1	Age-Specific Risk Factors for Incident Disability in Activities of Daily
2	Living among Middle-Aged and Elderly Community-Dwelling
3	Japanese Women during an 8-9 Year Follow-up: The Hizen-Oshima
4	Study
5	
6	Takuhiro Okabe, MA ^{1,2} , Yasuyo Abe, MD, PhD ¹ , Yoshihito Tomita, MA ^{1,2} ,
7	Satoshi Mizukami, PhD ^{1,2} , Mitsuo Kanagae, PhD ^{1,2} , Kazuhiko Arima, MD,
8	PhD ¹ , Takayuki Nishimura, PhD ¹ , Ritsu Tsujimoto, MD ³ , Natsumi Tanaka,
9	MD ³ , Hisashi Goto, MD, PhD ⁴ , Itsuko Horiguchi, DDS, PhD ⁵ , and
10	Kiyoshi Aoyagi, MD, PhD ¹
11	
12	Geriatrics & Gerontology International • in press
13	
14	¹ Department of Public Health, Nagasaki University Graduate School of
15	Biomedical Sciences, Nagasaki, Nagasaki, Japan
16	² Department of Rehabilitation, Nishi-Isahaya Hospital, Isahaya, Nagasaki,
17	Japan
18	³ Department of Orthopedic Surgery, Nagasaki University Graduate School

- 19 of Biomedical Sciences, Nagasaki, Japan
- 20 ⁴Goto Health Care Office, Goto, Nagasaki, Japan
- 21 ⁵Center for Public Relations Strategy, Nagasaki University, Nagasaki,
- 22 Nagasaki, Japan
- 23 Correspondence to:
- 24 Yasuyo Abe, MD, PhD
- 25 Department of Public Health, Nagasaki University Graduate School of
- 26 Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Japan
- 27 Tel: +81 95 8197067, Fax: +81 95 8197069,
- 28 E-mail: yasuyo-a@nagasaki-u.ac.jp
- 29

30 Short running title: Age-Specific Risk Factors of Disability

32 ABSTRACT

Aim: The purposes of the present study were to investigate risk factors 33 for incident disability in activities of daily living (ADL) among 34middle-aged and older women, and to determine whether there are 35differences in risk factors according to age groups. 36 Methods: The participants were 264 Japanese women aged 40 and older. 37A self-administered questionnaire was used to survey participants about 38difficulty in performing selected basic and instrumental ADLs at baseline 39 and at follow-up. ADL disability was defined as difficulty performing 3 40 or more ADLs. Information on knee joint or back pain and comorbidities 41(heart disease, lung disease, stroke, or diabetes mellitus) was obtained 42using a self-administered questionnaire at baseline. Physical performance 43measurements (grip strength, chair stand time, rapid walking speed, and 44functional reach) were also conducted at baseline. 45Results: Prevalence of incident ADL disability was 44 (27.5%) in women 46aged 40-64 years and 57 (54.8%) in women aged 65 years and older 47(P<0.001). Multiple logistic regression analysis revealed that decreased 48grip strength and having pain were significantly associated with a higher 49

50	risk for incident ADL disability among women aged 40-64 years. For
51	women aged 65 years and older, decreased rapid walking speed, having a
52	comorbidity, and having pain were associated with incident ADL
53	disability.
54	Conclusions: This study revealed that a different set of risk factors was
55	associated with incident ADL disability among women aged 40-64 years
56	and women aged 65 years and older. Age-specific screening and
57	intervention strategies are necessary for effective prevention of incident
58	ADL disability.
59	

60 Key words: activities of daily living, knee pain, back pain, comorbidity,
61 physical functioning

62 Introduction

63 The incidence of disability in activities of daily living (ADL) increases

64 with age ¹⁻³. The number of elderly people is increasing worldwide ⁴. In

Japan, 26.0% of the population was older than 65 years in 2014, and

36.1% of the population will be older than 65 years by 2040 ⁵.

