$ can be prepared from tricyclic compound $\mathbf{1 1}$ through a regioselective lithiation-stannylation sequence. Finally, the tricyclic compound 11 can be obtained from the known
N-Boc-2-pyrroleboronic acid $\mathbf{1 2}^{19}$ and bromide $\mathbf{1 3}^{20}$ by a Suzuki-Miyaura cross-coupling reaction and subsequent ring annulation. ${ }^{21}$

6

7

8

1. Migita-Kosugi-Stille cross-coupling 2. Boc deprotection

Scheme 1. Retrosynthetic analysis of BIQ 6

Based on the above retrosynthetic analysis, we initially prepared stannane 9, as outlined in Scheme 2. A Suzuki-Miyaura cross-coupling of $\mathbf{1 2}$ with bromide $\mathbf{1 3}$ under standard conditions [i.e., $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$, THF, water, reflux] afforded $\mathbf{1 4}$ in 94% yield. Tricyclic compound $\mathbf{1 1}$ was then obtained from 14 in two steps by applying the method employed for the construction of polyaromatic hydrocarbons. ${ }^{21}$ Thus, a Wittig reaction of $\mathbf{1 4}$ with (methoxymethyl)triphenylphosphonium chloride in the presence of t-BuOK as a base afforded methyl enol ether $\mathbf{1 5}$ in 93% yield as a $64: 36$ mixture of the E - and Z-isomers. Subsequent treatment of methyl enol ether 15 with a catalytic amount of methanesulfonic acid produced the tricyclic compound $\mathbf{1 1}$ in 92% yield, which was converted to stannane $\mathbf{9}$ in 99% yield by regioselective lithiation followed by treatment with tributyltin chloride.

Scheme 2. Reagents and conditions: (a) 13, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, THF, water, reflux, 18 h (94\%); (b) $\mathrm{MeOCH}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \cdot \mathrm{Cl}^{-}$(1.25 equiv), t-BuOK (1.5 equiv), THF, $0{ }^{\circ} \mathrm{C}$, 3 h ($93 \%, E: Z=64: 36$); (c) $\mathrm{MeSO}_{3} \mathrm{H}$ ($9.5 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 23 h (92%); (d) (1) t-BuLi (1.2 equiv), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, (2) $\mathrm{Bu}_{3} \mathrm{SnCl}$ (1.5 equiv), $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{rt}, 20 \mathrm{~h}(99 \%)$.

The preparation of coupling partner 10 was then examined. As Yamada and co-workers previously reported that aldehydes can be converted to the corresponding methyl esters through a one-step oxidation process (i.e., iodine, $\mathrm{KOH}, \mathrm{MeOH}$), ${ }^{22}$ we applied their conditions to the synthesis of $\mathbf{1 0}$. Thus, benzaldehyde $\mathbf{1 3}$ was treated with iodine and KOH in MeOH to afford the corresponding methyl benzoate 10 in 89% yield (Scheme 3).

Scheme 3. Reagents and conditions: (a) I_{2} (1.4 equiv), KOH (2.3 equiv), $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 21.5 \mathrm{~h}$ (89\%).

With both coupling partners $\mathbf{9}$ and $\mathbf{1 0}$ in hand, a Migita-Kosugi-Stille cross-coupling was attempted (Scheme 4). More specifically, the treatment of stannane $\mathbf{9}$ with 1.5 equiv of bromide 10 in the presence of $10 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in N, N-dimethylacetamide (DMA) at $100^{\circ} \mathrm{C}$ for 13 h gave the Boc-deprotected coupling product $\mathbf{8}$ in 77% yield, along with the lactamized by-product 16 in 20% yield.

Scheme 4. Reagents and conditions: (a) 10 (1.5 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{DMA}, 100{ }^{\circ} \mathrm{C}, 13 \mathrm{~h}$ (8: 77\%, 16: 20\%).

Further conversion of $\mathbf{8}$ to give BIQ $\mathbf{6}$ was then examined (Scheme 5) through the initial treatment of $\mathbf{8}$ with iodomethane in the presence of t-BuOK as a base in DMF to give N-methylated $\mathbf{1 7}$ in 89% yield. Subsequent alkaline hydrolysis of $\mathbf{1 7}$ afforded carboxylic acid 7 in 95% yield, and treatment of 7 with 1.0 equiv of DPPA followed by heating gave 18, possessing the BIQ scaffold, in good yield (86\%). Deprotection of the O-isopropyl groups of $\mathbf{1 8}$ using excess AlCl_{3} produced the desired BIQ $\mathbf{6}$ in 95% yield. ${ }^{23}$

Having established a method for the construction of the BIQ scaffold, we then attempted the synthesis of N5-substituted BIQ analogues 20a-20c (Scheme 6). Thus, treatment of $\mathbf{1 8}$ with iodomethane or allyl bromide in the presence of t-BuOK in DMF gave methylated 19a and allylated 19b in yields of 89 and 66%, respectively. In the case of 19 c , this compound was obtained by the reaction of 18 with

2-(dimethylamino)ethyl chloride hydrochloride and sodium hydride in DMF. Subsequent deprotection of the O-isopropyl groups of $\mathbf{1 9 a} \mathbf{- 1 9 c}$ using AlCl_{3} gave the corresponding BIQ analogues 20a-20c in moderate to good yields.

Scheme 5. Reagents and conditions: (a) t-BuOK (2.0 equiv), MeI (5.0 equiv), DMF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 3 \mathrm{~h}$ (89%); (b) 40% aqueous KOH , EtOH , reflux, 0.5 h , (95%); (c) DPPA (1.0 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (0.86 equiv), $\mathrm{Ph}_{2} \mathrm{O}, 35^{\circ} \mathrm{C}, 3 \mathrm{~h}$ then $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then $220^{\circ} \mathrm{C}, 1 \mathrm{~h}(86 \%)$; (d) AlCl_{3} (5.4 equiv), CHCl_{3}, rt, $48 \mathrm{~h}(95 \%)$.

Scheme 6. Reagents and conditions: (a) t-BuOK (2.0 equiv), MeI (5.1 equiv), DMF, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then rt, 18 h (19a: 89%); (b) t-BuOK (2.0 equiv), allyl bromide (5.1 equiv), DMF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 24 \mathrm{~h}(\mathbf{1 9 b}$: 66%); (c) NaH (6.0 equiv), $\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl} \cdot \mathrm{HCl}\left(1.7\right.$ equiv), DMF, $0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$ then $\mathrm{rt}, 4 \mathrm{~h}$ then $65^{\circ} \mathrm{C}$, 14 h (19c: 68\%); (d) AlCl_{3} (5.4 equiv), CHCl_{3}, rt, 48 h (20a: 65%); (e) AlCl_{3} (5.4 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 24 \mathrm{~h}$ (20b: 77\%); (f) (1) AlCl_{3} (5.4 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 70 h , (2) TFA, rt, 0.5 h (20c: 93\%).

Subsequently, the synthesis of BIQ 25 possessing a 3-(dimethylamino)propyl group at the N13 position was attempted (Scheme 7). Initially, the 3-chloropropylation of $\mathbf{8}$ was examined through the one-pot reaction of 8 with 2.0 equiv of t - BuOK and 5.0 equiv of 1 -chloro- 3 -iodopropane, which gave the 3-chloropropylated 21 in 43% yield. The yield of 21 improved to 81% by the two-step addition of t-BuOK (1.0 equiv) and 1 -chloro-3-iodopropane (2.4 equiv). Subsequent alkaline hydrolysis of 21 afforded the carboxylic acid $\mathbf{2 2}$ in 91% yield, and the DPPA-mediated lactam ring construction of $\mathbf{2 2}$ gave the BIQ scaffold $\mathbf{2 3}$ in $\mathbf{7 6 \%}$ yield. Treatment of the chloride $\mathbf{2 3}$ with 10 equiv of dimethylamine in the presence of potassium iodide in dimethyl sulfoxide (DMSO) at $80^{\circ} \mathrm{C}$ for 20 h afforded the amine $\mathbf{2 4}$, and a final deprotection of the O-isopropyl groups of $\mathbf{2 4}$ using excess AlCl_{3} produced the desired BIQ $\mathbf{2 5}$ in 94\% yield.

