Preparations of a series of coinage metal complexes with pyridine-based bis(N-heterocyclic carbene) ligands including transmetalation to palladium complexes

Takuo Nakamura, Shinji Ogushi, Yasuhiro Arikawa,* Keisuke Umakoshi

Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan.

Received August **, 2015

Abstract

A silver complex bearing 2,6-bis(3-tert-butylimidazol-2-ylidene)pyridine (CNC) ligands was easily prepared from the reaction of the CNC ligand precursor with $\mathrm{Ag}_{2} \mathrm{O}$. The CNC ligand contains relatively bulky substituents, tert-butyl, on nitrogen atoms. Use of the silver complex as a carbene transfer reagent gave rise to a copper and a gold complex, completing a series of coinage metal complexes $\left[\mathrm{M}_{2}(\mathrm{CNC})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au})$. In all the coinage metal complexes, the X-ray crystallographic analyses showed that the two CNC ligand strands are intertwined each other and surround the metal ions in a double helical fashion. Moreover, the carbene transfer reactions afforded a monomeric palladium complex $[\mathrm{Pd}(\mathrm{CNC}) \mathrm{Cl}] \mathrm{BF}_{4}$ and a CNC-bridged dipalladium complex $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}_{2}(\mu-\mathrm{CNC})\right]\right.$. Facile chloride ligand abstraction from the dipalladium complex yielded a chlorido-bridged dipalladium complex $\left[\left\{\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}(\mu-\mathrm{CNC})(\mu-\mathrm{Cl})\right] \mathrm{BF}_{4}$.

Keywords: Bis(carbene) ligand; tert-Butyl substituents; Carbene transfer; Coinage metal complexes; Palladium.
*Corresponding author. Tel./fax: +81 958192673
E-mail address: arikawa@nagasaki-u.ac.jp (Y. Arikawa)

1. Introduction

Recently, pincer-type ligands, which coordinate to the metal center meridionally, have attracted great attention, because many tremendous reactions using the pincer complexes have been reported [1]. Chemistry of NHC (N-heterocyclic carbene) has spread explosively, due to
the strong σ-donating ability. We are interested in both combination, that is, pincer-type carbene ligands, in particular pyridine-based bis(carbene) ligands (CNC ligands) [2]. Complexation of the pyridine-based CNC ligand was first reported by I. J. B. Lin in 2000 [3]. Although complexes of the pyridine-based CNC ligands are known in many metals, those of tert-butyl derivatives are relatively unexplored [4]. We now report the preparation of a $\operatorname{Ag}(\mathrm{I})$ complex bearing the bis(carbene)pyridine ligand as a carbene transfer reagent. And treatment of the silver complex with $\left[\mathrm{Cu}(\mathrm{NCMe})_{4}\right] \mathrm{BF}_{4}$ and $\left[\mathrm{AuCl}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right]$ resulted in the corresponding $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Au}(\mathrm{I})$ complexes, respectively. The X-ray crystal structural analyses revealed that these coinage metal complexes exist as dinuclear complexes with double helical structures. Moreover, the carbene transfer reactions from $\operatorname{Ag}(\mathrm{I})$ to $\mathrm{Pd}(\mathrm{II})$ also proceeded to give monomeric and dimeric palladium complexes. The X-ray crystal structural analysis of the monomeric complex exhibited steric repulsion of the tert-butyl substituents.

2. Results and Discussion

The silver complex $\left[\mathrm{Ag}_{2}(\mathrm{CNC})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{1})$ was prepared from the reaction of the CNC ligand precursor with $\mathrm{Ag}_{2} \mathrm{O}$ (Scheme 1). This synthetic method is very useful because free carbene ligand, which is often hard to handle, does not need to be isolated [5]. The mixture of the CNC ligand precursor and $\mathrm{Ag}_{2} \mathrm{O}$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 10)$ was stirred for 6 h. After work up including anion exchange, complex 1 was isolated as white powder in 87% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 shows the disappearance of a signal of hydrogen at the carbene carbons. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}$ also shows the presence of the carbene carbons at $\delta 181.2 \mathrm{ppm}$. The ESI-MS spectrum exhibits the molecular ion signal at $\mathrm{m} / \mathrm{z} 949.3$ ascribed to $\left[\mathbf{1}-\mathrm{BF}_{4}\right]^{+}$, indicating a dimer complex, and finally the structure of $\mathbf{1}$ was determined by the X-ray crystallographic analysis (Fig. 1).

The copper and gold complexes $\left(\left[\mathrm{Cu}_{2}\left(\mathrm{CNC}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{2})\right.\right.$ and $\left.\left[\mathrm{Au}_{2}(\mathrm{CNC})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{3})\right)$ were prepared by treatment of $\left[\mathrm{Ag}_{2}(\mathrm{CNC})_{2}\right]^{2+}$ generated in situ as a carbene transfer reagent with $\left[\mathrm{Cu}(\mathrm{NCMe})_{4}\right] \mathrm{BF}_{4}$ and $\left[\mathrm{AuCl}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right]$, respectively (Scheme 1). Although complexes $\mathbf{1}$ and $\mathbf{3}$ are relatively stable in air, complex $\mathbf{2}$ is easily decomposed. The NMR spectra of $\mathbf{2}$ and $\mathbf{3}$ indicate coordination of the carbene carbon to the metal center. The ESI-MS data support the formation of their dimer complexes, and the structures were confirmed by the X-ray crystallographic analyses (Fig. 1).