67 Approximately 26% of the Japanese population aged 60 years and older

68	reported disability in ADL in 2014 ⁶ . Among women, ADL disability can
69	especially be a critical issue since women are expected to spend a larger
70	proportion of life in poor health than men ⁷ .
71	Furthermore, the prevalence of ADL disability was shown to
72	increase with advancing age (60-64 years, 12.8%; 65-74 years, 17.7%; 75
73	years and older, 44.6%) ⁶ . The ability to perform ADLs without assistance
74	largely determines whether an individual can live independently ⁸ . ADL
75	disability results in greater use of medical care, more institutionalization,
76	and poorer physical and mental health ² . Maintaining and restoring
77	independence in ADL is important for optimal quality of life ⁹ . ADL
78	disability in elderly adults is thus an important and growing public health
79	concern.
80	Multiple risk factors appear to be responsible for ADL disability

¹⁰. Identifying contributors to ADL disability is important in establishing prevention strategies. Previous cross-sectional studies have demonstrated associations of physical function ¹¹, pain ¹², and comorbid disorders ¹³ with ADL disability. Longitudinal studies have also reported that similar risk factors (physical function ^{2, 3, 14-16}, pain ^{17, 18}, and comorbidities ^{1, 2})

may predict future incidence of ADL disability.

87	Most previous studies have assessed the factors associated with
88	incident ADL disability only in elderly people aged 65 years and older. To
89	the best of our knowledge, no studies have investigated ADL disability
90	and its risk factors considering possible differences between middle-aged
91	and elderly people. It is important to identify risk factors for the
92	incidence of ADL disability considering possible differences between
93	middle-aged and elderly people to prevent ADL disability at an earlier
94	age.
95	The objective of the present study was to investigate risk factors
96	for incident ADL disability during 8-9 years of follow-up among women
97	aged 40 years and older, and determine whether there are differences in
98	risk factors between women younger than 65 years and women aged 65
99	and older.
100	
101	Methods
102	Study participants

The Hizen-Oshima Study is a prospective, population-based cohort

study of osteoporosis and osteoarthritis. Details of the Hizen-Oshima 104 105study have been previously published ¹⁹. Briefly, all women aged 40 years 106 and older in Oshima, a town in Nagasaki Prefecture in Japan, were invited to participate. The town of Oshima has a population of approximately 107 5800 (2850 men, 2950 women), including approximately 2000 women 108 aged 40 or older. Despite having a shipyard in the town, Oshima is mainly 109a rural area. The baseline examination of each participant was performed 110 at the Oshima Health Center between 1998 and 1999. A total of 586 111 women (approximately 30% of eligible women) participated in the study. 112113All participants were noninstitutionalized, living independently at baseline, and were able to ambulate independently (with or without a 114cane). All participants provided written informed consent before 115participation. In 2008, a follow-up mail survey on ADL was conducted. 116Of the 586 participants in the baseline survey, 495 were alive, 46 were 117dead, and 45 had moved to a different municipality. The questionnaire 118 was mailed to the women who were known to be alive, and 394 women 119responded (Figure 1). This study was approved by the local and 120 121institutional ethics committees.

 $\mathbf{7}$

123 Main outcome measurement

124	Our primary outcome was incident of difficulty in performing
125	selected basic and instrumental ADL at 8-9 years follow-up, measured by
126	a self-administered questionnaire. The ADL questionnaire survey was
127	conducted at baseline (in 1998-1999) and at follow-up (in 2008).
128	Participants were asked if they had any difficulty performing the
129	following 6 ADLs that included 14 activities (yes/no): (1) bending-related
130	activities (getting in or out of a car, bending over or picking up a
131	lightweight object, putting on socks or stockings, lifting a 5-kg object
132	from the floor), (2) spine-extension activity (reaching an object above
133	your head), (3) walking-related activities (walking 100m on a level
134	surface, climbing 10 steps without stopping, walking down 10 steps,
135	shopping for groceries or clothes), (4) standing endurance (standing on
136	your feet for 2 hours), (5) heavy activities (heavy housework or yard work,
137	lifting a heavy suitcase of about 15 kg or a 3- to 4-year-old child by
138	yourself), and (6) basic activities (feeding or dressing yourself, preparing
139	your own meals). ADL disability was defined as difficulty performing 3

140 or more ADLs; this definition was validated previously ²⁰.