Scheme 7. Reagents and conditions: (a) (1) t-BuOK (1.0 equiv), $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{I}\left(2.4\right.$ equiv), DMF, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 5 \mathrm{~h}$, (2) t-BuOK (1.0 equiv), $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{I}\left(2.4\right.$ equiv), $0^{\circ} \mathrm{C}$ then $\mathrm{rt}, 18 \mathrm{~h},(81 \%)$; (b) 40% aqueous $\mathrm{KOH}, \mathrm{EtOH}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h},(91 \%)$; (c) DPPA (1.0 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (0.86 equiv), $\mathrm{Ph}_{2} \mathrm{O}, 35^{\circ} \mathrm{C}, 3 \mathrm{~h}$ then $100^{\circ} \mathrm{C}$, 2 h then $220^{\circ} \mathrm{C}, 1 \mathrm{~h}(76 \%)$; (d) $\mathrm{Me}_{2} \mathrm{NH}$ (10 equiv), KI (5.0 equiv), DMSO, $80^{\circ} \mathrm{C}, 20 \mathrm{~h}$ (51\%); (e) (1) AlCl_{3} (6.4 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 72 \mathrm{~h}$, (2) TFA (94\%).

Following the preparation of a range of BIQs (6, 20a, 20b, 20c, and 25), we then evaluated the topoisomerase I inhibitory activities of these compounds using a DNA relaxation assay ${ }^{24,25}$ with supercoiled pBR322 plasmid DNA and topoisomerase I isolated from calf thymus (Figure 3). The experiments were performed at a concentration of $2 \mu \mathrm{M}$ for all BIQs. Camptothecin (CPT), a typical topoisomerase I inhibitor, was used as the reference compound at the same concentration. In the absence of an inhibitor, the supercoiled DNA changed to relaxed DNA, which appeared as multiple bands corresponding to the topoisomers of the different linking numbers. Since similar multiple bands were observed in the presence of CPT and BIQ 20b, it appeared that their topoisomerase I inhibitory activities were weak at the concentration examined herein. In contrast, treatment with BIQs 6, 20a, 20c, and 25 resulted in the accumulation of nicked DNA, thereby confirming their inhibitory activity at $2 \mu \mathrm{M}$. As the topoisomerase I inhibitory activity of $\mathbf{1}$ was reported to be as potent as that of $\mathrm{CPT},{ }^{25}$ it was concluded that the topoisomerase I inhibitory activities of BIQs $\mathbf{6}, \mathbf{2 0 a}, \mathbf{2 0}$, and $\mathbf{2 5}$ are more potent than those of CPT and 1.

Figure 3. DNA relaxation assay of BIQs 6, 20a, 20b, 20c, and 25

We then moved on to evaluate the antiproliferative activities of BIQs 6, 20a, and 20c against the JFCR39 panel. ${ }^{11}$ Thus, the 50% growth-inhibitory concentration $\left(\mathrm{GI}_{50}\right)$ values of the selected nine cell lines and
the mean-graph midpoints (MG-MID) of the average GI_{50} values across the entire JFCR39 panel are shown in Table 1 (a full record of the cytotoxicity data can be found in the Supporting Information). For comparison, lamellarin D (1) was also included. Among the three BIQs examined, BIQ 20a, which possesses methyl groups at the N5 and N13 positions, showed strong antiproliferative activity at a nanomolar concentration (MG-MID $=74.1 \mathrm{nM}$), which was comparable to that of lamellarin $\mathrm{D}(\mathbf{1})$. Compared to BIQ 20a, the activities of the N5-unsubstituted 6 and N5-2-(dimethylamino)ethylated 20c were significantly lower (MG-MID $=501$ and 1318 nM). This result can likely be attributed to factors in the living cells, such as the cell membrane permeability, since BIQs 6 and 20c showed potent topoisomerase I inhibition at $2 \mu \mathrm{M}$, at which concentrations lamellarin D (1) and CPT were essentially inactive. The COMPARE analysis ${ }^{11}$ of the cytotoxicity profiles of the different BIQs suggested that the major cellular target of these compounds was topoisomerase I, since the profiles of these compounds showed a good correlation to those of known topoisomerase I inhibitors such as $\mathrm{SN}-38^{26}$ and TAS-103 ${ }^{27}$ ($\mathrm{r}=0.718-0.85$).

Table 1. In vitro antiproliferative activities of BIQs 6, 20a, and 20c against selected human cancer cell lines

Human tumor cell lines		Antiproliferative activity (GI_{50} in nM$)^{\text {a }}$			
		$6^{\text {e }}$	20a ${ }^{\text {e }}$	$20{ }^{\text {t }}$	lamellarin D (1) ${ }^{\text {e }}$
Breast	MCF-7	<10	12	650	<10
CNS	U251	<10	<10	710	<10
Colon	HCT-116	42	17	1100	<10
Lung	NCI-H522	15	<10	410	<10
Melanoma	LOX-IMVI	20	<10	370	<10
Ovarian	OVCAR-8	150	34	640	12
Renal	ACHN	53	10	1000	<10
Stomach	MKN45	190	69	370	110
Prostate	DU-145	110	27	1500	<10
MG-MID ${ }^{\text {b }}$		501	74.1	1318	41.7
Delta ${ }^{\text {c }}$		1.7	0.87	0.55	0.62
Range ${ }^{\text {d }}$		4.00	3.58	1.44	2.30

${ }^{\text {a }}$ Concentration for 50% inhibition of cell growth relative to the control. Cell growth was determined according to the sulforhodamine B assay.
${ }^{\mathrm{b}}$ Mean GI_{50} value in all cell lines tested.
${ }^{\mathrm{c}}$ Difference in $\log \mathrm{GI}_{50}$ values between the most sensitive cells and the MG-MID value.
${ }^{\mathrm{d}}$ Difference in $\log \mathrm{GI}_{50}$ values between the most and least sensitive cells.
${ }^{\mathrm{e}}$ The GI_{50} value was obtained from the dose-response curve in the test range between 10^{-4} and $-10^{-8} \mathrm{M}$.
${ }^{\mathrm{f}}$ The GI_{50} value was obtained from the dose-response curve in the test range between 10^{-5} and $-10^{-9} \mathrm{M}$.

In conclusion, we designed and synthesized a series of 5,13-dihydro-6H-benzo[6,7]indolo[3,2-c]quinolin-6-one (BIQ) scaffolds as novel topoisomerase I inhibitors. The synthesis of the BIQs was achieved by sequential and regioselective functionalization of the pyrrole core, which involved palladium-catalyzed cross-coupling, conventional electrophilic substitution, directed lithiation, and subsequent
diphenylphosphoryl azide (DPPA)-mediated lactam ring construction as the key reactions. The obtained BIQs exhibited similar or more potent topoisomerase I inhibitory activities compared to camptothecin and the parent compound lamellarin D (1). In addition, BIQ 20a exhibited a good activity in the low nanomolar GI_{50} range, which was comparable to that of lamellarin D (1). Further modifications to improve the antiproliferative activities of the BIQs against cancer cell lines are currently underway in our laboratory.