In complexes 1, 2, and 3, the two CNC ligand strands are intertwined each other and surround the metal ions in a double helical fashion. Twisting of the NHC rings, with respect to the middle pyridyl ring, are not much different (torsion angles $\mathrm{C}_{\mathrm{NHC}}-\mathrm{N}-\mathrm{C}-\mathrm{N} 1,18.9$ (16), $23.7(15)(\mathbf{1}) ;-21.2(5),-21.1(5)(2) ; 22.9(6), 18.9(6)(3))$. In each metal complexes, the
metal-C C_{NH} bond distances are comparable to those of the complexes bearing the pyridine-based CNC ligands, and the order of the metal-C C_{NH} bond distances are Cu (av. 1.910 $\AA)<\mathrm{Au}(\operatorname{av} .2 .021 \AA)<\mathrm{Ag}($ av. $2.105 \AA)$. The distortion of the $\mathrm{C}_{\mathrm{NHC}}-\mathrm{M}-\mathrm{C}_{\mathrm{NHC}}$ bond angles $\left(169.3(5)^{\circ}(\mathbf{1}), 163.03(16)^{\circ}(\mathbf{2})\right.$, and $172.57(18)^{\circ}(\mathbf{3})$) away from linearity occurs, probably as a result of the metal-metal interactions as shown below.

The $\mathrm{Ag} \cdots \mathrm{Ag}$ distance of $\mathbf{1}$ is $3.0251(14) \AA$, which is shorter than the sum of the van der Waals radii of Ag (ca. $3.44 \AA$), indicating argentophilicity [6,7]. This distance is shorter than those of two similar pyridine-bridged bis(carbene) silver complexes (3.1585(9) [8a] and $3.7848(2)[8 \mathrm{~b}] \AA)$. The $\mathrm{Cu} \cdots \cdot \mathrm{Cu}$ distance of 2 (2.9431(8) \AA), suggesting a cuprophilic interaction [6,9], is similar to those of the previously reported C-N-C copper complexes (3.031(1) [10a] and 2.807(1) [10b] \AA). The gold-gold distance (3.2563(5) \AA) of $\mathbf{3}$ is in the typical range for aurophilic interactions [6,11]. The Au $\cdot \bullet A u$ interactions were also observed in two crystallographically characterized gold complexes with the rigid C-N-C ligand type (3.2971(4) [12a] and 3.3000(4) [12b] \AA).

The lone pair electrons of the central pyridyl nitrogen atoms are directed toward the center of the $\mathrm{M} \cdots \cdot \mathrm{M}$ vector. Interestingly, in complex 2, two $\mathrm{Cu}(\mathrm{I})$ atoms and two nitrogen atoms of the bridging pyridine form a rhombus. The angles of the rhombus are 65.50(7) and 114.49(9) and the length of the four sides is $2.720(3) \AA$. Thus, there may be very weak interaction between the middle pyridyl nitrogen atoms and the copper atoms. However, the distances between the metals and the central pyridyl nitrogen atoms in $\mathbf{1}(2.922(10) \AA$) and $\mathbf{3}$ (2.977(3) \AA) are sufficiently long to indicate lack of coordination.

Easy transmetalation using the silver complex prompted us to check other metal ion, palladium. Reactions of in situ generated $\left[\mathrm{Ag}_{2}(\mathrm{CNC})_{2}\right]^{2+}$ with $\left[\mathrm{PdCl}_{2}(\mathrm{NCMe})_{2}\right]$ and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}$ gave $[\mathrm{Pd}(\mathrm{CNC}) \mathrm{Cl}] \mathrm{BF}_{4}(\mathbf{4})$ and $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right\}_{2}(\mu-\mathrm{CNC})\right](5)$, respectively (Scheme 2). The NMR spectra of $\mathbf{4}$ show signals that indicate coordination of the carbene moiety to the metal. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 shows broad signals due to dynamic processes of the π-allyl ligands, but the integral ratio of the signals indicates the dipalladium complex. The FAB-MS spectrum of $\mathbf{5}$ does not show signals of the molecular ion, but there appears a fragmentation occurring with a loss of one Cl ligand $[\mathbf{M}-\mathrm{Cl}]^{+}$. The molecular structures were established by the X-ray diffraction study (Fig. 2).

The central Pd atom of $\mathbf{4}$ adopts a distorted square planar coordination geometry with the tridentate CNC pincer ligand and a chlorido ligand. The $\mathrm{Pd}-\mathrm{C}_{\mathrm{NHC}}$ and $\mathrm{Pd}-\mathrm{N}$ bond distances of 4 are comparable to those of similar complexes [13]. However, there is a distortion of the Cl ligand away from the idealized molecular plane (N1-Pd-Cl 167.24(11) ${ }^{\circ}$). Owing to no meaningful intermolecular interaction ($\operatorname{Pd} \cdots \cdots \operatorname{Pd} 4.0851(8) \AA)$, the steric hindrance between the Cl ligand and two ${ }^{\mathrm{t}} \mathrm{Bu}$ ligands would account for the distortion [14]. Interestingly, similar
methylpalladium complex $[\operatorname{Pd}(\mathrm{CNC})(\mathrm{Me})]^{+}$has not been isolated [15]. On the other hand, complex 5 consists of a dipalladium structure bridged by the CNC ligand, with the nitrogen atom of the pyridine unbound. The X-ray analysis of $\mathbf{5}$ shows that one of the π-allyl ligands is disordered over two positions. The Pd $\cdots \bullet P d$ distance of $\mathbf{5}(7.0544(8) \AA)$ indicates no bonding interaction between Pd atoms. The geometry about each palladium atoms is a pseudo-square-planar with the $\mathrm{Pd}^{-\mathrm{C}_{\mathrm{NHC}}}$ bond distances of $2.046(4)$ and $2.061(4) \AA$, which are similar to those of 4 (2.061(5) and 2.064(5) \AA). In complex 5, large twisting of the NHC rings, with respect to the central pyridyl ring, occurs (torsion angles $\mathrm{C}_{\mathrm{NHC}}-\mathrm{N}-\mathrm{C}-\mathrm{N} 1,-135.2(3)$ and 134.8(3) ${ }^{\circ}$).