141

142 Measurements at baseline

All participants were asked if they had knee joint and back pain on 143most days during the previous month, and if they had comorbidities (heart 144disease, lung disease, stroke, or diabetes mellitus). Height and weight 145were measured with the participants in light clothing and without shoes. 146Body mass index (BMI) was calculated as weight $(kg)/height (m)^2$. 147Measures of physical performance included grip strength, chair stand time, 148149rapid walking speed, and functional reach. Grip strength of the dominant hand was measured using a hydraulic dynamometer (Jamar Hydraulic 150Hand Dynamometer Model J00105, Lafayette Instrument Company, Inc., 151Lafayette, IN, USA). Grip strength was calculated as the average of 2 152trials. Chair stand time was measured as the time to stand up from a 153standard chair 5 times; the participants were asked, if possible, to not use 154their arms for assistance ²¹. Results were calculated as the average of 2 155trials. Rapid walking speed was calculated from the time required for 156participants to walk a 6-meter course at a rapid but safe pace (rapid 157

walking speed). Rapid walking speed was recorded as a single trial. To
determine functional reach, the subject first stood comfortably upright,
facing forward, hand in a fist, with the arm extended next to a yardstick
mounted on a wall. The participants then reached forward as far as
possible without stepping or losing balance, and the difference between
the 2 points on the yardstick was taken as functional reach, calculated as
the average of 3 trials.

165

166 Statistical analysis

167Women who had any missing variables (n=21) or with ADL disability at baseline (n=109) were excluded from the analysis, leaving 168169264 women for the final analysis (Figure). The follow-up rate was 45.1% (264/586). Student's t-test was used for continuous variables, and the 170 chi-square test was used for categorical variables to determine significant 171differences between women with and without incident ADL disability at 172follow-up. Multiple logistic regression analysis was used to evaluate the 173simultaneous effects of variables on incident ADL disability. Odds ratios 174and 95% confidence intervals were calculated. Starting with a model 175

176	including all variables with P values <0.20 in the univariate analysis, the
177	most appropriate model was selected based on Akaike's information
178	criteria. P values <0.05 were considered significant. Statistical analysis
179	was performed using SPSS software version 20 for Windows (SPSS Inc.,
180	Chicago, IL, USA).

181

182 **Results**

Table 1 summarizes some of the baseline characteristics of 183participants according to age groups. Mean follow-up time was 9.1 ± 0.4 184years (range, 8.3 - 9.7 years), and mean age at baseline was 61.1 ± 8.4 185years. Women aged 65 years and older had significantly poorer physical 186187 functioning (grip strength, chair stand time, rapid walking speed, and functional reach test) than women aged 40-64 years. Prevalence of 188 comorbidity was 20 (12.5%) in women of aged 40-64 years and 28 189(26.9%) in women aged 65 years and older (P=0.005). Prevalence of pain 190 was 65 (40.6%) in women aged 40-64 years and 38 (36.5%) in women 191 aged 65 years and older (P=0.52). Prevalence of incident ADL disability 192193was 44 (27.5%) in women aged 40-64 years and 57 (54.8%) in women

194 aged 65 years and older (P<0.001).

195	Table 2 shows comparisons of baseline variables between women
196	with and without incident ADL disability at follow-up. In women aged
197	40-64 years, women with incident ADL disability had lower grip strength
198	(P=0.01), poorer functional reach test (P=0.03), and greater frequency of
199	pain (P<0.001) compared with women without incident ADL disability.
200	For women aged 65 years and older, women with incident ADL disability
201	had significantly older age (P=0.005), slower rapid walking speed
202	(P=0.002), greater prevalence of comorbidity (P= 0.004), and greater
203	prevalence of pain (P=0.004) compared with women without incident
204	ADL disability.
205	Multiple logistic regression analysis was used to evaluate the
206	simultaneous effects of baseline variables on incident ADL disability
207	(Table 3). In women aged 40-64 years, decreased grip strength and having
208	pain were significantly associated with higher risk of incident ADL
209	disability. For women aged 65 and older, decreased rapid walking speed,
210	comorbidity, and having pain were significantly associated with a higher
211	risk of incident ADL disability.

Discussion

214	This study assessed risk factors for incident ADL disability among
215	women aged 40-64 years and 65 years and older. To the best of our
216	knowledge, this is the first study that reported risk factors of ADL
217	disability considering differences between women younger than 65 years
218	and those aged 65 years and older.
219	Aging causes gradual changes in the organism, which leads to poor
220	physical conditions such as decline in physical function ²²⁻²⁴ and increased
221	comorbidity ²⁵ . In our population, as expected, all examined physical
222	performance measures showed significant negative correlation with age
223	(data not shown), and the number of comorbidity significantly increased
224	with age (data not shown). On the other hand, level of age related changes
225	may vary according to factors. For example, decline in grip strength is
226	reported to start as early as ages 40 years ²³ , whereas rapid walking speed
227	decreases at a much later life ²² . Thus, predictive factors of incident ADL
228	disability might differ according to different age categories.