EXPERIMENTAL

Melting points were determined with a Yanagimoto micro melting point apparatus and are reported uncorrected. IR spectra were obtained with a Thermo Nicolet Nexus 670 NT FT-IR instrument and are reported in terms of absorption frequency $\left(\mathrm{cm}^{-1}\right)$. NMR spectra were recorded on a JEOL JNM-AL400 instrument (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) or a Varian NMR System 500PS SN instrument (500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are expressed in parts per million (ppm) relative to the following internal standards: CDCl_{3} (tetramethylsilane, $\delta 0.0 \mathrm{ppm}$); DMSO- d_{6} (DMSO , $\delta 2.50 \mathrm{ppm}$). Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, $\mathrm{sep}=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br} \mathrm{s}=$ broad singlet), coupling constant (Hz), and integration. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR are expressed in ppm relative to the following internal standards: CDCl_{3} (tetramethylsilane, $\delta 0.0 \mathrm{ppm}$); DMSO- d_{6} (DMSO- $d_{6}, \delta 39.52 \mathrm{ppm}$). High-resolution mass spectra were recorded on a JEOL JMS-T100TD (direct analysis by real-time mass spectrometry, DARTMS). Column chromatography was conducted using silica gel 60N, 63-210 $\mu \mathrm{m}$ (Kanto Chemical Co., Inc.), Chromatorex NH-DM1020 (Fuji Silysia Chemical Ltd.), or aluminium oxide 90 (Merck KGaA). Flash chromatography was conducted using silica gel 60 N , $40-50 \mu \mathrm{~m}$ (Kanto Chemical Co., Inc.).
[1-(tert-Butoxycarbonyl)-1H-pyrrol-2-yl]boronic acid (12). Under an argon atmosphere, to a solution of diisopropylamine ($18.2 \mathrm{~mL}, 130 \mathrm{mmol}$) in THF (450 mL), was added dropwise a hexane solution of $\mathrm{BuLi}(1.61 \mathrm{M}, 74.8 \mathrm{~mL}, 120 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min , gradually warmed up to $0^{\circ} \mathrm{C}$, and kept at the same temperature for 10 min . The whole was again cooled to $-78^{\circ} \mathrm{C}$ and a solution of N-Boc-pyrrole ($16.7 \mathrm{~g}, 100 \mathrm{mmol}$) in THF (30 mL) was added dropwise. After 1 h at $-78^{\circ} \mathrm{C}$, trimethyl borate ($16.7 \mathrm{~mL}, 150 \mathrm{mmol}$) was added dropwise. After 1 h , the mixture was gradually warmed up to rt and stirred for 15 h . The reaction was then quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the THF was removed in vacuo. The pH of the residual liquid was made 3 with AcOH and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residual solid was triturated with hexane and filtered to give $\mathbf{1 2}$ as pale brown granules
($15.6 \mathrm{~g}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.62(\mathrm{~s}, 9 \mathrm{H}), 6.26(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=1.6$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (br s, 2H), 7.45 (dd, $J=1.6$ and $3.2 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.0,85.6$, $112.0,127.1,128.7,152.2$. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{19}$
2-Bromo-5-isopropoxy-4-methoxybenzaldehyde (13). Under an argon atmosphere, a solution of NBS $(35.6 \mathrm{~g}, 199 \mathrm{mmol})$ in DMF $(100 \mathrm{~mL})$ was added dropwise to a solution of 3-isopropoxy-4-methoxybenzaldehyde ($19.4 \mathrm{~g}, 99.9 \mathrm{mmol}$) in DMF (50 mL) at rt . After stirring for 19.5 h , the mixture was quenched with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and then diluted with water. The products were extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The crude product was purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane to give $\mathbf{1 3}$ as pale brown needles $(17.0 \mathrm{~g}$, 62%). The mother liquor was evaporated and the residue was purified by column chromatography over silica gel 60 N (hexane- $\mathrm{EtOAc}=10: 1$) to give an additional 13 as pale brown solid ($3.36 \mathrm{~g}, 12 \%$). Mp $102.5-103{ }^{\circ} \mathrm{C}$. IR (KBr): 1681, 1588, 1508, 1269, 1217, 1158, $1021 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.38(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.63(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.8,56.5,71.5,113.6,115.9,120.1,126.5,147.2,155.7,190.9$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3}: \mathrm{C}, 48.37 ; \mathrm{H}, 4.80$. Found: C, $48.23 ; \mathrm{H}, 4.72$. These physical and spectroscopic data are in good agreement with those previously reported. ${ }^{20}$
tert-Butyl 2-(2-formyl-4-isopropoxy-5-methoxyphenyl)-1H-pyrrole-1-carboxylate (14). Under an argon atmosphere, a mixture of $\mathbf{1 3}(5.49 \mathrm{~g}, 20.1 \mathrm{mmol}), 12(5.06 \mathrm{~g}, 24.0 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.42 \mathrm{~g}$, 2.10 mmol), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(12.9 \mathrm{~g}, 126 \mathrm{mmol})$, THF (420 mL), and degassed water (38 mL) was refluxed for 18 h . After cooling to rt , the solvent was removed in vacuo and the residue was diluted with water and extracted $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-EtOAc $=10: 1$) to give 14 as a reddish viscous oil ($6.78 \mathrm{~g}, 94 \%$). IR (KBr): 1743, 1683, 1511, 1332, 1155, $1124 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ (dd, $J=1.8$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.29(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=1.8$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (s, 1H), $9.74(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,27.6,56.2,71.2,84.0,110.6,111.2,113.9$, 116.9, 122.6, 128.7, 129.3, 132.8, 147.4, 148.9, 154.0, 190.7. HRFABMS (m / z) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5}$ $\left(\mathrm{M}^{+}\right): 359.1733$. Found: 359.1738.
tert-Butyl 2-[2-(2-methoxyethenyl)-4-isopropoxy-5-methoxyphenyl]-1H-pyrrole-1-carboxylate (15). Under an argon atmosphere, to a mixture of (methoxymethyl)triphenylphosphonium chloride (2.68 g , 7.82 mmol) in THF (39 mL) cooled to $0{ }^{\circ} \mathrm{C}$ was added dropwise a suspension of t - $\mathrm{BuOK}(1.05 \mathrm{~g}$, $9.36 \mathrm{mmol})$ in THF $(9.4 \mathrm{ml})$. After stirring for 10 min at $0^{\circ} \mathrm{C}$, a solution of $\mathbf{1 4}(2.31 \mathrm{~g}, 6.26 \mathrm{mmol})$ in THF (27 mL) was added dropwise. After stirring for 3 h at $0^{\circ} \mathrm{C}$, the reaction was quenched by adding
water (100 mL). The THF was removed in vacuo and the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane- $\mathrm{EtOAc}=10: 1$) to give $\mathbf{1 5}$ as an E / Z mixture $(E: Z=$ 64:36, based on NMR) as a reddish viscous oil ($2.26 \mathrm{~g}, 93 \%$). IR (KBr): 1736, 1509, 1336, 1158, $1125 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.22(\mathrm{~s}, 3.28 \mathrm{H}), 1.26(\mathrm{~s}, 5.72 \mathrm{H}), 1.38(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3.82 \mathrm{H})$, $1.40(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2.18 \mathrm{H}), 3.50(\mathrm{~s}, 1.91 \mathrm{H}), 3.71(\mathrm{~s}, 1.09 \mathrm{H}), 3.82(\mathrm{~s}, 1.91 \mathrm{H}), 3.82(\mathrm{~s}, 1.09 \mathrm{H}), 4.50-4.61$ $(\mathrm{m}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.364 \mathrm{H}), 5.47(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 0.636 \mathrm{H}), 5.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.364 \mathrm{H}), 6.11$ (dd, $J=1.8$ and $3.4 \mathrm{~Hz}, 0.364 \mathrm{H}$), $6.12(\mathrm{dd}, J=1.9$ and $3.3 \mathrm{~Hz}, 0.636 \mathrm{H}), 6.24(\mathrm{t}, J=3.4 \mathrm{~Hz}, 0.364 \mathrm{H}), 6.24$ $(\mathrm{t}, J=3.3 \mathrm{~Hz}, 0.636 \mathrm{H}), 6.72(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 0.636 \mathrm{H}), 6.74(\mathrm{~s}, 0.364 \mathrm{H}), 6.76(\mathrm{~s}, 0.636 \mathrm{H}), 6.87(\mathrm{~s}, 0.636 \mathrm{H})$, 7.37 (dd, $J=1.9$ and $3.3 \mathrm{~Hz}, 0.636 \mathrm{H}$), 7.38 (dd, $J=1.8$ and $3.4 \mathrm{~Hz}, 0.364 \mathrm{H}$), 7.70 ($\mathrm{s}, 0.364 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.2,27.3,27.5,56.0,56.1,56.3,60.4,71.4,71.7,83.1,83.1,103.3,103.4,110.3$, $110.4,112.1,114.0,114.2,114.3,114.6,116.1,121.3,121.4,125.8,128.8,129.0,132.9,133.1,146.4$, 146.5, 147.0, 147.7, 148.1, 148.3, 149.4, 149.6. HRFABMS (m / z) Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right): 387.2046$. Found: 387.2053.
tert-Butyl 7-isopropoxy-8-methoxy-1H-benzo $[g]$ indole-1-carboxylate (11). Under an argon atmosphere, a solution of $\mathbf{1 5}(1.49 \mathrm{~g}, 3.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and methanesulfonic acid ($0.025 \mathrm{~mL}, 0.365 \mathrm{mmol}$) was added. After stirring for 23 h at $0^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($103.7 \mathrm{mg}, 0.948 \mathrm{mmol}$) and $\mathrm{MgSO}_{4}(101.8 \mathrm{mg}, 0.846 \mathrm{mmol})$ were added as solids and the mixture was stirred for a while and filtered. The filtrate was concentrated and the residue was purified by column chromatography over silica gel 60 N (hexane-EtOAc $=10: 1$) to give $\mathbf{1 1}$ as a white solid ($1.26 \mathrm{~g}, 92 \%$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave colorless needles. Mp 102.5-103 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1740, 1491, $1389,1308,1250,1165,1112 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.45(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H})$, $4.02(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.0,28.1$, $55.8,70.9,83.6,105.8,108.0,111.6,118.0,118.8,123.8,126.9,127.8,128.2,130.5,146.0,149.2,150.5$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, 70.96; H, 7.09; N, 3.94. Found: C, 71.06; H, 7.26; N, 3.76.
tert-Butyl 7-isopropoxy-8-methoxy-2-(tributylstannyl)-1H-benzo[g]indole-1-carboxylate (9). Under an argon atmosphere, a pentane solution of $t-\operatorname{BuLi}(1.60 \mathrm{M}, 4.40 \mathrm{~mL}, 7.04 \mathrm{mmol})$ was added dropwise to a solution of $11(2.08 \mathrm{~g}, 5.85 \mathrm{mmol})$ in THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}$, tributyltin chloride ($2.38 \mathrm{~mL}, 8.77 \mathrm{mmol}$) was added. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the mixture was allowed to warm to rt and stirred for 20 h . The reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the THF was removed in vacuo. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The crude product was purified by column chromatography over aluminium oxide 90 (hexane- $\mathrm{EtOAc}=10: 1$) to give $\mathbf{9}$ as a colorless powder (3.76 g ,
99%). Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane gave a colorless powder. Mp 98.0-99.5 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): 1712$, $1495,1318,1146,1109 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}), 1.09-1.15(\mathrm{~m}, 6 \mathrm{H})$, $1.28-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{sep}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (s, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.5,13.7,22.0,27.4,28.2,29.2,56.8,70.9,84.3,106.8,111.6$, 117.7, 119.2, 119.6, 123.3, 127.9, 129.3, 133.3, 144.9, 146.1, 149.0, 153.0. HRFABMS (m / z) Calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{NO}_{4} \mathrm{Sn}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 646.2918$. Found: 646.2918.
Methyl 2-bromo-5-isopropoxy-4-methoxybenzoate (10). Under an argon atmosphere, to a solution of $13(2.74 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{KOH}(1.26 \mathrm{~g}, 22.5 \mathrm{mmol})$ and iodine (3.43 g , 13.5 mmol) at $0^{\circ} \mathrm{C}$. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was allowed to warm to rt . After stirring for 21.5 h at rt , the reaction was quenched by adding aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the MeOH was removed in vacuo. The products were extracted with CHCl_{3} and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over Chromatorex NH-DM1020 (hexane-EtOAc $=10: 1$) to give 10 as a colorless solid ($2.71 \mathrm{~g}, 89 \%$). Recrystallization from $\mathrm{Et}_{2} \mathrm{O}-$ hexane gave colorless granules. Mp $77.5-78.5^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): 1724,1510,1259,1205,1182$, $1110 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$), $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{sep}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,52.2,56.3,71.9,114.2$, 117.5, 118.2, 122.8, 146.0, 153.5, 165.9. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{4}$: C, 47.54; H, 4.99. Found: C, 47.25; H, 4.69.