In complex 5, detection of loss of a Cl ligand under the FAB-MS condition prompted us to check a chloride abstraction reaction. Treatment of $\mathbf{5}$ with AgBF_{4} yielded a chlorido-bridged complex $\left[\left\{\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}(\mu-\mathrm{CNC})(\mu-\mathrm{Cl})\right] \mathrm{BF}_{4}(6)$ in 80% yield. The ESI-MS spectrum of $\mathbf{6}$ exhibits the molecular ion signal at $654.1(\mathrm{~m} / \mathrm{z})$, supporting the formulation. The molecular structure was confirmed by the X-ray structural analysis. The chlorido bridge shortens the $\mathrm{Pd} \cdots \cdot \mathrm{Pd}$ distance $\left(3.5505(7) \AA\right.$), and the torsion angles ($\mathrm{C}_{\mathrm{NHC}}-\mathrm{N}-\mathrm{C}-\mathrm{N} 1$) are narrowed (33.7(6) and 28.1(6) ${ }^{\circ}$). The Pd-Cnhc bond distances of 2.059(5) and 2.075(5) \AA are similar to those of 5.

3. Conclusion

We obtained the pyridine-based bis(N-tert-butyl substituted N-heterocyclic carbene) (CNC) complex of $\operatorname{Ag}(\mathrm{I})$, which serves as a good carbene transfer reagent. The carbene transfer reactions yielded $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Au}(\mathrm{I})$ complexes, resulting in a series of coinage metal complexes. In all the coinage metal complexes, the two CNC ligands are arranged in a helical fasion. Moreover, the monomeric palladium complex and the CNC-bridged dipalladium complex were prepared from the carbene transfer reactions. In the dipalladium complex, facile chloride ligand abstraction afforded the chlorido-bridged dipalladium complex.

4. Experimental

4.1. General

All reactions and subsequent work-up manipulations were performed in air unless otherwise noted. The starting materials, 1-tert-butylimidazole [16], [$\mathrm{Cu}\left(\mathrm{NCMe}_{4}\right] \mathrm{BF}_{4}$ [17], $\left[\mathrm{AuCl}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right][18],\left[\mathrm{PdCl}_{2}(\mathrm{NCMe})_{2}\right][19],\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}[20]$ were prepared according to
the previously reported method. Organic solvents and all other reagents were commercially available and used without further purification. NMR spectra in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{CN}$ were recorded on a Varian Gemini-300 and a JEOL JNM-AL-400 spectrometers. ${ }^{1}$ H NMR chemical shifts in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{CN}$ are quoted with respect to TMS or the solvent signal, respectively, and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts are quoted with respect to the solvent signal. Infrared spectra in KBr pellets were obtained on JASCO FT-IR-4100 spectrometer. Electrospray mass spectroscopies (ESI-MS) were carried out on a Waters ACQUITY SQD MS system. Fast atom bombardment mass spectra (FAB-MS) were recorded on a JEOL JMS-700N spectrometer. Elemental analyses (C, H, N) were performed on a Perkin Elmer 2400II elemental analyzer.

4.2. Synthesis of 2,6-bis(3-tert-butylimidazolium-1-yl)pyridine dichloride

This ligand was prepared according to a literature method [15] with slight modifications. A mixture of 2,6-dichloropyridine ($1.5 \mathrm{~g}, 10 \mathrm{mmol}$) and 1-tert-butylimidazole ($5.0 \mathrm{~g}, 40 \mathrm{mmol}$) was heated in an autoclave at $150{ }^{\circ} \mathrm{C}$ for 3 days. Upon cooling, the reaction mixture was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$, followed by addition of a large amount of diethyl ether. After filtration, the precipitate was washed with acetone (20 mL) and dried to give 2,6-bis(3-tert-butylimidazolium-1-yl)pyridine dichloride as an off-white solid ($2.7 \mathrm{~g}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): $\delta 10.37$ (brs, 2H, NCHN), 8.97 (brs, 2 H , imid), 8.58 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{py}$), 8.46 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 3,5-\mathrm{py}), 8.36$ (brs, 2H, imid), 1.72 ($\mathrm{s}, 18 \mathrm{H},{ }^{\text {t }} \mathrm{Bu}$). ESI-MS (m / z): 360.4 [$\mathrm{M}-\mathrm{Cl}]^{+}$.