This study revealed that different sets of risk factors were

associated with incident ADL disability among women aged 40-64 years 230and women aged 65 years and older. Previous studies have reported risk 231factors of incident ADL disability among people aged 65 and older, such 232as comorbidity, physical performance measurements, and pain ^{1, 2, 15, 17, 18}. 233However, few studies have reported risk factors for ADL disability among 234people younger than 65 years. Rantanen et al. reported that grip strength 235was associated with an elevated risk of incident ADL disability in men 236aged 45-68 years ¹⁶. Ouden et al. reported that, among a group of 237participants including both middle-aged and elderly people, grip strength, 238leg strength, and level of physical activity were associated with a high 239risk of ADL disability ²⁶. However, no studies have assessed risk factors 240for incident ADL disability in elderly and middle-aged people separately. 241Our study demonstrated that risk factors for ADL disability might vary 242depending on age. There would be a need for age-specific screening and 243intervention strategies to prevent ADL disability. 244

Walking ability plays an important role in ADL independence of the elderly. Walking speed is a common physical performance measurement used in clinical practice and is a good predictor of ADL dependence ¹⁴.

248	Several studies reported that slower walking speed was significantly
249	associated with the risk for incident ADL disability ^{2, 3, 15} . In our study,
250	women aged 65 years and older with slower baseline rapid walking speed
251	had a higher risk of incident ADL disability, which is in line with
252	previous studies. Rapid walking speed decreases with advancing age,
253	especially after 70 years ²² . Suzuki et al. confirmed that decreased rapid
254	walking speed increases the risk for falls and therefore increases ADL
255	disability either from fracture itself or post-fall syndrome in the
256	community-dwelling elderly ³ . Thus an age-related decline in walking
257	speed might lead to lower physical activity, a higher risk for falls, and
258	ADL disability. In the elderly, walking ability should be targeted in
259	interventions aimed at preventing ADL disability.
260	In our study, among women aged 65 years and older, having a
261	comorbidity was significantly associated with a higher risk of incident
262	ADL disability. Several studies reported that elderly people with a
263	comorbidity have a higher risk of developing incident ADL disability ^{1, 2,}
264	^{11, 13} and mortality ¹ . Our study is consistent with these previous studies.
265	Prevalence of comorbidity increases with age, and number of

comorbidities is reported to increase with age ²⁵, which might lead to 266267ADL disability in older age. Proper screening and management of medical conditions is thus important. 268Our study showed that having knee joint or back pain was 269significantly associated with a higher risk of incident ADL disability both 270among women aged 40-64 years and women aged 65 years and older. 271Several studies reported that elderly people with pain have a higher risk 272of developing incident ADL disability ^{17, 18}. Knee joint pain and back pain 273are major symptoms that occur in middle-aged and elderly people ^{27, 28}, 274and these symptoms often become chronic. Covinsky et al. reported that 275people with pain also commonly have functional limitations and 276speculated that mutual feedback loops in which pain and functional 277limitations are mutually reinforcing, with pain exacerbating functional 278limitations and functional limitations exacerbating pain ²⁴. Having pain 279might cause functional limitations, which might lead to difficulties in 280various ADLs. 281

We showed that poorer grip strength was significantly associated with incident ADL disability only in middle-aged women. Two studies

284	have shown significant associations between weaker grip strength and
285	higher risk of incident ADL disability among populations that include
286	middle-aged people ^{16, 26} . Grip strength decreases with advancing age ²⁹ .
287	In a study of Japanese women, grip strength was reported to be at
288	the highest among women in their early 40s and then decrease with age 23 .
289	Strength training should be started at an earlier age, before a decline in
290	muscular strength becomes evident.
291	As for elderly women, previous studies reported that grip strength
292	was not significantly associated with the incidence of ADL disability ^{3, 14,}
293	³⁰ . Our study showed no association between grip strength and risk for
294	incident ADL disability, which is consistent with previous studies. On the
295	other hand, several studies conducted in elderly populations, including
296	both genders, reported significant associations between weaker grip
297	strength and a higher risk of incident ADL disability ^{2, 31} . Further studies
298	are needed to determine the effect of grip strength on incident ADL
299	disability.
300	This study has several limitations. First, physical performance