Migita-Kosugi-Stille cross-coupling of 9 and 10. Under an argon atmosphere, a solution of 9 (649 mg , $1.01 \mathrm{mmol}), 10(460 \mathrm{mg}, 1.52 \mathrm{mmol})$, and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(118 \mathrm{mg}, 0.102 \mathrm{mmol})$ in DMA $(15 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 13 h . After cooling to rt , the reaction was quenched by adding water. The products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (hexane-EtOAc $=$ $5: 1$ to $1: 1$) to give $\mathbf{8}$ as a pale yellow solid ($369 \mathrm{mg}, 77 \%$) and $\mathbf{1 6}$ as a yellwo solid ($88.7 \mathrm{mg}, 20 \%$).
Methyl 5-isopropoxy-2-\{7-isopropoxy-8-methoxy-1H-benzo[g]indol-2-yl\}-4-methoxybenzoate (8). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave pale yellow granules. Mp $169.5-170.5^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): 3355$, $1673,1501,1247,1216,1116 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.46(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 4.53(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.0,22.1,52.7,56.0,56.1$, $71.3,71.7,100.6,104.0,112.8,113.9,117.0,117.5,118.4,119.6,120.8,123.5,125.7,128.3,131.1,134.9$, 145.9, 145.9, 150.3, 153.0, 169.7. HRDARTMS (m / z) Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 478.2230$. Found: 478.2251 .

3,10-Diisopropoxy-2,9-dimethoxy-12H-benzo $[g]$ isoindolo $[2,1-a]$ indol-12-one (16). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave orange granules. Mp $151.5-153.0^{\circ} \mathrm{C}$. IR (KBr): $1730,1489,1308,1228$, $1210 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.47(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $4.13(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $7.22(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 22.0,22.0,56.1,56.3,70.9,71.7,103.4,103.7,105.9,110.6,111.0,118.0,118.4,123.1,125.0$, 128.6, 129.5, 130.1, 131.5, 138.5, 147.0, 147.8, 150.1, 155.5, 163.4. HRDARTMS (m / z) Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 446.1968$. Found: 446.1994.

Methyl 5-isopropoxy-2-\{7-isopropoxy-8-methoxy-1-methyl-1H-benzo $[g]$ indol-2-yl\}-4-methoxybenzoate (17). Under an argon atmosphere, a THF solution of t-BuOK ($1.0 \mathrm{M}, 1.68 \mathrm{~mL}, 1.68 \mathrm{mmol}$) was added to a solution of $\mathbf{8}(0.404 \mathrm{~g}, 0.845 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h at $0^{\circ} \mathrm{C}$, iodomethane ($265 \mu \mathrm{~L}, 4.25 \mathrm{mmol}$) was added. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was allowed to warm to rt and stirred for 3 h at rt . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and 28% aqueous ammonia. The products were extracted with EtOAc and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The crude product was purified by column chromatography over silica gel 60 N (hexane-EtOAc $=3: 1$) to give 17 as colorless solid ($0.368 \mathrm{~g}, 89 \%$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave pale yellow granules. Mp $184-185.5^{\circ} \mathrm{C}$. IR (KBr): 1691, 1496, 1267, 1213, $1115 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.46(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$), 1.46 (d, $J=6.1 \mathrm{~Hz}$, $6 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.71(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{sep}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}$, $1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.1,22.1,35.0,52.1,56.1,56.2,71.1,71.6,102.3$, 102.4, 113.1, 116.0, 116.4, 118.4, 118.9, 119.8, 123.6, 123.9, 127.0, 127.8, 130.5, 139.1, 145.1, 147.0, 149.5, 152.6, 167.0. HRDARTMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 492.2386$. Found: 492.2393.

