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Candida species have emerged as important and common opportunistic human
pathogens, particularly in immunocompromised individuals. The current antifungal
therapies either have toxic side effects or are insufficiently effect. The aim of this study
is develop new small-molecule antifungal compounds by library screening methods
using Candida albicans, and to evaluate their antifungal effects on Candida biofilms
and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used
in library screening. To identify antifungal compounds, we screened a small-molecule
library of 1,280 pharmacologically active compounds (LOPAC1280TM) using an antifungal
susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs
were conducted using Candida strains in various growth modes, including biofilms.
We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF)
cells to evaluate their clinical safety. Only 35 compounds were identified by screening,
which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds
had fungistatic effects and nine compounds had fungicidal effects on C. albicans.
Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine
and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of
Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate
and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no
cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-
7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on
Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida
strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent,
CV-3988 that was previously unknown to be antifungal agent, which could be a novel
therapies for superficial mucosal candidiasis.
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INTRODUCTION

Candida species have emerged as important and
common opportunistic human pathogens, particularly in
immunocompromised individuals, such as patients with
HIV/AIDS, patients with cancer undergoing chemotherapy,
organ transplant recipients receiving immunosuppressive drugs
and patients with advanced diabetes (Richardson, 2005; Aperis
et al., 2006). Candida sp. are responsible for a spectrum of
diseases, which range from local mucosal infections to life-
threatening invasive systemic candidiasis (Wisplinghoff et al.,
2004).

A key feature of the virulence of Candida sp. is their
ability to adhere to surfaces, before developing into distinct
surface-attached communities called biofilms. Biofilms may
develop on biological and inert surfaces, such as intravascular
catheters, stents, shunts, prostheses and implants (Raad, 1998;
Ramage et al., 2006). Candida biofilms are intrinsically
more resistant to commercially available antifungal agents
than their planktonic counterparts (Hawser and Douglas,
1995; Chandra et al., 2001; LaFleur et al., 2006; Seneviratne
et al., 2008). Thus, the biofilms that form on medical
device can resist the host immune defenses and antifungal
treatments, thereby causing chronic infections and failure
of implanted medical devices (Ramage et al., 2005). The
increasing number of immunocompromised patients and
advances in medical technology has led to an increase in
biofilm-related infectious diseases, where Candida albicans
is the major fungal pathogen. Recently, the frequency of
these candidiasis caused by the non C. albicans species of
Candida, such as C. glabrata, C. parapsilosis, C. dubliniensis,
and C. tropicalis, has increased due to the indiscriminate
use of antifungal drugs (Cuellar-Cruz et al., 2012; Pfaller,
2012).

In addition, C. glabrata, C. parapsilosis, and C. krusei
exhibit intrinsic resistance to most azole-based antifungal
drugs (Lee et al., 2009a; Kothavade et al., 2010; Pfaller et al.,
2011) and the emergence of acquired drug resistance to
most commercial antifungals has been reported.(Sanglard
and Odds, 2002; Pfaller et al., 2010). Despite the urgent
requirement for efficient antifungal therapies of systemic
infections, the available antifungal drugs, such as novel
polyene formulations, new azoles and echinocandins, are
few and expensive and have side effects (Rex et al., 2000;
Francois et al., 2005; Cornely et al., 2007; Pasqualotto
and Denning, 2008). Furthermore, common non-life-
threatening superficial infections, such as recurrent vulvovaginal
candidiasis, impose significant restrictions on patients and
result in a reduced quality of life. Thus, it is necessary to
develop new antifungal agents that are effective against
Candida biofilms. These agents should overwhelm biofilm-
related candidiasis and lead to more effective antifungal
treatments.

In recent studies, library screening methods have been
used to identify new antifungal agents, which have focused
on growth retardation or killing the pathogens (LaFleur
et al., 2011; Siles et al., 2013; Stylianou et al., 2014). This

type of screening method can identify candidate antifungal
agents from large numbers of small-molecule compounds.
Small-molecule compounds have many advantages, such
as simple synthesis, high chemical stability and low costs
compared with organic compounds. Therefore, the aim of the
present study was to develop new small-molecule antifungal
compounds by library screening methods using C. albicans.
Moreover, we evaluated the antifungal effects of the small
molecules detected by the library screening method using
Candida biofilms as well as their cytotoxic effects on human
cells.