This study has several limitations. First, physical performance
 measurements and information on comorbidity and pain were not

302	available at follow-up. Therefore, changes in these parameters over time
303	could not be considered. Second, non-responders were older than
304	responders. Some women may have not responded because they were
305	functionally limited by their age-related medical conditions, which might
306	weaken the association of incident ADL disability with baseline variables.
307	Third, we did not assess severity of pain; thus the influence of pain
308	severity on incident ADL disability could not be assessed. Fourth,
309	because the present study included only women, these results cannot be
310	generalized to men.
311	In conclusion, this study revealed that a different set of risk factors
312	were associated with incident ADL disability among women aged 40-64
313	years and women aged 65 years and older. Age-specific screening and
314	intervention strategies may be necessary for effective prevention of
315	incident ADL disability among elderly women.
316	

317 Acknowledgments

The authors thank all the healthcare staff and study participants for thecontribution of their time, effort, and dedication. The study was supported in part by the

320 Japan Society for the Promotion of Science.

321

322 Disclosure statement

- 323 We declare that there is no financial support or relationship that may pose
- 324 conflicts of interest.

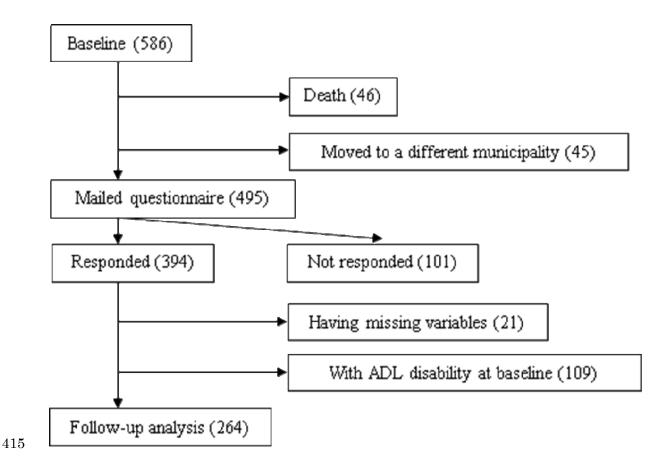
325 References

326	1	Di Bari M, Virgillo A, Matteuzzi D, et al. Predictive validity of measures of
327		comorbidity in older community dwellers: the Insufficienza Cardiaca negli Anziani
328		Residenti a Dicomano Study. J Am Geriatr Soc 2006; 54: 210-6.
329	2	Shinkai S, Kumagai S, Fujiwara Y, et al. Predictors for the onset of functional decline
330		among initially non-disabled older people living in a community during a 6-year
331		follow-up. Geriatrics & Gerontology International 2003; 3: S31-S39.
332	3	Suzuki T, Yoshida H, Kim H, et al. Walking speed as a good predictor for
333		maintenance of I-ADL among the rural community elderly in Japan: A 5-year
334		follow-up study from TMIG-LISA. Geriatrics & Gerontology International 2003; 3:
335		S6-S14.
336	4	United Nations, Department of Economic and Social Affairs, Population Division.
337		World Population Prospects: The 2015 Revision, Key Findings and Advance Tables.
338		Working Paper No. ESA/P/WP.241, 2015.
339	5	Ministry of Internal Affairs and Communications. Statistical Handbook of Japan 2015
340		[cited 2015 October 27]. Available from:
341		http://www.stat.go.jp/english/data/handbook/c0117.htm.

342	6	Cabinet Office, Government of Japan. Survey on the Senior Citizens' Attitude toward
343		Daily Living 2014 [cited 2015 October 27]. Available from:
344		http://www8.cao.go.jp/kourei/ishiki/h26/sougou/zentai/pdf/s2-1-2.pdf.
345	7	Luy M, Minagawa Y. Gender gaps-Life expectancy and proportion of life in poor
346		health. <i>Health Rep</i> 2014; 25 : 12-9.
347	8	Andrews JS, Cenzer IS, Yelin E, Covinsky KE. Pain as a risk factor for disability or
348		death. J Am Geriatr Soc 2013; 61: 583-9.
349	9	Stuck AE, Walthert JM, Nikolaus T, Bula CJ, Hohmann C, Beck JC. Risk factors for
350		functional status decline in community-living elderly people: a systematic literature
351		review. Soc Sci Med 1999; 48: 445-69.
352	10	Rosso AL, Eaton CB, Wallace R, et al. Geriatric syndromes and incident disability in
353		older women: results from the women's health initiative observational study. J Am
354		<i>Geriatr Soc</i> 2013; 61 : 371-9.
355	11	den Ouden ME, Schuurmans MJ, Mueller-Schotte S, Brand JS, van der Schouw YT.
356		Domains contributing to disability in activities of daily living. J Am Med Dir Assoc
357		2013; 14 : 18-24.