5-Isopropoxy-2-\{7-isopropoxy-8-methoxy-1-methyl-1 H-benzo $[g]$ indol-2-yl\}-4-methoxybenzoic acid

 (7). Under an argon atmosphere, a suspension of $\mathbf{1 7}(0.253 \mathrm{~g}, 0.515 \mathrm{mmol})$ in a degassed mixture of 40% aqueous $\mathrm{KOH}(24 \mathrm{~mL})$ and $\mathrm{EtOH}(24 \mathrm{~mL})$ was refluxed for 0.5 h . The solution was cooled to rt and concentrated. The pH of the solution was adjusted to pH 1 with concd HCl , and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}=10: 1\right)$ to give 7 as pale yellow solid ($0.234 \mathrm{~g}, 95 \%$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp $222-223{ }^{\circ} \mathrm{C}$. IR (KBr): $3449,1681,1492,1356,1267,1217,1115 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.38 (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$), 1.46 (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$), 3.87 (s, 3H), 3.93 (s, 3H), 3.98 (s, 3H), 4.64 ($\mathrm{sep}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (s, 1H), $6.85(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.9,22.1,35.0,56.1$,$56.2,71.1,71.4,102.4,102.5,113.0,116.1,116.7,118.3,118.9,119.8,123.8,125.3,126.9,128.2,129.0$, 130.6, 138.9, 145.2, 147.1, 149.6, 153.1. HRDARTMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 478.2230$. Found: 478.2220 .

3,10-Diisopropoxy-2,11-dimethoxy-13-methyl-5,13-dihydro-6H-benzo[6,7]indolo[3,2-c]quinolin-6-

 one (18). Under an argon atmosphere, a mixture of $7(103 \mathrm{mg}, 0.216 \mathrm{mmol})$, diphenylphosphoryl azide ($48.0 \mu \mathrm{~L}, 0.223 \mathrm{mmol}$), triethylamine ($26.0 \mu \mathrm{~L}, 0.187 \mathrm{mmol}$), and diphenyl ether (5.0 mL) was stirred in a sealed tube at $35^{\circ} \mathrm{C}$. After stirring for 3 h at $35^{\circ} \mathrm{C}$, the mixture was heated to $100^{\circ} \mathrm{C}$. After stirring for 2 h at $100^{\circ} \mathrm{C}$, the mixture was heated to $220^{\circ} \mathrm{C}$. After stirring for 1 h at $220^{\circ} \mathrm{C}$, the mixture was cooled to rt. The volatiles were removed by bulb-to-bulb distillation. The residue was purified by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=1: 1\right)$ to give $\mathbf{1 8}$ as pale yellow solid $(88.4 \mathrm{mg}$, 86%). $\mathrm{Mp}>300^{\circ} \mathrm{C}$. IR (KBr): $1649,1498,1263,1213,1112 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ $1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 12 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 3 \mathrm{H}), 4.77(\mathrm{sep}, J$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 11.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 21.8,21.9,38.2,55.3,55.8,70.0,70.5$, $101.9,102.3,105.1,105.2,107.1,111.8,116.6,117.7,120.2,121.6,127.4,133.4,134.5,141.0,144.9$, 145.6, 148.1, 149.3, 159.3. HRFABMS (m / z) Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 475.2233. Found: 475.2234.
3,10-Dihydroxy-2,11-dimethoxy-13-methyl-5,13-dihydro-6H-benzo[6,7]indolo[3,2-c]quinolin-6-one

(6). Under an argon atmosphere, a nitrobenzene solution of $\mathrm{AlCl}_{3}(1.0 \mathrm{M}, 380 \mu \mathrm{~L}, 0.380 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{1 8}(33.3 \mathrm{mg}, 70.2 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(6.0 \mathrm{~mL})$ at rt. After stirring for 48 h at rt, a solution of $\mathrm{NaHCO}_{3}(97.4 \mathrm{mg}, 1.16 \mathrm{mmol})$ and Rochelle salt ($325 \mathrm{mg}, 1.15 \mathrm{mmol}$) in water (2.3 mL) was added. The mixture was stirred for an additional 1 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added water and the precipitate was collected by filtration, washed with water, and dried under reduced pressure to give $\mathbf{6}$ as a pale brown powder ($25.9 \mathrm{mg}, 95 \%$). $\mathrm{Mp}>300^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 3425, 1649, 1611, 1432, $1270,1229 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 3 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, $7.35(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.49(\mathrm{~s}, 1 \mathrm{H})$, $9.84(\mathrm{~s}, 1 \mathrm{H}), 11.28(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 38.3,55.5,56.0,102.2,102.7,104.4$, 105.3, 106.7, 112.1, 116.1, 117.7, 119.7, 121.0, 127.8, 133.7, 134.6, 141.2, 143.6, 145.5, 148.1, 148.3, 159.5. HRFABMS (m / z) Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 391.1294$. Found: 391.1292.

3,10-Diisopropoxy-2,11-dimethoxy-5,13-dimethyl-5,13-dihydro- $\mathbf{H} \boldsymbol{H}$-benzo[6,7]indolo[3,2-c]quinolin-6-one (19a). Under an argon atmosphere, a THF solution of t-BuOK ($1.0 \mathrm{M}, 240 \mu \mathrm{~L}, 0.240 \mathrm{mmol}$) was added to a solution of $\mathbf{1 8}(57.1 \mathrm{mg}, 0.120 \mathrm{mmol})$ in DMF $(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h at $0^{\circ} \mathrm{C}$, iodomethane ($38.0 \mu \mathrm{~L}, 0.610 \mathrm{mmol}$) was added. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was allowed to
warm to rt and stirred for 18 h at rt . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and 28% aqueous ammonia. The products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The crude product was purified by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=5: 1\right)$ to give 19 a as pale yellow solid $(52.3 \mathrm{mg}$, 89%). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. IR (KBr): 1639, 1269, 1231, $1093 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.45(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 12 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}$, 6 H), 4.60 ($\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.61(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.1,22.2,28.7$, $37.6,55.5,56.2,70.8,72.0,101.6,102.9,105.3,106.9,106.9,111.9,116.3,118.1,120.4,121.5,127.7$, $133.8,134.1,138.8,144.9,145.5,147.6,149.0,159.3$. HRDARTMS (m / z) Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 489.2390$. Found: 489.2402.

5-Allyl-3,10-diisopropoxy-2,11-dimethoxy-13-methyl-5,13-dihydro-6H-benzo[6,7]indolo[3,2-c]-

quinolin-6-one (19b). According to the procedure described for the preparation of $\mathbf{1 9 a}, 18(53.1 \mathrm{mg}$, 0.112 mmol) and allyl bromide ($50.0 \mu \mathrm{~L}, 0.578 \mathrm{mmol}$) were reacted. After purification by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}=20: 1\right), 19 \mathrm{~b}$ was obtained as a pale yellow solid ($38.0 \mathrm{mg}, 66 \%$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. IR (KBr): 1637, 1261, $1234,1167,1114 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.46(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.48(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H})$, $4.01(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{~s}, 3 \mathrm{H}), 4.63(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (br s, $2 \mathrm{H}), 5.13(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-6.08(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 22.0,38.5,44.4,56.0,56.6,71.0,71.7,102.2,103.6,106.1,107.4,107.7,112.2,116.6,116.7$, $118.8,121.2,122.1,128.3,133.4,133.9,135.3,140.4,145.2,146.1,148.2,149.5,159.5$. HRDARTMS (m / z) Calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right): 514.2468$. Found: 514.2465.