MATERIALS AND METHODS

Drugs and Fungal Strains
The in vitro susceptibility of well-characterized wild-type
C. albicans strain SC5314, which was provided by Prof.
N.A.R. Gow (University of Aberdeen, Aberdeen, UK)
was tested against 1280 compounds from the Library of
Pharmacologically Active Compounds (LOPAC1280TM, Sigma–
Aldrich, USA). The screen was performed with C. albicans
SC5314, and hits were further confirmed with the type strains
C. dubliniensis MYA 577, C. glabrata ATCC 2001, C. kusei
ATCC 6258, C. palapsilosis ATCC 22019, and C. tropicalis
ATCC13803.

High-Throughput Screening (HTS) with
Antifungal Susceptibility Tests (ASTs)
High-Throughput Screening was conducted using ASTs,
according to the standard Clinical and Laboratory Standard
Institute (CLSI) method (Watamoto et al., 2009). Inocula
from 24-h yeast cultures on Sabouraud’s dextrose agar (SDA)
(Gibco, UK) were adjusted to a turbidity equivalent to a 0.5
McFarland standard at 520 nm using a spectrophotometer.
The suspension was diluted further with RPMI 1640
medium (Gibco, UK) to yield an inoculum concentration
of 0.5 × 103 to 2.5 × 103 cells/mL. C. albicans was
incubated with small-molecule compounds (10 μM) from
LOPAC1280TM, which total volume was 150 μL, in 96-
well plates at 37◦C for 24 h to evaluate the antifungal
effects. After incubation, the viability of the fungal cells
was determined using the CellTiter-Glo luminescent cell
viability kit (Promega, USA). The CellTiter-Glo reagent
(150 μL) was added to the medium and incubated for
15 min at room temperature with shaking at 900 rpm. The
luminescent signals were detected using a luminometer
(GloMax Discover System, Promega, USA). The resulting
signal intensity corresponds to ATP amounts and thus to
the number of viable microbial cells upon drug exposure
(Stylianou et al., 2014). In all 96-well plates, 100 and 0%
growth controls were included as microbes plus dimethyl
sulfoxide (0.1%) and microbes plus amphotericin B (100 μM),
respectively. All assays were performed at least as two biological
replicates in triplicate. The ATP level of C. albicans cells, which
corresponded to the cell metabolic activity and viability, was
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calculated for each compound using the following equation
(Figure 1A).

Percentage inhibition =

100 × 1 −

⎧⎪⎨
⎪⎩

(experimental−
positive control average)

(negative control average−
positive control average)

⎫⎪⎬
⎪⎭

Wells were scored as hits if the percentage inhibition was
>50%. Hit compounds were evaluated further to assess their
antifungal effects.

ASTs of Hit Compound in Various Growth
Modes Against Candida Strains
To investigate the antifungal effects of the hit compounds,
ASTs were conducted using broth microdilution assays with
high cell densities of the planktonic mode, adhesion phase and
biofilmmode againstCandida strains (C. albicans, C. dubliniensis,
C. glabrata, C. kusei, C. palapsilosis, and C. tropicalis). First,
high density cell (1 × 107 cells/mL) suspensions were added
to the RPMI medium containing each hit compound (10–
1000 μM) in 96-well plates and incubated at 37◦C for 24 h.
Next, the 50% minimum inhibitory concentrations (MICs) of
high-density Candida planktonic cultures were determined using
the CellTiter-Glo luminescent cell viability kit, as described
above. The antifungal effects of the hit compounds were also
evaluated in the adhesion phase and the biofilm mode, in the
same manner as the planktonic mode. Candida biofilms were
produced as described previously (Jin et al., 2004). In brief,
Candida cells were grown on SDA at 37◦C for 18 h. A loopful
of the yeast culture was then inoculated into yeast nitrogen base
(YNB) (Difco, USA)medium supplemented with 50 mMglucose.
After overnight broth culture in a rotary shaker at 75 rpm,
the cells were washed twice with 20 mL of PBS (pH 7.2, 0.1
M). The yeast cells were re-suspended in YNB supplemented
with 100 mM glucose and adjusted to an optical density of 0.38
(1 × 107 cells/mL) at 520 nm. This standardized cell suspension
was used immediately to form biofilms in the wells of 96-well
polystyrene culture plates (Iwaki, Tokyo, Japan). First, the cells
were incubated for 90 min at 37◦C in a shaker at 75 rpm
to allow yeast adherence to the well surface (adhesion phase),
before the medium was aspirated and each well was washed
once with PBS to remove non-adherent cells. YNB containing
100 mM glucose was then pipetted into each well and the
plate was incubated at 37◦C in a shaker at 75 rpm for 24 h.
Non-adherent cells were removed by pipetting and the biofilms
were washed twice with PBS. Following this biofilm growth
phase, microscopic examination of the cultures was performed
to exclude contamination. These ASTs were repeated on three
different occasions.