4.3. Preparation of $\left[\mathrm{Ag}_{2}\left(\mathrm{CNC}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}\right.$ (1)

A mixture of 2,6-bis(3-tert-butylimidazolium-1-yl)pyridine dichloride $(80.0 \mathrm{mg}, 0.202$ $\mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}(48.0 \mathrm{mg}, 0.207 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v}, 1 / 9)(10 \mathrm{~mL})$ was stirred at room temperature for 6 h . After concentration of the mixture to about $1 \mathrm{~mL}, \mathrm{NaBF}_{4}(110 \mathrm{mg}$, $1.00 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The resulting precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried to afford $\left[\mathrm{Ag}_{2}(\mathrm{CNC})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{1})$ as white powder $(90.6 \mathrm{mg}, 87 \%)$. IR (KBr , pellet): $v(\mathrm{BF}) 1084(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.29(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{py}), 7.81$ (dd, $J=$ $2.0,1.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{imid}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, 3,5-\mathrm{py}), 7.50(\mathrm{t}, J=2.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{imid}), 1.30(\mathrm{~s}$, $\left.36 \mathrm{H},{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 181.2\left(\mathrm{~d} \times 2, J=190,220 \mathrm{~Hz}, C_{\mathrm{NHC}}\right), 150.5(2,6-\mathrm{py})$, 144.8 (4-py), 122.7 (d, $J=6.8 \mathrm{~Hz}$, imid), 119.5 (d, $J=5.1 \mathrm{~Hz}, \mathrm{imid}), 115.7$ (3,5-py), 59.3 (CMe3), $31.0\left(\mathrm{CMe}_{3}\right)$. ESI-MS (m / z): $949.3\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}, 430.3\left[\mathrm{M}-(\mathrm{BF} 4)_{2}\right]^{2+}$. Elemental analysis (\%) calcd for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{Ag}_{2} \mathrm{~B}_{2} \mathrm{~F}_{8}$: C, 44.05 ; $\mathrm{H}, 4.86$; N , 13.52; found: C, $43.46 ; \mathrm{H}$, 4.96; N, 13.34.

4.4. Preparation of $\left[\mathrm{Cu}_{2}(\mathrm{CNC})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(2)$

A mixture of 2,6-bis(3-tert-butylimidazolium-1-yl)pyridine dichloride ($79.3 \mathrm{mg}, 0.200$ $\mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}(49.2 \mathrm{mg}, 212 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v}, 1 / 9)(10 \mathrm{~mL})$ was stirred at room temperature for 6 h . The mixture was filtered and evaporated to dryness. The residue was transferred to a glove-box. A mixture of the residue and $\left[\mathrm{Cu}(\mathrm{NCMe})_{4}\right] \mathrm{BF}_{4}(63 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry $\mathrm{MeCN}(10 \mathrm{~mL})$ was stirred at room temperature for 12 h . After filtration and evacuation to dryness, the crude product was recrystallized from $\mathrm{MeCN} /$ ether to give $\left[\mathrm{Cu} 2(\mathrm{CNC})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (2) as yellow crystals ($81 \mathrm{mg}, 85 \%$). IR (KBr , pellet): $v(\mathrm{BF}) 1063(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.31$ (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{py}), 7.78$ (d, $J=2.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{imid}), 7.72$ (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, 3,5-\mathrm{py})$, 7.43 (d, $J=2.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{imid}), 1.24\left(\mathrm{~s}, 36 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 178.3$ (CNHC), 150.6 (2,6-py), 145.1 (4-py), 122.6 (imid), 118.7 (imid), 115.1 (3,5-py), 59.1 (CMe3), 30.8 (CMe3). ESI-MS (m/z): $861.5\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}, 387.3\left[\mathrm{M}-\left(\mathrm{BF}_{4}\right)_{2}\right]^{2+}$. Elemental analysis (\%) calcd for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{Cu}_{2} \mathrm{~B}_{2} \mathrm{~F}$: C, 48.17; H, 5.32; N, 14.78; found: C, 47.66; H, 5.72; N, 14.46.

4.5. Preparation of $\left[\mathrm{Au}_{2}\left(\mathrm{CNC}_{2}\right]_{\left(\mathrm{BF}_{4}\right)_{2} \text { (3) }}\right.$

A mixture of 2,6-bis(3-tert-butylimidazolium-1-yl)pyridine dichloride ($80.2 \mathrm{mg}, 0.202$ $\mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}(47.9 \mathrm{mg}, 0.207 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v}, 1 / 9)(10 \mathrm{~mL})$ was stirred at room temperature for 6 h . After filtration and evaporation to dryness, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, followed by addition of $\left[\mathrm{AuCl}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right](64.2 \mathrm{mg}, 0.200 \mathrm{mmol})$. After stirring for 2 h , the mixture was filtrated and evaporated to dryness. To a $\mathrm{MeOH}(2 \mathrm{~mL})$ solution of the crude product was added $\mathrm{NaBF}_{4}(110 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. After concentration of the mixture, the resulting precipitate was filtrated, washed with a small amount of $\mathrm{H}_{2} \mathrm{O}$, and dried to afford $\left[\mathrm{Au}_{2}(\mathrm{CNC})_{2}\right](\mathrm{BF} 4)_{2}(\mathbf{3})$ as white powder $(96.0 \mathrm{mg}, 78 \%)$. IR (KBr , pellet): $v(\mathrm{BF}) 1084(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.27$ (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{py}$), 7.78 (d, $J=$ $2.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{imid}), 7.76$ (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, 3,5-\mathrm{py}), 7.47$ (d, $J=2.3 \mathrm{~Hz}, 4 \mathrm{H}$, imid), 1.41 (s, 36H, $\left.{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 181.8$ ($\mathrm{C}_{\mathrm{NHC}}$), 149.6 (2,6-py), 144.3 (4-py), 122.4 (imid), 119.1 (imid), 115.8 (3,5-py), 60.3 (CMe_{3}), 30.8 (CMe_{3}). ESI-MS (m / z): 1127.3 [M-BF4] ${ }^{+}$, $520.3\left[\mathrm{M}-(\mathrm{BF} 4)_{2}\right]^{2+}$. Elemental analysis (\%) calcd for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{Au}_{2} \mathrm{~B}_{2} \mathrm{~F} 8: \mathrm{C}, 37.58 ; \mathrm{H}, 4.15 ; \mathrm{N}$, 11.53; found: C, 37.04; H, 3.71; N, 11.36.