5-[2-(Dimethylamino)ethyl]-3,10-diisopropoxy-2,11-dimethoxy-13-methyl-5,13-dihydro-6H-benzo-

 [6,7]indolo[3,2-c]quinolin-6-one (19c). Under an argon atmosphere, to a suspension of sodium hydride (60% dispersion in mineral oil, 26.1 mg , ca 0.653 mmol , prewashed with hexane) in DMF (2.0 mL) was added dropwise a solution of $\mathbf{1 8}(51.3 \mathrm{mg}, 0.108 \mathrm{mmol})$ in DMF $(3.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h at $0^{\circ} \mathrm{C}$, a solution of 2-(dimethylamino)ethyl chloride hydrochloride ($26.0 \mathrm{mg}, 0.181 \mathrm{mmol}$) in DMF $(3.0 \mathrm{~mL})$ was added and the mixture was allowed to warm to rt . After stirring for 4 h at rt , the mixture was warmed to $65^{\circ} \mathrm{C}$. After stirring for 14 h at $65^{\circ} \mathrm{C}$, the mixture was cooled to rt . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and 28% aqueous ammonia. The products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The crude product was purified by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{EtOAc}=5: 1$) to give 19 c as pale yellow solid $(40.0 \mathrm{mg}, 68 \%)$. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanegave a colorless powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.48(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.49(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H})$, $2.42(\mathrm{~s}, 6 \mathrm{H}), 2.69(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 3 \mathrm{H}), 4.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.73(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.0,22.1,38.6,40.6$, $45.9,56.0,56.6,56.7,71.0,71.7,102.2,102.9,106.3,107.6,107.9,112.3,116.7,118.9,121.2,122.1$, 128.3, 133.8, 135.5, 140.5, 145.3, 146.1, 148.5, 149.6, 159.7. HRDARTMS (m / z) Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{5}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 546.2968$. Found: 546.2967.
3,10-Dihydroxy-2,11-dimethoxy-5,13-dimethyl-5,13-dihydro-6H-benzo[6,7]indolo[3,2-c]quinolin-6one (20a). According to the procedure described for the preparation of $\mathbf{6}, \mathbf{1 9 a}(52.3 \mathrm{mg}, 0.107 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(1.0 \mathrm{M}, 580 \mu \mathrm{~L}, 0.580 \mathrm{mmol})$ were reacted to give $\mathbf{2 0 a}$ as a pale brown powder ($28.2 \mathrm{mg}, 65 \%$). $\mathrm{Mp}>300^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 3288, 1622, 1579, 1447, 1267, $1227 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{~s}, 3 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 28.8,38.5,55.4,56.0,102.2,102.9,105.4,105.9,106.3,112.1,116.1,117.7$, 119.9, 121.1, 127.9, 134.4, 134.9, 140.0, 143.2, 145.6, 148.1, 148.2, 158.7. HRDARTMS (m / z) Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 405.1451$. Found: 405.1428.
5-Allyl-3,10-dihydroxy-2,11-dimethoxy-13-methyl-5,13-dihydro-6 \boldsymbol{H}-benzo[6,7]indolo[3,2-c]-
quinolin-6-one (20b). Under an argon atmosphere, a nitrobenzene solution of $\mathrm{AlCl}_{3}(1.0 \mathrm{M}, 380 \mu \mathrm{~L}$, $0.380 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{1 9 b}(35.9 \mathrm{mg}, 69.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at rt . After stirring for 24 h at rt , a solution of $\mathrm{NaHCO}_{3}(95.8 \mathrm{mg}, 1.14 \mathrm{mmol}$) and Rochelle salt (322 mg , 1.14 mmol) in water $(2.3 \mathrm{~mL})$ was added. The mixture was stirred for an additional 1 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added water and the precipitate was collected by filtration, washed with water, and dried under reduced pressure to give $\mathbf{2 0 b}$ as a pale brown powder ($23.1 \mathrm{mg}, 77 \%$). $\mathrm{Mp}>300{ }^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): $3423,1628,1575,1428,1272,1230 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.63(\mathrm{~s}, 3 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.93-6.06 (m, 1H), $7.03(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.50(\mathrm{~s}, 1 \mathrm{H}), 9.87(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 38.6,43.4,55.4,55.9$, 102.2, 103.5, 105.6, 106.0, 106.1, 112.1, 116.1, 116.1, 117.7, 119.9, 121.2, 127.9, 133.4, 133.6, 135.0, 140.3, 143.3, 145.6, 148.1, 148.2, 158.5. HRDARTMS (m / z) Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 431.1607$. Found: 431.1595.
Trifluoroacetic acid salt of 5-[2-(dimethylamino)ethyl]-3,10-dihydroxy-2,11-dimethoxy-13-methyl-5,13-dihydro- $6 \boldsymbol{H}$-benzo[6,7]indolo[3,2-c]quinolin-6-one (20c). Under an argon atmosphere, a nitrobenzene solution of $\mathrm{AlCl}_{3}(1.0 \mathrm{M}, 306 \mu \mathrm{~L}, 0.306 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{1 9 c}$
($30.9 \mathrm{mg}, 56.6 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(9.1 \mathrm{~mL}\right.$) at rt. After stirring for 70 h at rt , a solution of NaHCO_{3} ($77.1 \mathrm{mg}, 0.917 \mathrm{mmol}$) and Rochelle salt ($259 \mathrm{mg}, 0.917 \mathrm{mmol}$) in water (1.7 mL) was added. The mixture was stirred for an additional 1 h and then evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added water and the precipitate was collected by filtration, washed with water, and dried under reduced pressure to give 5-[2-(dimethylamino)ethyl]-3,10-dihydroxy-2,11-dimethoxy-13-methyl-5,13-dihydro-6H-benzo[6,7]-indolo-[3,2-c]quinolin-6-one (20c') as a pale brown powder ($24.4 \mathrm{mg}, 93 \%$). $\mathrm{Mp}>300^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 3384, 1628, 1469, 1428, 1275, $1216 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.53(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 3 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.97(\mathrm{br} \mathrm{s}$, 1 H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 38.6,39.4,45.6,55.4,55.9,56.2,102.2,102.6,105.6,106.1$, $106.2,112.1,116.0,117.7,119.9,121.1,127.9,133.5,135.1,140.2,143.2,145.6,148.2,148.3,158.5$. HRDARTMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 462.2029$. Found: 462.2013.

To a suspension of $\mathbf{2 0} \mathbf{c}^{\prime}(12.0 \mathrm{mg}, 21.0 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added trifluoroacetic acid (2.0 mL) at rt . After stirring for 0.5 h at rt , the mixture was evaporated. The crude product was purified by column chromatography over Sephadex LH-20 (MeOH containing 0.1\% TFA) to give 20c as a brown solid (15.2 mg , quant). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 2.98$ ($\mathrm{s}, 6 \mathrm{H}$), 3.46 (br s, 2H), 4.02 ($\mathrm{s}, 3 \mathrm{H}$), 4.05 (s , $3 \mathrm{H}), 4.63(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}$, $1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 36.7,38.7,42.9,54.5,55.5,56.0,102.2,102.9,106.0,106.0,106.2,112.1,116.0,117.6$, 119.8, 121.4, 128.0, 133.0, 135.2, 140.6, 143.6, 145.8, 148.3, 148.6, 159.2. HRFABMS (m / z) Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}\right)^{+}\right]: 462.2029$. Found: 462.2030.