Cytotoxicity
Primary human gingival fibroblast (hGF) cultures were
established from discarded healthy gingival tissues after surgery

with the informed consent of the donors (Nikawa et al., 2006).
In brief, the gingival tissue specimens were treated overnight
with 0.025% trypsin and 0.02% EDTA at 4◦C. After trypsin
neutralization, the lamina propria mucosae were separated from
the epithelial layer and minced into pieces in a plastic tissue
culture dish, and then maintained in Dulbecco’s modified Eagle
medium (Nacalai Tesque, Kyoto, Japan) supplemented with
10% FBS, 100 U/mL penicillin, 100 mg/mL streptomycin and
250 ng/mL amphotericin B (Nacalai Tesque, Kyoto, Japan).
After the fibroblasts had migrated out of the tissue, the tissues
were removed and the cells were cultured until they reached
confluence. The cells were then seeded onto 96-well tissue culture
plates (500 cells per well) and the culture medium was exchanged
with fresh growth medium containing the hit compounds
(0.98–1000 μM). The cells were cultured continuously and the
culture medium containing the hit compounds was renewed
every other day. The number of cells was evaluated using the
WST-1 cell counting assay (Dojindo Laboratories, Kumamoto,
Japan), as described previously (Hamada et al., 2007). The highest
concentration of each compound that caused greater than 50%
reduction in the number of cell compare to that of compound
free control cell was reported as the cytotoxic concentration. All
the experiments were performed using three samples for each
condition in triplicate.

RESULTS

High-Throughput Screening (HTS)
Results
We screened 1280 compounds using antifungal susceptibility
tests (ASTs) in 96-well plates to identify antifungal agents.
Only 35 compounds were identified, which inhibited the
metabolic activity of C. albicans by >50%. Thus, the overall
hit rate for HTS was approximately 3.9%. Among the hit
compounds, 26 compounds had fungistatic effects and nine
compounds had fungicidal effects onC. albicans (Figure 1B). Five
compounds, BAY11-7082, BAY11-7085, sanguinarine chloride
hydrate, ellipticine and CV-3988, had strong fungicidal effects
and inhibited the metabolic activity of C. albicans by >90%
(Figure 1B). The structures of these five compounds are shown
in Figure 1C. The antifungal effects of these five compounds
were evaluated usingCandida strains (C. albicans, C. dubliniensis,
C. glabrata, C. kusei, C. palapsilosis, and C. tropicalis) in high
density planktonic, adhesion and biofilm modes.

ASTs of Hit Compounds Using Candida
Strains in Various Growth Modes
The HTS results showed that C. albicans was susceptible to all
the hit compounds when a low inoculum size (1 × 103 cells/mL)
was used, according to the CLSI methodology (MIC < 1 μM).
When the cell density increased to 1 × 107 cells/mL, Candida
strains were slightly resistant to four of the compounds, but
not sanguinarine chloride hydrate. However, all five compounds
inhibited the metabolic activity of Candida strains at <31.3 μM
and they had fungicidal effects on the high cell density planktonic
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FIGURE 1 | Identification of small-molecule compounds that inhibited the metabolic activity of Candida albicans using high-throughput screening
(HTS). (A) Schematic showing the HTS procedure. White circles: low ATP level and no metabolic activity in C. albicans. Yellow circles: high ATP level and high
metabolic activity in C. albicans. (B) Compounds that inhibited the metabolic activity of C. albicans. (C) Structures of the five compounds that inhibited the metabolic
activity of C. albicans by >90%. MW, molecular weight.

mode (Table 1). As a control, amphotericin B inhibited the
metabolic activity of C. albicans at <3.9 μM.