4.6. Preparation of $\left[\mathrm{Pd}(\mathrm{CNC}) \mathrm{Cl}^{2} \mathrm{BF}_{4}\right.$ (4)

A mixture of 2,6-bis(3-tert-butylimidazolium-1-yl)pyridine dichloride ($80.4 \mathrm{mg}, 0.203$ $\mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}(48.3 \mathrm{mg}, 0.208 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v}, 1 / 9)(10 \mathrm{~mL})$ was stirred at room temperature for 6 h . After filtration and evaporation to dryness, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, followed by addition of $\left[\mathrm{PdCl}_{2}(\mathrm{NCMe})_{2}\right](52.3 \mathrm{mg}, 0.202 \mathrm{mmol})$. After stirring for 12 h , the mixture was filtrated and removed the solvent. To a $\mathrm{MeOH}(2 \mathrm{~mL})$ solution of the crude product was added $\mathrm{NaBF}_{4}(110 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. After
concentration of the mixture, the resulting precipitate was filtrated, washed with a small amount of $\mathrm{H}_{2} \mathrm{O}$, and dried to give $[\mathrm{Pd}(\mathrm{CNC}) \mathrm{Cl}] \mathrm{BF}_{4}(4)$ as a yellow solid ($\left.69.6 \mathrm{mg}, 62 \%\right)$. IR (KBr , pellet): $v(\mathrm{BF}) 1083(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.35(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{py}), 7.86(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{imid}), 7.72$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 3,5-\mathrm{py}), 7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{imid}), 1.87$ (s, 18H, $\left.{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 166.4$ (C_{NHC}), 151.7 (2,6-py), 147.1 (4-py), 123.0 (imid), 117.1 (imid), 109.6 (3,5-py), 62.6 (CMe_{3}), 31.2 (CMe3). ESI-MS (m / z): 466.2 [M-BF4] ${ }^{+}$. Elemental analysis (\%) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{PdClBF}_{4}$: C, 41.33; H, 4.56; N, 12.68; Found: C, 41.20; H, 4.11; N, 12.70.

4.7. Preparation of $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}_{2}(\mu-\mathrm{CNC})\right]\right.$ (5)

A mixture of 2,6-bis(3-tert-butylimidazolium-1-yl)pyridine dichloride ($79.4 \mathrm{mg}, 0.200$ $\mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}(47.0 \mathrm{mg}, 0.203 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v}, 1 / 9)(10 \mathrm{~mL})$ was stirred at room temperature for 6 h . After filtration and evaporation to dryness, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, followed by addition of $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(73.2 \mathrm{mg}, 0.200 \mathrm{mmol})$. The mixture was stirred for 12 h , filtrated, and removed the solvent. The crude product was washed with benzene and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether to give $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right\}_{2}(\mu-\mathrm{CNC})\right]$ (5) as light yellow crystals ($97.2 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 9.00$ (br, 2H, 3,5-py), 8.02 (t, J = 8.0 Hz , 1H, 4-py), 7.83 (brs, 2H, imid), 7.35 (d, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{imid}), 5.05$ (br, CHallyl), 4.18 (br, $\left.\mathrm{CH}_{\text {allyl }}\right)$, 3.06 (br, $\left.\mathrm{CH}_{\text {allyl }}\right), 1.87\left(\mathrm{~s}, 18 \mathrm{H},{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 180.7\left(C_{\mathrm{NHC}}\right), 151.3$ (2,6-py), 140.3 (4-py), 120.3 (imid), 120.1 (imid), 59.3 (CMe_{3}), 50.1, 31.6 (CMe_{3}); we couldn’t assign the carbon signals of the $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$. FAB-MS $(\mathrm{m} / \mathrm{z})$: $654.1[\mathrm{M}-\mathrm{Cl}]^{+}, 429.2[\mathrm{Pd}(\mathrm{CNC})]^{+}$. Elemental analysis (\%) calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{Cl}_{2} \mathrm{Pd}_{2}$: C, 43.56; H, 5.12; N, 10.16; found: C, 43.19; H, 5.30; N, 9.76.