358 12 Reid MC, Guo Z, Towle VR, Kerns RD, Concato J. Pain-related disability among

359		older male veterans receiving primary care. J Gerontol A Biol Sci Med Sci 2002; 57:
360		M727-32.
361	13	Kishimoto M, Ojima T, Nakamura Y, et al. Relationship between the level of activities
362		of daily living and chronic medical conditions among the elderly. J Epidemiol 1998;
363		8 : 272-7.
364	14	Wennie Huang WN, Perera S, VanSwearingen J, Studenski S. Performance measures
365		predict onset of activity of daily living difficulty in community-dwelling older adults.
366		J Am Geriatr Soc 2010; 58 : 844-52.
367	15	Idland G, Pettersen R, Avlund K, Bergland A. Physical performance as long-term
368		predictor of onset of activities of daily living (ADL) disability: a 9-year longitudinal
369		study among community-dwelling older women. Arch Gerontol Geriatr 2013; 56:
370		501-6.
371	16	Rantanen T, Guralnik JM, Foley D, et al. Midlife hand grip strength as a predictor of
372		old age disability. Jama 1999; 281: 558-60.
373	17	Nishiwaki Y, Michikawa T, Yamada M, Eto N, Takebayashi T. Knee pain and future
374		self-reliance in older adults: evidence from a community-based 3-year cohort study in
375		Japan. J Epidemiol 2011; 21 : 184-90.


376	18	Leveille SG, Guralnik JM, Hochberg M, et al. Low back pain and disability in older
377		women: independent association with difficulty but not inability to perform daily
378		activities. J Gerontol A Biol Sci Med Sci 1999; 54: M487-93.
379	19	Jinbayashi H, Aoyagi K, Ross PD, Ito M, Shindo H, Takemoto T. Prevalence of
380		vertebral deformity and its associations with physical impairment among Japanese
381		women: The Hizen-Oshima Study. Osteoporos Int 2002; 13: 723-30.
382	20	Huang C, Ross PD, Wasnich RD. Vertebral fracture and other predictors of physical
383		impairment and health care utilization. Arch Intern Med 1996; 156: 2469-75.
384	21	Csuka M, McCarty DJ. Simple method for measurement of lower extremity muscle
385		strength. Am J Med 1985; 78: 77-81.
386	22	Kozakai R, Tsuzuku S, Yabe K, Ando F, Niino N, Shimokata H. Age-related changes
387		in gait velocity and leg extension power in middle-aged and elderly people. J
388		<i>Epidemiol</i> 2000; 10 : S77-81.
389	23	Ministry of Education, Culture, Sports, Science and Technology. Physical Fitness and
390		Exercise Capacity Survey 2013 [cited 2015 October 27] Available from:
391		http://www.e-stat.go.jp/SG1/estat/X1sd1.do?sinfid=000031322048.
392	24	Covinsky KE, Lindquist K, Dunlop DD, Yelin E. Pain, functional limitations, and

393

aging. J Am Geriatr Soc 2009; 57: 1556-61.

394	25	van den Akker M, Buntinx F, Metsemakers JF, Roos S, Knottnerus JA.
395		Multimorbidity in general practice: prevalence, incidence, and determinants of
396		co-occurring chronic and recurrent diseases. J Clin Epidemiol 1998; 51: 367-75.
397	26	den Ouden ME, Schuurmans MJ, Brand JS, Arts IE, Mueller-Schotte S, van der
398		Schouw YT. Physical functioning is related to both an impaired physical ability and
399		ADL disability: a ten year follow-up study in middle-aged and older persons.
400		Maturitas 2013; 74: 89-94.
401	27	Aoyagi K, Ross PD, Huang C, Wasnich RD, Hayashi T, Takemoto T. Prevalence of
402		joint pain is higher among women in rural Japan than urban Japanese-American
403		women in Hawaii. Ann Rheum Dis 1999; 58: 315-9.
404	28	Cunningham LS, Kelsey JL. Epidemiology of musculoskeletal impairments and
405		associated disability. Am J Public Health 1984; 74: 574-9.
406	29	Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve 2002; 25:
407		17-25.
408	30	Onder G, Penninx BW, Ferrucci L, Fried LP, Guralnik JM, Pahor M. Measures of
409		physical performance and risk for progressive and catastrophic disability: results from

410		the Women's Health and Aging Study. J Gerontol A Biol Sci Med Sci 2005; 60: 74-9.
411	31	Seidel D, Brayne C, Jagger C. Limitations in physical functioning among older people
412		as a predictor of subsequent disability in instrumental activities of daily living. Age
413		Ageing 2011; 40 : 463-9.