The drug susceptibility of adhesion phase Candida strains to
the five compounds was higher than that of the high density

planktonic cultures (Table 2). In particular, sanguinarine chloride
hydrate was effective against adhesion phase and it could inhibit
the metabolic activity at<15.6μM. Bay 11-7082 and Bay 11-7085
were also effective against the adhesion phase and could inhibit
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TABLE 1 | Minimum inhibitory concentrations (MICs) of five candidate compounds against planktonic mode of Candida strains.

C. albicans C. glabrata C. dubliniensis C. tropicalis C. kusei C. palapsilosis

Bay11-7082 7.8 7.8 3.9 7.8 3.9 3.9

Bay11-7085 3.9 3.9 3.9 3.9 3.9 3.9

Sanguinarine <1 <1 <1 <1 <1 <1

Ellipticine 7.8 7.8 3.9 15.6 7.8 7.8

CV-3988 7.8 7.8 31.3 31.3 15.6 15.6

AMB 3.9

(μM)

Sanguinarine, sanguinarine chloride hydrate; AMB, amphotericin B; MICs, minimal concentration of compound resulting in >50% growth inhibition. MICs were determined
by ATP measurement after 24 h of incubation. The data were analyzed and evaluated from 3 biological replicate in triplicate (n = 3).

TABLE 2 | Minimum inhibitory concentrations of five candidate compounds against adhesion phase of Candida strains.

C. albicans C. glabrata C. dubliniensis C. tropicalis C. kusei C. palapsilosis

Bay11-7082 31.3 31.3 15.6 31.3 15.6 15.6

Bay11-7085 31.3 31.3 15.6 31.3 15.6 7.8

Sanguinarine 15.6 15.6 15.6 7.8 7.8 7.8

Ellipticine 62.5 62.5 125 250 250 125

CV-3988 62.5 62.5 125 62.5 125 125

AMB 15.6

(μM)

Sanguinarine, sanguinarine chloride hydrate; AMB, amphotericin B; MICs, minimal concentration of compound resulting in >50% growth inhibition. MICs were determined
by ATP measurement after 24 h of incubation. The data were analyzed and evaluated from 3 biological replicate in triplicate (n = 3).

the metabolic activity at <31.3 μM. As a control, amphotericin B
inhibited the metabolic activity of C. albicans adhesion phase at
15.6 μM.

Most Candida biofilms were more resistant to the five
compounds than other growth mode. Especially, C. tropicalis
biofilm was most resistant to the five compounds in all growth
modes (Table 3). Bay 11-7082, Bay 11-7085, Ellipticine and CV-
3988 could inhibit the metabolic activity of Candida biofilms at
<62.5, 62.5, 500, and 125μM, respectively. Sanguinarine chloride
hydrate was the most effective antifungal agent in this study
and it could inhibit the metabolic activity of Candida strains at
<31.3 μM. As a control, amphotericin B inhibited the metabolic
activity of C. albicans biofilm at 62.5 μM.

Cytotoxicity
In addition to pharmacologically active compounds, small-
molecule libraries often contain toxic molecules that do not make
good drug candidates. To evaluate the safety for clinical use, we
tested the cytotoxic effects of the hit compounds using human cell
cultures. We used hGF cells because of their ubiquitous nature
and their widespread use in cytotoxicity testing (Egusa et al.,
2009; LaFleur et al., 2011). The hGF cells were grown in 96-well
plates and exposed to increasing doses (two-fold increments) of
each hit compound for 4 days. The hGF metabolic activity was
measured every other day and used as an indicator of cell viability.
After 4 days, Bay 11-7082, Bay 11-7085, ellipticine, sanguinarine
chloride hydrate and CV-3988 inhibited cell proliferation no
more than 50%, namely, did not kill cells at less than 7.81, 7.81,
1.95, 0.73, and 250 μM, respectively (Table 4).