4.8. Preparation of $\left[\left\{\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}(\mu-\mathrm{CNC})(\mu-\mathrm{Cl})\right] \mathrm{BF}_{4}$ (6)

A mixture of $\left[\left\{\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right\}_{2}(\mu-\mathrm{CNC})\right](5)(69.3 \mathrm{mg}, 0.101 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(20.3 \mathrm{mg}$, $0.104 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ was stirred at room temperature for 1 h . After filtration and evaporation to dryness, the crude product was extracted with CHCl_{3}. The extract was filtrated and evaporated to give $\left[\left\{\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}(\mu-\mathrm{CNC})(\mu-\mathrm{Cl})\right] \mathrm{BF}_{4}(6)$ as a light yellow solid $(60.2 \mathrm{mg}$, 80%). ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 8.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{py}), 7.89$ (d, $\left.J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{imid}\right), 7.82$ (br, 2H, 3,5-py), 7.45 (brs, 2H, imid), 5.10 (br, $\mathrm{CH}_{\text {allyl }}$), 3.61 (br, $\mathrm{CH}_{\text {allyl }}$), 3.30 (br, $\mathrm{CH}_{\text {allyl }}$), 2.23 (br, $\mathrm{CH}_{\text {allyl }}$), $1.80\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 181.8$ ($\mathrm{Pd}-C_{\mathrm{NHC}}$), 150.2 (2,6-py), 143.7 (4-py), 121.3 (imid), 119.5 (imid), 115.3 (3,5-py), 59.3 (CMe3), 31.3 (CMe3); we couldn't assign the carbon signals of the $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$. ESI-MS (m / z): $654.2\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$. Elemental analysis (\%) calcd for $\mathrm{C}_{25} \mathrm{H}_{3} \mathrm{SN}_{5} \mathrm{Pd}_{2} \mathrm{ClBF}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 39.58 ; \mathrm{H}, 4.92$; $\mathrm{N}, 9.23$; found: $\mathrm{C}, 39.26 ; \mathrm{H}$, 5.45; N, 9.02.

4.9. X-ray crystal structural analyses

Crystallographic data are summarized in Table 1. X-ray quality single crystals were obtained from $\mathrm{CH}_{3} \mathrm{CN}$ /ether (for $\mathbf{1} \cdot\left(\mathrm{MeCN}\right.$) and 2), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (for 3), $\mathrm{CH}_{3} \mathrm{CN}$ (for $\mathbf{4} \cdot(\mathrm{MeCN})$), $\mathrm{CHCl}_{3} /$ pentane (for $\mathbf{5} \cdot\left(\mathrm{CHCl}_{3}\right)$), and acetone/ether (for $\mathbf{6} \cdot\left(\mathrm{OH}_{2}\right)$), respectively. Diffraction data were collected at $-180^{\circ} \mathrm{C}$ under a stream of cold N_{2} gas on a Rigaku RA-Micro7 HFM instrument equipped with a Rigaku Saturn724+ CCD detector by using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. The intensity images were obtained at the exposure of $16.0 \mathrm{~s} /{ }^{\circ}\left(\mathbf{1} \cdot(\mathrm{MeCN}), \mathbf{2}\right.$, and $\left.\mathbf{6} \cdot\left(\mathrm{OH}_{2}\right)\right), 8.0 \mathrm{~s} /{ }^{\circ}\left(\mathbf{3}\right.$ and $\mathbf{4} \cdot(\mathrm{MeCN})$), and $4.0 \mathrm{~s} /{ }^{\circ}$ $\left(5 \cdot\left(\mathrm{CHCl}_{3}\right)\right)$. The frame data were integrated using a Rigaku CrystalClear program package, and the data sets were corrected for absorption using a REQAB program.

The calculations were performed with a CrystalStructure software package. The structures were solved by direct methods, and refined on F^{2} by the full-matrix least squares methods. For $\mathbf{1} \cdot(\mathrm{MeCN})$ and $\mathbf{4} \cdot(\mathrm{MeCN})$, a $\mathrm{CH}_{3} \mathrm{CN}$ crystal solvent is included, and the $\mathrm{CH}_{3} \mathrm{CN}$ crystal solvent molecule of $1 \cdot(\mathrm{MeCN})$ is disordered over two positions in a $1 / 1$ ratio. For $\mathbf{5} \cdot\left(\mathrm{CHCl}_{3}\right)$ and $\mathbf{6} \cdot\left(\mathrm{OH}_{2}\right)$, there are one CHCl_{3} and one $\mathrm{H}_{2} \mathrm{O}$ crystal solvents, respectively. In the case of $\mathbf{5}$, one carbon atom of a $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$ ligand is disordered over two positions with occupancy factors of $0.6 / 0.4$. Anisotropic refinement was applied to all non-hydrogen atoms with the exception of the crystal solvents $(\mathbf{1} \cdot(\mathrm{MeCN})$ and $\mathbf{4} \cdot(\mathrm{MeCN}))$. Hydrogen atoms for all structures were put at calculated positions, while those of the solvent molecules $\left(\mathbf{1} \cdot(\mathrm{MeCN})\right.$ and $\left.\mathbf{6} \cdot\left(\mathrm{OH}_{2}\right)\right)$ and the disordered $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$ ligand of $5 \cdot\left(\mathrm{CHCl}_{3}\right)$ were not included in the calculations.
(Table 1 here)

Supplementary material

CCDC 1419784-1419789 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

This work was supported by the priority research project of Nagasaki University.