Methyl 5-isopropoxy-2-\{1-(3-chloropropyl)-7-isopropoxy-8-methoxy-1H-benzo[g]indol-2-yl\}-4methoxybenzoate (21). Under an argon atmosphere, a THF solution of t-BuOK ($1.0 \mathrm{M}, 209 \mu \mathrm{~L}$, $0.209 \mathrm{mmol})$ was added to a solution of $8(0.100 \mathrm{~g}, 0.209 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h at $0^{\circ} \mathrm{C}$, 1-chloro-3-iodopropane ($55.0 \mu \mathrm{~L}, 0.512 \mathrm{mmol}$) was added. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was allowed to warm to rt . After stirring for 5 h at rt , the mixture was cooled to $0^{\circ} \mathrm{C}$. To the mixture was successively added a THF solution of t - $\mathrm{BuOK}(1.0 \mathrm{M}, 209 \mu \mathrm{~L}, 0.209 \mathrm{mmol}$) and 1-chloro-3-iodopropane ($55.0 \mu \mathrm{~L}, 0.512 \mathrm{mmol}$). The mixture was allowed to warm to rt and stirred for 18 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and 28% aqueous ammonia. The products were extracted with EtOAc and the extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The crude product was purified by column chromatography over silica gel 60 N (hexane- $\mathrm{EtOAc}=2: 1$) to give 21 as yellow solid ($94.0 \mathrm{mg}, 81 \%$). Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane gave a colorless powder. Mp 134.5-135.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1696, 1523, 1496, 1261, $1218 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.48(\mathrm{~m}$, $2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.37-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{sep}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.1,22.1,32.9,42.1,44.4$, $52.1,56.2,56.3,71.1,71.6,101.8,103.4,113.2,115.9,116.5,117.7,118.9,120.3,123.9,124.7,127.0$, 127.6, 129.4, 138.9, 145.0, 147.1, 149.9, 152.5, 167.0. HRDARTMS (m / z) Calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{ClNO}_{6}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 554.2309$. Found: 554.2319.
5-Isopropoxy-2-\{1-(3-chloropropyl)-7-isopropoxy-8-methoxy-1H-benzo[g]indol-2-yl\}-4-methoxy-
benzoic acid (22). Under an argon atmosphere, a suspension of $21(0.300 \mathrm{~g}, 0.541 \mathrm{mmol})$ in a degassed mixture of 40% aqueous $\mathrm{KOH}(10 \mathrm{~mL})$ and EtOH $(10 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 2 h . The solution was cooled to rt and concentrated. The pH of the solution was adjusted to pH 1 with concd HCl , and the products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel $60 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$ $=10: 1$) to give 22 as pale brown solid ($0.267 \mathrm{~g}, 91 \%$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-toluene gave a colorless powder. Mp $99-100.5{ }^{\circ} \mathrm{C}$. IR (KBr): 3421, 1707, 1494, 1257, 1209, $1165 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.32$ (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$), 1.34 (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$), 2.07-2.35 (m, 2H), 3.50-3.66 (m, 2H), 3.83 ($\mathrm{s}, 3 \mathrm{H}$), $3.94(\mathrm{~s}, 3 \mathrm{H}), 4.32-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{sep}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}$, $1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}): $\delta 21.9,22.0,32.9,42.6,43.7,55.6,55.9,70.0,70.8$, $101.5,102.8,112.5,116.3,116.4,117.1,118.6,119.9,124.2,124.8,126.2,126.8,128.7,139.1,144.4$, 146.3, 149.5, 152.0, 167.5. HRDARTMS (m / z) Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{ClNO}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 540.2153$. Found: 540.2134.

13-(3-Chloropropyl)-3,10-diisopropoxy-2,11-dimethoxy-5,13-dihydro-6H-benzo[6,7]indolo[3,2-c]-quinolin-6-one (23). According to the procedure described for the preparation of $\mathbf{1 8}, \mathbf{2 2}(137 \mathrm{mg}$, 0.254 mmol) was reacted. After chromatographic purification over silica gel 60 N (hexane- $\mathrm{EtOAc}=2: 1$ to EtOAc to $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}=10: 1$), 23 was obtained as a brown powder ($104 \mathrm{mg}, 76 \%$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave a colorless powder. Mp 295.5-297 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1660,1501 , 1437, 1257, $1228 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 1.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 12 \mathrm{H}), 2.62-2.73(\mathrm{~m}, 2 \mathrm{H})$, $3.88-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 11.31(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 21.7,21.9,32.7,42.4,45.9,55.6,56.2$, $70.0,70.6,101.7,102.1,104.8,104.8,107.4,112.2,116.3,117.9,120.8,122.1,127.8,132.6,133.5,139.1$, 145.2, 145.5, 148.1, 149.7, 159.2. HRDARTMS (m / z) Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}_{5}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 537.2156$. Found: 537.2159.

13-[3-(Dimethylamino)propyl]-3,10-diisopropoxy-2,11-dimethoxy-5,13-dihydro-6H-benzo[6,7]-indolo[3,2-c]quinolin-6-one (24). Under an argon atmosphere, a mixture of 23 ($30.0 \mathrm{mg}, 55.9 \mu \mathrm{~mol}$), a THF solution of dimethylamine ($2.0 \mathrm{M}, 280 \mu \mathrm{~L}, 0.559 \mathrm{mmol}$), KI ($46.4 \mathrm{mg}, 0.280 \mathrm{mmol}$), and DMSO $(5.0 \mathrm{~mL})$ was heated in a sealed tube at $80^{\circ} \mathrm{C}$. After stirring for 20 h at $80^{\circ} \mathrm{C}$, the mixture was cooled to rt. The volatiles were removed by bulb-to-bulb distillation. To the residue was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water and the two phases were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography over silica gel 60 N (EtOAc to $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}=10: 1$) to give 24 as a brown powder ($15.7 \mathrm{mg}, 51 \%$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a colorless powder. Mp 289-290.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1653, 1500, 1436, 1257, $1113 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.50(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.55$ (d, $J=5.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.37-2.50(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.77(\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.03(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}$, $1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 12.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.1,22.1,29.1,45.7,46.9$, $56.1,56.6,56.9,71.1,71.5,102.0,102.6,105.3,105.8,107.8,112.7,116.8,119.0,121.4,122.2,128.5$, $133.2,133.8,140.1,145.9,146.0,149.1,150.0,161.5$. HRDARTMS (m / z) Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{5}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 546.2968$. Found: 546.2981.

Trifluoroacetic acid salt of 13-[3-(dimethylamino)propyl]-3,10-dihydroxy-2,11-dimethoxy-5,13-dihydro-6H-benzo[6,7]indolo[3,2-c]quinolin-6-one (25). Under an argon atmosphere, a nitrobenzene solution of $\mathrm{AlCl}_{3}(1.0 \mathrm{M}, 235 \mu \mathrm{~L}, 0.235 \mathrm{mmol})$ was added dropwise to a solution of $24(20.0 \mathrm{mg}$, $36.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ at rt . After stirring for 72 h at rt , a solution of $\mathrm{NaHCO}_{3}(59.3 \mathrm{mg}$, 0.706 mmol) and Rochelle salt ($199 \mathrm{mg}, 0.705 \mathrm{mmol}$) in water (3.6 mL) was added. After stirring for 1 h , the mixture was evaporated. The nitrobenzene was removed azeotropically with water under reduced pressure. To the residue was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and TFA $(1.5 \mathrm{~mL})$ and then the mixture was evaporated. The residue was purified by column chromatography over Sephadex LH-20 using following solvent systems (water containing 0.1% TFA, water $-\mathrm{MeOH}=1: 1$ containing $0.1 \% \mathrm{TFA}$, and MeOH containing 0.1% TFA) to give 28 as a brown powder ($19.8 \mathrm{mg}, 94 \%$). Mp 292-293.5 ${ }^{\circ} \mathrm{C}$ (sealed capillary). IR (KBr): 3412, 1683, 1203, $1144 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 2.50-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}$, $3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 5.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $7.38(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 9.77 (br s, 1H), $9.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 11.37(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta 25.4,42.5,45.1,53.8$, $55.6,56.1,101.5,102.9,104.1,104.7,107.4,112.5,115.8,117.9,120.5,121.6,128.1,132.7,133.8,139.4$, 143.9, 145.5, 148.4, 148.6, 159.4. HRFABMS $(\mathrm{m} / \mathrm{z})$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{COO}\right)^{+}\right]: 462.2029$. Found: 462.2000.