DISCUSSION

Candida species are the main fungal pathogen that causes
infections in humans, ranging from superficial mucosal
infection to systemic mycoses (Navarro-Garcia et al., 2001).
Candida infections are intractable and recurrent diseases,
which have increased due to the rise in the number of
immunocompromised host populations (Beck-Sague and
Jarvis, 1993; Wisplinghoff et al., 2004). Drug-resistant Candida
strains have also increased dramatically because of the increased
use of antifungal agents. Thus, the development of novel
antifungal drugs and treatment strategies are essential for
combating Candida infections. High-throughput screening
(HTS) is an effective method for identifying candidate novel
antifungal drugs. It is important to apply adequate screening
methods to small-molecule compound libraries because
appropriate selection procedures are the key to successful
screening. In this study, LOPAC1280TM was used as the
small-molecule library, which contained pharmacologically
active compounds and all the compounds were commercially
available. Thus, the main effects of these small molecules on
human cells are already known and described in database
of manufacture. Therefore, it may be easier to apply these
compounds in clinical practice with fewer unexpected drug side
effects.

In general, polyenes, azoles, allylamines, morpholines,
antimetabolites, and echinocandins are the six major antifungal
drug categories to manage fungal infections (Khan and Jain,
2000; Ruhnke et al., 2008). Most of these antifungal drugs
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TABLE 3 | Minimum inhibitory concentrations of five candidate compounds against biofilm mode of Candida strains.

C. albicans C. glabrata C. dubliniensis C. tropicalis C. kusei C. palapsilosis

Bay11-7082 31.3 62.5 31.3 62.5 62.5 15.6

Bay11-7085 31.3 62.5 62.5 62.5 62.5 15.6

Sanguinarine 15.6 15.6 15.6 31.3 31.3 7.8

Ellipticine 125 62.5 500 250 250 250

CV-3988 125 125 125 125 125 125

AMB 62.5

(μM)

Sanguinarine, sanguinarine chloride hydrate; AMB, amphotericin B; MICs, minimal concentration of compound resulting in >50% growth inhibition. MICs were determined
by ATP measurement after 24 h of incubation. The data were analyzed and evaluated from 3 biological replicate in triplicate (n = 3).

TABLE 4 | Cytotoxic concentrations of five candidate compounds on
human gingival fibroblasts.

Cytotoxic concentration

Bay11-7082 7.81

Bay11-7085 7.81

Ellipticine 1.95

Sanguinarine chloride hydrate 0.73

CV-3988 250

(μM)

Cytotoxic concentration, maximal concentration of compound resulting in >50%
the number of cell reduction compares to compound free control. The data were
analyzed and evaluated from 3 biological replicate in triplicate (n = 3).

have fungistatic or fungicidal effects on exponentially growing
planktonic cells, but Candida cells are resistant to these drugs
after biofilm formation (Watamoto et al., 2009). Interestingly,
we found that five small-molecule compounds (BAY11-7082,
BAY11-7085, sanguinarine chloride hydrate, ellipticine and
CV-3988) were antifungal drug candidates with inhibitory effects
on various Candida biofilms at concentrations below 500 μM.

BAY11-7082 and BAY 11-7085 is known to be an inhibitor of
nuclear factor κB (NF-κB) activation by the blockade of inhibitor
κB (IκB) phosphorylation, which is a trigger of apoptosis (Pierce
et al., 1997; Guzman and Jordan, 2005; Chopra et al., 2008; Lee
et al., 2009b; Zanotto-Filho et al., 2010). Bay 11-7082 triggers
cell membrane scrambling and cell shrinkage (Lang et al., 2008).
BAY 11-7085 has been shown to activate c-jun N-terminal
kinase and p38 mitogen-activated protein kinase (MAPK) (Pierce
et al., 1997). BAY 11-7085 inhibits cell proliferation by inducing
apoptosis and G0/G1 arrest of the cell cycle in human cells
(Bockelmann et al., 2005). These actions have anti-inflammatory,
anticancer and slight hemolytic effects (Ghashghaeinia et al.,
2011).

