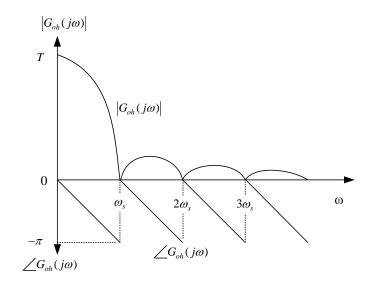
参考文献

- (1) 成田誠之助:ディジタルシステム制御 理論と応用(昭晃堂), 1980
- (2) 明石一, 今井弘之:詳解制御工学演習 8章サンプル値制御系(共立出版), 1981
- (3) **G.F.**フランクリン, J.D.パウエル, 羽根田博正訳:ダイナミックシステムのディジタル制御(森北出版), 1981
- (4) 横田英一:マイクロコンピュータ Z-80 の使い方(オーム社), 1981
- (5) 美多勉, 原辰次, 近藤良:基礎ディジタル制御(コロナ社), 1988
- (6) 金原昭臣,黒須茂:ディジタル制御入門(日刊工業新聞社),1990
- (7) Charles L. Phillips, H. Troy Nagle, JR., 横山隆一, 佐川雅彦, 貴家仁志訳: ディジタル 制御システム 解析と設計 (日刊工業新聞社), 1990
- (8) 荒木光彦:ディジタル制御理論入門(朝倉書店), 1991
- (9) 相良節夫,和田清,中野和司:ディジタル制御の基礎(コロナ社),1992
- (10) 岩田彰: ディジタル信号処理 (コロナ社), 1995
- (11) 高木章二: ディジタル制御入門 改訂2版 (オーム社), 1999
- (12) 高橋進一,池原雅章:ディジタルフィルタ (倍風館),1999
- (13) 樋口龍雄,川又政征:ディジタル信号処理(昭晃堂),2000
- (14) 三谷政昭, 有井貴志: DSP によるディジタル信号処理プログラミング入門(森北出版), 2000
- (15) 松尾芳樹:ディジタル制御(昭晃堂), 2001
- (16) 辻峰男, 坪井克剛, 山田英二: 誘導機ディジタルベクトル制御系の安定解析法, 電気学会論文誌 D, 第 123 巻, 1 号, pp.21-29, 2003
- (17) 森泰親:演習で学ぶディジタル制御(森北出版),2012
- (18) 辻峰男:電気回路講義ノート,長崎大学学術研究成果リポジトリ(NAOSITE),2014
- (19) 辻峰男:自動制御の理論と応用,長崎大学学術研究成果リポジトリ(NAOSITE),2015
- (20) 辻峰男:パワーエレクトロニクスと電動機制御入門,長崎大学学術研究成果リポジトリ(NAOSITE),2015
 - *(18),(19),(20)は Google でタイトルを入力して自由にダウンロード可能

付録

零次ホールドの伝達関数のゲインと位相特性


 $s = j\omega$ とおくと、以下の式が得られる。

$$G_{oh}(j\omega) = \frac{1 - e^{-j\omega T}}{j\omega} = \frac{1 - \cos\omega T + j\sin\omega T}{j\omega}$$
$$= \frac{1}{\omega} \{\sin\omega T - j(1 - \cos\omega T)\} = \frac{2}{\omega} \sin(\frac{\omega T}{2}) e^{-j\omega T/2}$$
$$= \frac{2}{\omega} \sin(\frac{\omega \pi}{\omega_s}) e^{-j\pi\frac{\omega}{\omega_s}}$$

ただし、 $\omega_s \equiv 2\pi/T$

$$\left|G_{oh}(j\omega)\right| = \frac{2}{\omega} \left|\sin(\frac{\omega\pi}{\omega_s})\right| = \frac{2\pi}{\omega_s} \frac{\left|\sin(\frac{\omega\pi}{\omega_s})\right|}{\frac{\omega\pi}{\omega_s}} = T \frac{\left|\sin(\frac{\omega\pi}{\omega_s})\right|}{\frac{\omega\pi}{\omega_s}}$$

$$\angle G_{oh}(j\omega) = \begin{cases} -\pi \frac{\omega}{\omega_s} &: (0 < \omega < \omega_s) \\ -\pi \frac{\omega}{\omega_s} + n\pi &: (n\omega_s < \omega < (n+1)\omega_s) \end{cases}$$

零次ホールドのゲイン, 位相特性(片対数グラフ上ではない)

零次ホールドは低域通過フィルタの一種で、図より不要な高域の信号をどのように減衰させるか理解できよう。直流に対するゲインはサンプリング周期Tになる。

Z変換表

 $F(z) \equiv Z\{f(kT)\} \equiv Z(f(t)) \equiv Z(F(s))$ と書かれるが、 f(t) の z 変換を求めるには、数列 $\{f(kT)\}$ を求めて z 変換する。 F(s) の z 変換を求めるには、 f(t) を求め、次に $\{f(kT)\}$ を求め、それから z 変換を求めるのが本来の意味である。