Topoisomerase I inhibitory assay. The topoisomerase I relaxation assay was performed according to previous reports. ${ }^{24,25}$ In brief, 2 U of DNA topoisomerase I isolated from calf thymus (TaKaRa Bio) was mixed with $1 \mu \mathrm{~g}$ of supercoiled DNA pBR322 (TaKaRa Bio) in $20 \mu \mathrm{~L}$ of a reaction buffer (35 mM Tris$\mathrm{HCl}, \mathrm{pH} 8,72 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM}$ DTT, 5 mM spermidine, $0.01 \% \mathrm{BSA}$) in the presence or absence of the test drugs previously dissolved in DMSO. The mixture was incubated at $37^{\circ} \mathrm{C}$ for 30 min and then the reaction was terminated by adding $2 \mu \mathrm{~L}$ of 10% SDS solution. After digestion of the enzyme by adding $2 \mu \mathrm{~L}$ of $0.6 \mu \mathrm{~g} / \mathrm{mL}$ of proteinase K and incubating at $37^{\circ} \mathrm{C}$ for 30 min , excess compounds were removed by extraction with $\mathrm{CHCl}_{3} /$ isoamyl alcohol (24:1). The reaction product was subjected to 1% agarose gel electrophoresis and the gel was stained with $0.5 \mu \mathrm{~g} / \mathrm{mL}$ ethidium bromide (EtBr).
Antiproliferative activity against 39 human cancer cell lines (JFCR39). This experiment was carried out at the Screening Committee of Anticancer Drugs according to the standard protocol used by the Committee. Inhibition of cell growth was assessed by measuring the changes in the total cellular protein levels following 48 h treatment with a given test compound, using the sulforhodamine B colorimetric assay. The molar concentration of a test compound required for 50% growth inhibition $\left(\mathrm{GI}_{50}\right)$ of cells was calculated as reported previously. ${ }^{11}$

ACKNOWLEDGEMENTS

We are grateful to the Screening Committee of Anticancer Drugs supported by a Grant-in-Aid for Scientific Research on Innovative Areas, Scientific Support Programs for Cancer Research, from The Ministry of Education, Culture, Sports, Science and Technology-Japan for the evaluation of the antiproliferative activities of the compounds described in this paper.

REFERENCES AND NOTES

1. R. J. Andersen, D. J. Faulkner, H. Cun-heng, G. D. Van Duyne, and J. Clardy, J. Am. Chem. Soc., 1985, 107, 5492.
2. For reviews, see: (a) P. Cironi, F. Albericio, and M. Álvarez, Prog. Heterocycl. Chem., 2004, 16, 1; (b) C. Bailly, Curr. Med. Chem. - Anticancer Agents, 2004, 4, 363; (c) S. T. Handy and Y. Zhang, Org. Prep. Proced. Int., 2005, 8, 411; (d) H. Fan, J. Peng, M. T. Hamann, and J.-F. Hu, Chem. Rev., 2008, 108, 264; (e) D. Pla, F. Albrecio, and M. Álvarez, Anticancer Agents Med. Chem., 2008, 8, 746; (f) J. Kluza, P. Marchetti, and C. Bailly, 'Modern Alkaloids: Structure, Isolation, Synthesis and Biology,' ed. by E. Fattorusso and O. Taglialatela-Scafati, Wiley-VCH, Weinheim, 2008, pp. 171-187; (g) D. Pla, F. Albericio, and M. Álvarez, Med. Chem. Commun., 2011, 2, 689; (h) A.-L. Fan, W.-H. Lin, and Y.-X. Jia, J. Chin. Pharm. Sci., 2011, 20, 425; (i) T. Fukuda, F. Ishibashi, and M. Iwao, Heterocycles, 2011, 83, 491; (j) D. Imbri, J. Tauber, and T. Opatz, Mar. Drugs, 2014, 12, 6142; (k) C. Bailly, Mar. Drugs, 2015, 13, 1105.
3. A. R. Quesada, M. D. G. Grávalos, and J. L. F. Puentes, Br. J. Cancer, 1996, 74, 677.
4. F. Ishibashi, Y. Miyazaki, and M. Iwao, Tetrahedron, 1997, 53, 5951.
5. F. Ishibashi, S. Tanabe, T. Oda, and M. Iwao, J. Nat. Prod., 2002, 65, 500.
6. M. Chittchang, P. Batsomboon, S. Ruchirawat, and P. Ploypradith, ChemMedChem, 2009, 4, 457.
7. M. Facompré, C. Tardy, C. Bal-Mahieu, P. Colson, C. Perez, I. Manzanares, C. Cuevas, and C. Bailly, Cancer Res., 2003, 63, 7392.
8. E. Marco, W. Laine, C. Tardy, A. Lansiaux, M. Iwao, F. Ishibashi, C. Bailly, and F. Gago, J. Med. Chem., 2005, 48, 3796.
9. T. Ohta, T. Fukuda, F. Ishibashi, and M. Iwao, J. Org. Chem., 2009, 74, 8143.
10. Unpublished results.
11. D. Kong and T. Yamori, Bioorg. Med. Chem., 2012, 20, 1947.
12. H. Sun, G. Tawa, and A. Wallqvist, Drug Discov. Today., 2012, 17, 310.
13. M. Iwao, F. Ishibashi, T. Fukuda, and H. Hasegawa, Jpn. Kokai Tokkyo Koho JP 5888702 B2 20160226, 2016.
14. T. Fukuda, Y. Nanjo, M. Fujimoto, K. Yoshida, Y. Natsui, F. Ishibashi, F. Okazaki, H. To, and M. Iwao, submitted to Bioorg. Med. Chem.
15. S. Boonya-udtayan, N. Yotapan, C. Woo, C. J. Bruns, S. Ruchirawat, and N. Thasana, Chem. Asian J., 2010, 5, 2113.
16. A. Theppawong, P. Ploypradith, P. Chuawong, S. Ruchirawat, and M. Chittchang, Chem. Asian J., 2015, 10, 2631.
17. T. Shioiri, K. Ninomiya, and S. Yamada, J. Am. Chem. Soc., 1972, 94, 6203.
18. H. Yoshioka, Y. Matsuya, T. Choshi, E. Sugino, and S. Hibino, Chem. Pharm. Bull., 1996, 44, 709.
19. S. Martina, V. Enkelmann, G. Wegner, and A.-D. Schlülter, Synthesis, 1991, 613.
20. K. O. Hessian and B. L. Flynn, Org. Lett., 2003, 5, 4377.
21. R. G. Harvey, Q. Dai, C. Ran, and T. M. Penning, J. Org. Chem., 2004, 69, 2024.
22. S. Yamada, D. Morizono, and K. Yamamoto, Tetrahedron Lett., 1992, 33, 4329.
23. M. G. Banwell, B. L. Flynn, and S. G. Stewart, J. Org. Chem., 1998, 63, 9139.
24. L. F. Liu and K. G. Miller, Proc. Natl. Acad. Sci. U. S. A., 1981, 78, 3487.
25. K. Yoshida, R. Itoyama, M. Yamahira, J. Tanaka, N. Loaëc, O. Lozach, E. Durieu, T. Fukuda, F. Ishibashi, L. Meijer, and M. Iwao, J. Med. Chem., 2013, 56, 7289.
26. S. Sawada, S. Okajima, R. Aiyama, K. Nokata, T. Furuta, T. Yokokura, E. Sugino, K. Yamaguchi, and T. Miyasaka, Chem. Pharm. Bull., 1991, 39, 1446.
27. T. Utsugi, K. Aoyagi, T. Asao, S. Okazaki, Y. Aoyagi, M. Sano, K. Wierzba, and Y. Yamada, Jpn. J. Cancer. Res., 1997, 88, 992.