Sanguinarine chloride hydrate is a phytoalexin and has been
reported to suppress activation of the transcription factor NF-
κB (Chaturvedi et al., 1997) and to modulate the functions of
various enzymes, such as MAPK phosphatase-1 (Vogt et al.,
2005), protein kinase C (Gopalakrishna et al., 1995) and
phosphoinositide-dependent protein kinase 1 (Vrba et al., 2008).
These actions of Sanguinarine have antimicrobial, antioxidant,
anti-inflammatory, hemolytic and cytotoxic effects (Lenfeld et al.,

1981; Godowski, 1989; Malikova et al., 2006; Babu et al., 2008;
Matkar et al., 2008; Jang et al., 2009).

Ellipticine, an alkaloid isolated from Apocyanaceae plants,
has been reported to mediate primarily DNA damage such as
DNA intercalation (Auclair, 1987), inhibition of topoisomerase
II (Auclair, 1987; Stiborova et al., 2006), inhibition of casein
kinase 2 (Prudent et al., 2010) and the formation of covalent
DNA adducts by cytochrome P450s and peroxidases (Stiborova
et al., 2011). These actions of Ellipticine has anti-tumor, cytotoxic,
hemolytic and mutagenic activities (Lee, 1976; Rouesse et al.,
1985). Therefore, the known cell proliferation inhibitory effects
of these four small-molecules agree with the findings of the
present study. Furthermore, the antifungal and cytotoxic effects
of these small molecules on Candida strains may involve the
same mechanism because Candida strains are eukaryotes and
possesses the same targets. Thus, these small molecules are toxic
to human cells and Candida strains, and inappropriate for clinical
use corroborated by the relatively low cytotoxic concentration
on hGF.

On the other hand, platelet-activating factor (PAF), which is
released almost immediately in response to inflammatory stimuli
(Im et al., 1997) by various inflammatory cells, is a potent
lipid messenger involved in cellular activation, fertilization,
intracellular signaling, apoptosis and diverse inflammatory
reactions (Braquet et al., 1987; Shukla, 1992; Buttke and
Sandstrom, 1995; Fukuda and Breuel, 1996). CV-3988 (Terashita
et al., 1983; Terashita et al., 1987) is a structural analog of PAF,
which has been shown to specifically inhibit the in vitro and
in vivo activities of PAF (Sultana et al., 1999) by competitive
binding with the PAF receptor (PAF-R) (Terashita et al., 1983;
Summers andAlbert, 1995; NegroAlvarez et al., 1997). Therefore,
CV-3988 is an antagonist of PAF-R, which inhibits the functions
of leukocytes, including platelet aggregation, inflammation and
anaphylaxis. We showed for the first time that CV-3988 had a
fungicidal effect on various Candida biofilms and low cytotoxity
effect on hGF cells. In past study, CV-3988 had slight hemolytic
effect and can safely be administered to human (Arnout et al.,
1988). These results demonstrate that CV-3988 has a novel and
specific fungicidal effect on Candida strains and may become
initial drug choice for the treatment of candidiasis. Furthermore,
Candida sp. are common microbes in the oral cavity and vagina
and causes mucotitis in immunocompromised and healthy hosts.
Mouthwashes and ointments containing antifungal agents are
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primary treatment for oral and vaginal candidiasis. Therefore,
CV-3988 may be suitable for use on oral mucosal surfaces
to combat Candida biofilm infections such as thrush and
denture-related stomatitis. Although CV-3988 may facilitate
novel treatment strategies to combat Candida infections, further
studies about fungicidal mechanism and pharmacokinetics are
required before it can be applied in clinical practice.

CONCLUSION

We identified five small-molecule compounds (BAY11-7082,
BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-
3988) as novel antifungal drug candidates using HTS methods.

BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and
ellipticine were toxic to Candida strains as well as hGF
cells. In contrast, CV-3988 had fungicidal effects on Candida
strains, but low cytotoxic effects on hGF cells. Therefore,
in future, mouthwashes and ointments containing CV-3988
may be used as a novel treatment for superficial mucosal
candidiasis.
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