References

[1] (a) D. Morales-Morales, C.M. Jensen, The Chemistry of Pincer Compounds, 2007;
(b) C. Gunanathan, D. Milstein, Chem. Rev., 114 (2014) 12024-12087 and references therein.
[2] We have reported fixation of atmospheric carbon dioxide by ruthenium complexes bearing the pyridine-based bis(NHC carbene) (CNC) ligand: Y. Arikawa, T. Nakamura, S. Ogushi, K. Eguchi, K. Umakoshi, Dalton Trans., 44 (2015) 5303-5305.
[3] J.C.C. Chen, I.J.B. Lin, J. Chem. Soc., Dalton Trans., (2000) 839-840.
[4] (a) G.D. Frey, C.F. Rentzsch, D. von Preysing, T. Scherg, M. Mühlhofer, E. Herdtweck, W.A. Herrmann, J. Organomet. Chem., 691 (2006) 5725-5738;
(b) Y. Liu, T. Harlang, S.E. Canton, P. Chabera, K. Suarez-Alcantara, A. Fleckhaus, D.A. Vithanage, E. Goransson, A. Corani, R. Lomoth, V. Sundstrom, K. Warnmark, Chem. Commun., 49 (2013) 6412-6414.
[5] (a) H.M.J. Wang, I.J.B. Lin, Organometallics, 17 (1998) 972-975;
(b) J.C. Garrison, W.J. Youngs, Chem. Rev., 105 (2005) 3978-4008;
(c) D. Pugh, A.A. Danopoulos, Coord. Chem. Rev., 251 (2007) 610-641;
(d) I.J.B. Lin, C.S. Vasam, Coord. Chem. Rev., 251 (2007) 642-670.
[6] (a) M. Jansen, Angew. Chem. Int. Ed. Engl., 26 (1987) 1098-1110;
(b) P. Pyykkö, Chem. Rev., 97 (1997) 597-636.
[7] H. Schmidbaur, A. Schier, Angew. Chem., Int. Ed., 54 (2015) 746-784.
[8] (a) A. Caballero, E. Díez-Barra, F.A. Jalón, S. Merino, A.M. Rodríguez, J. Tejeda, J. Organomet. Chem., 627 (2001) 263-264;
(b) D.H. Brown, G.L. Nealon, P.V. Simpson, B.W. Skelton, Z. Wang, Organometallics, 28 (2009) 1965-1968.
[9] (a) S. Dinda, A.G. Samuelson, Chem. Eur. J., 18 (2012) 3032-3042;
(b) P. Woidy, A.J. Karttunen, M. Widenmeyer, R. Niewa, F. Kraus, Chem. Eur. J., 21 (2015) 3290-3303.
[10] (a) B.R.M. Lake, C.E. Willans, Chem. Eur. J., 19 (2013) 16780-16790;
(b) B. Liu, X. Ma, F. Wu, W. Chen, Dalton Trans., 44 (2015) 1836-1844.
[11] (a) P. Pyykkö, Angew. Chem., Int. Ed., 43 (2004) 4412-4456;
(b) H. Schmidbaur, A. Schier, Chem. Soc. Rev., 37 (2008) 1931-1951.
[12] (a) F. Jean-Baptiste dit Dominique, H. Gornitzka, A. Sournia-Saquet, C. Hemmert, Dalton Trans., (2009) 340-352;
(b) A. Herbst, C. Bronner, P. Dechambenoit, O.S. Wenger, Organometallics, 32 (2013) 1807-1814.
[13] (a) E. Peris, J.A. Loch, J. Mata, R.H. Crabtree, Chem. Commun., (2001) 201-202;
(b) J.A. Loch, M. Albrecht, E. Peris, J. Mata, J.W. Faller, R.H. Crabtree, Organometallics, 21 (2002) 700-706.
[14] C. Mazet, L.H. Gade, Chem. Eur. J., 9 (2003) 1759-1767.
[15] D.J. Nielsen, K.J. Cavell, B.W. Skelton, A.H. White, Inorg. Chim. Acta, 359 (2006) 1855-1869.
[16] R.E. Cowley, R.P. Bontchev, E.N. Duesler, J.M. Smith, Inorg. Chem., 45 (2006) 9771-9779.
[17] X. Tang, S. Woodward, N. Krause, Eur. J. Org. Chem., (2009) 2836-2844.
[18] R. Uson, A. Laguna, M. Laguna, D.A. Briggs, H.H. Murray, J.P. Fackler, in: Inorganic Syntheses, John Wiley \& Sons, Inc., 2007, pp. 85-91.
[19] F.L. Wimmer, S. Wimmer, P. Castan, R.J. Puddephatt, in: Inorganic Syntheses, John Wiley \& Sons, Inc., 2007, pp. 185-187.
[20] W.T. Dent, R. Long, A.J. Wilkinson, J. Chem. Soc., (1964) 1585-1588.

Table 1. Crystallographic data for $\mathbf{1 - 6}$.