時間関数 <i>f(t)</i>	f(t) の ラプラス変換 F(s)	f(kT)のz 変換 F(z)	数列 f(kT)
		1	$1: k = 0$ $0: k \neq 0$
		z^{-n}	$1: k = n$ $0: k \neq n$
u(t) , 1	$\frac{1}{s}$	$\frac{z}{z-1}$	1 : all <i>k</i>
t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	kT
		$\frac{z}{z-p}$	p^{k}
		$\frac{z}{(z-p)^2}$	$k p^{k-1}$
$\frac{t^2}{2}$	$\frac{1}{s^3}$	$\frac{T^2 z(z+1)}{2(z-1)^3}$	$\frac{(kT)^2}{2}$
e^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$	e^{-akT}
$1-e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$	$1 - e^{-akT}$
te ^{-at}	$\frac{1}{(s+a)^2}$	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$	kTe ^{-akT}
$\sin \beta t$	$\frac{\beta}{s^2 + \beta^2}$	$\frac{z\sin\beta T}{z^2 - 2z\cos\beta T + 1}$	sin βkT
$\cos \beta t$	$\frac{s}{s^2 + \beta^2}$	$\frac{z(z-\cos\beta T)}{z^2-2z\cos\beta T+1}$	cos βkT
$e^{-\alpha t}\sin\beta t$	$\frac{\beta}{(s+\alpha)^2+\beta^2}$	$\frac{ze^{-\alpha T}\sin\beta T}{z^2 - 2e^{-\alpha T}z\cos\beta T + e^{-2\alpha T}}$	$e^{-\alpha kT}\sin\beta kT$
$e^{-\alpha t}\cos \beta t$	$\frac{s+\alpha}{(s+\alpha)^2+\beta^2}$	$\frac{z(z - e^{-\alpha T}\cos\beta T)}{z^2 - 2e^{-\alpha T}z\cos\beta T + e^{-2\alpha T}}$	$e^{-\alpha kT}\cos\beta kT$

ただし、k = 0, 1, 2, 3…

連続系の制御理論とディジタル制御理論の関連

	連続系	ディジタル制御系
変換による解法	ラプラス変換	z変換 → ブロック図 → 特性方程式の根 z (閉ループ伝達関数の分母 = 0) → 安定条件: z <1 根z が単位円内
時間領域の解法	状態方程式(微分方程式) $\frac{dx}{dt} = Ax + Br $	状態方程式 (差分方程式) x(k+1)=Ax(k)+Br(k) ↓ 指令値 安定条件: Aの固有値 z z <1 特性方程式の根とAの 固有値 z は一致する。
周波数特性	伝達関数 $G(s)$ $s=j\omega$ と置いて $G(j\omega)$ を計算して求める。	伝達関数 $G(z)$ $z=e^{j\omega T}$ と置いて $G(\ e^{j\omega T}\)$ を計算して求める。 T : サンプリング周期

連続系については文献(19)参照

索引

IIR フィルタ	33	振幅スペクトル	56	部分分数展開	6,44
アセンブラ	96	振幅特性	56	プログラムカウンタ	105
アドレスバス	90 97	真理値表	91	ブロック線図	103
割り込み処理プロ	91	英母胆衣 数列	91 1	負論理	91
グラム	109	ヌタックポインタ	105	ベン図	91
安定条件	43	正論理	91	補償要素	30
安定判別	46,76	正論理 Z80	91 97	でイコン	97
位相スペクトル	56	z 変換	2,18	むだ時間要素	26
位相特性	56	2 を挟 零次ホールド	10,17	メインプログラム	109
位置アルゴリズム	29	前進オイラー法	28	メモリ	98
移動平均フィルタ	34	前進矩形近似	27	メモリマップ	99
インパルス列	15	前進差分	28	有限整定制御	49,86
エイリアシング	57,67	双一次変換	28,46	有限量足耐脚 余因子行列	78
A/D 変換器	9	双一次変換 速度アルゴリズム	30	テウスの方法	78 47
H 駆動	91,93	速度アルコリスム 側波帯	67	ラプラス変換	15
IT ME 到 FIR フィルタ	33	対角化	71	ファフへ変換 RAM	98
L駆動	91,93	对用化 台形近似			
演算時間	51,88	台形公式	27	離散化 離散時間フーリエ	27
機械語			28		67
^{機械語} 擬似微分	96 30	代表根	45	変換 離散フ一リエ変換	69
逆行列		タスティン変換	28		
	78 5	畳み込み和	21	リミッタ	37
逆z変換		単位ステップ関数	17	量子化	10,95
行列式	78 42	ディジタル制御系	9	ルンゲクッタ法	36
極後はよりました。	42	定常偏差	14	レジスタ	97
後退オイラー法	28	データバス	97	ROM	98
後退矩形近似	27	デッドビート制御	49,86	論理回路	91
後退差分	28	デルタ関数	15	ワインドアップ現象	39
公比	1	等比数列	1,2	割り込み	106
固有値	72	特性方程式	12,42		
固有ベクトル	72	ド・モルガンの定理	92		
最終値の定理	8	ナイキスト安定判別	63		
差分方程式	2,5,71	ナイキスト周波数	57		
サンプラー	9	2 進数	94		
サンプリング周期	3	バイト	98		
サンプリング定理	57	パルス伝達関数	11		
サンプル値信号	15	PI制御	29,38		
サンプルホールド	9	P I D 制御	30		
回路		ビット	95		
CPU	97	微分方程式	12		
周波数応答	55	標本化	15		
16 進数	94	比例制御	11		
状態遷移行列	81	フィルタ	30		
情報落ち	28	フーリエ級数	64		
初期値の定理	7	フーリエ変換	65		