	$1 \cdot(\mathrm{MeCN})$	2	3	4-(MeCN)	
formula	$\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{11} \mathrm{Ag}_{2} \mathrm{~B}_{2} \mathrm{~F}_{8}$	$\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{Cu}_{2} \mathrm{~B}_{2} \mathrm{~F}_{8}$	$\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{Au}_{2} \mathrm{~B}_{2} \mathrm{~F}_{8}$	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{ClPdBF}_{4}$	
fw	1074.25	947.58	1214.42	593.15	
cryst system	orthorhombic	orthorhombic	orthorhombic	monoclinic	
space group	Pnna (No. 52)	$C 222_{1} \text { (No. 20) }$	$\text { C222 }{ }_{1} \text { (No. 20) }$	$P 2_{1} / c(\text { No. 14) }$	
color of crystal	colorless	yellow	colorless	colorless	
crystal size (mm)	$0.08 \times 0.04 \times 0.02$	$0.1 \times 0.1 \times 0.09$	$0.13 \times 0.03 \times 0.03$	$0.1 \times 0.1 \times 0.05$	
$a(\AA)$	25.570 (7)	9.9193(18)	10.0219(12)	10.460(2)	
b (\AA)	18.781(5)	22.236(5)	22.476(3)	9.1161(18)	
$c(\AA)$	9.915(3)	19.779(4)	19.643(2)	25.623(5)	
α (deg)	90	90	90	90	
β (deg)	90	90	90	96.668(3)	
γ (deg)	90	90	90	90	
$V\left(\AA^{3}\right)$	4761(2)	4362.5(14)	4424.6(9)	2426.7(8)	
Z	4	4	4	4	
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.498	1.443	1.823	1.623	
$\mu\left(\mathrm{cm}^{-1}\right)$	8.925	10.499	67.212	9.279	
$2 \theta_{\text {max }}$ (deg)	55.0	54.9	54.9	55.0	
no. of all reflns collected	37109	18337	18435	19496	
no. of unique reflns	5472	5001	5056	5505	
$R_{\text {int }}$	0.1262	0.0700	0.0305	0.0413	
no. of obsd reflns ${ }^{a}$	4202	4198	4556	4563	
no. of parameters	281	277	277	292	
$R 1^{a, b}$	0.1444	0.0556	0.0205	0.0559	
$R w\left(\right.$ all data) ${ }^{\text {c }}$	0.2565	0.1001	0.0285	0.1287	
GOF (all data) ${ }^{\text {d }}$	1.261	1.060	0.866	1.040	
${ }^{a} I>2 \sigma(I) .{ }^{b} R 1=\Sigma \\| F O\|-\|F C\|\| / \Sigma\|F O\| .{ }^{c} R w=\left\{\Sigma w\left(F O^{2}-F C^{2}\right)^{2} / \Sigma w\left(F o^{2}\right)^{2}\right\}^{1 / 2}$.					
${ }^{d} \mathrm{GOF}=\left[\left\{\Sigma w \left(F o^{2}\right.\right.\right.$ parameters.	$\left.\left.-F c^{2}\right)^{2}\right\} /(N o-N$	$]^{1 / 2}$, where No and	$N p$ denote the nu	ber of data and	

Table 1. (Continued)

	$5 \cdot\left(\mathrm{CHCl}_{3}\right)$	6 $\cdot\left(\mathrm{OH}_{2}\right)$	
formula	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{Ns}_{5} \mathrm{Cl}_{5} \mathrm{Pd}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{3} \mathrm{~N}_{5} \mathrm{OClPd} \mathrm{C}_{2} \mathrm{BF}_{4}$	
fw	808.67	758.66	
cryst system	monoclinic	monoclinic	
space group	$P 2_{1} / C \text { (No. 14) }$	$P 2_{1} / C \text { (No. 14) }$	
color of crystal	colorless	yellow	
crystal size (mm)	$0.15 \times 0.08 \times 0.06$	$0.1 \times 0.1 \times 0.03$	
$a(\AA)$	17.632(3)	13.169(3)	
$b(\AA)$	8.9571(12)	13.172(2)	
$c(\AA)$	20.249(3)	17.069(3)	
α (deg)	90	90	
β (deg)	97.272(3)	91.149(3)	
$\gamma(\mathrm{deg})$	90	90	
$V\left(\AA^{3}\right)$	3172.3(8)	2960.2(9)	
Z	4	4	
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.693	1.702	
$\mu\left(\mathrm{cm}^{-1}\right)$	15.801	13.590	
$2 \theta_{\text {max }}$ (deg)	55.0	54.9	
no. of all reflns collected	25536	24071	
no. of unique reflns	7572	6711	
$R_{\text {int }}$	0.0363	0.0544	
no. of obsd reflns ${ }^{a}$	5709	5474	
no. of parameters	358	358	
$R 1^{a, b}$	0.0405	0.0513	
$R w\left(\right.$ all data) ${ }^{\text {c }}$	0.0858	0.0949	
GOF (all data) ${ }^{\text {d }}$	1.087	1.108	
${ }^{a} I>2 \sigma(I) .{ }^{\text {b }} R 1=\Sigma \\| F O\|-\|F C\|\| / \Sigma\|F o\| .{ }^{c} R w=\left\{\Sigma w\left(F O^{2}-F c^{2}\right)^{2} / \Sigma w\left(F o^{2}\right)^{2}\right\}^{1 / 2}$.			
${ }^{d} \mathrm{GOF}=\left[\left\{\Sigma w \left(F o^{2}\right.\right.\right.$ parameters.	$\left.\left.-F c^{2}\right)^{2}\right\} /(N o-N$	$]^{1 / 2}$, where No and	

[Captions]

Scheme 1. Preparations of a series of coinage metal complexes $\left[\mathrm{M}_{2}(\mathrm{CNC})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathrm{M}=\mathrm{Cu}$, $\mathrm{Ag}, \mathrm{Au})$.

Scheme 2. Preparations of palladium complexes using the carbene transfer reactions.

Fig. 1. Molecular structures of $\mathbf{1}$ (left), $\mathbf{2}$ (middle), and $\mathbf{3}$ (right) with thermal ellipsoids at the 50% probability level. Hydrogen atoms, solvent molecules of $\mathbf{1}$, and BF_{4} counter ions are omitted for clarity.
Fig. 2. Molecular structures of 4 (left), 5 (middle), and 6 (right) with thermal ellipsoids at the 50% probability level. Hydrogen atoms, the disordered carbon atom of 5, solvent molecules, and BF_{4} counter ions for $\mathbf{4}$ and $\mathbf{6}$ are omitted for clarity.

Figure 1.

Figure 2.