416 Figure 1

Participants from baseline to follow up. Of the 586 participants in the baseline
survey, 495 were alive, 46 were dead, and 45 had moved to a different
municipality at follow-up. The questionnaire was mailed to the women who
were known to be alive, and 394 women responded. Women who had any
missing variables (n=21) or with ADL disability at baseline (n=109) were
excluded from the analysis, leaving 264 women for data analysis.

	total	40-64 years	65 + years	
	n=264	n=160	n=104	p-value [§]
	Mean \pm SD, n (%)	Mean \pm SD, n (%)	Mean \pm SD, n (%)	
follow-up time (years)	9.1 ± 0.4	9.1 ± 0.4	9.2 ± 0.4	0.78
Age (years)	61.1 ± 8.4	55.8 ± 6.4	69.3 ± 3.0	< 0.001
Body mass index (kg/m ²)	23.1 ± 3.0	23.3 ± 3.0	22.9 ± 3.1	0.35
Grip strength (kg)	$25.8~\pm~5.0$	27.5 ± 4.8	23.2 ± 4.1	< 0.001
Chair stand time (sec)	8.2 ± 1.8	7.6 ± 1.5	9.1 ± 1.9	< 0.001
Rapid walking speed (m/s)	1.79 ± 0.24	1.87 ± 0.23	1.66 ± 0.21	< 0.001
Functional reach test (cm)	27.0 ± 6.8	28.6 ± 6.6	24.5 ± 6.2	< 0.001
Comorbidity [†]	48 (18.2)	20 (12.5)	28 (26.9)	0.005
Pain [‡]	103 (39.0)	65 (40.6)	38 (36.5)	0.52
Incident ADL disability	101 (38.3)	44 (27.5)	57 (54.8)	< 0.001

 Table 1. Characteristics of participants (N=264)

[†] Presence of heart disease, lung disease, stroke, or diabetes mellitus.

[‡] Presence of knee or back pain.

[§]Comparison of variables between women aged 40-64 years and aged 65 + years.

	40-64 years (n=160) incident ADL disability			65 + years (n=104) incident ADL disability		-
			- p-value			
Variables	with without			with	without	p-value
	n=44	n=116		n=57	n=47	
	Mean ± S	SD, n (%)		Mean ± S	SD, n (%)	
Age (years)	57.2 ± 5.1	55.3 ± 6.7	0.06	70.0 ± 3.2	68.4 ± 2.6	0.005
Body mass index (kg/m ²)	23.4 ± 3.1	23.2 ± 3.0	0.67	22.9 ± 3.0	22.9 ± 3.2	0.92
Grip strength (kg)	26.0 ± 3.8	28.0 ± 5.0	0.014	23.5 ± 4.2	22.9 ± 4.0	0.40
Chair stand time (sec)	7.9 ± 1.7	7.6 ± 1.5	0.21	9.3 ± 2.1	8.8 ± 1.7	0.17
Rapid walking speed (m/s)	1.86 ± 0.21	1.87 ± 0.23	0.69	1.61 ± 0.18	1.74 ± 0.22	0.002
Functional reach test (cm)	26.8 ± 6.7	29.3 ± 6.5	0.03	23.9 ± 6.5	25.1 ± 5.7	0.32
Comorbidity [†]	8 (18.2)	12 (10.3)	0.19	22 (38.6)	6 (12.8)	0.004
Pain [‡]	29 (65.9)	36 (31.0)	< 0.001	28 (49.1)	10 (21.3)	0.004

Table 2. Comparison of baseline variables between women with and without incident ADL disability at follow-up

[†] Presence of heart disease, lung disease, stroke, or diabetes mellitus.

[‡] Presence of knee or back pain.

Age	Variables	Units	Odds ratios (95%CI)
40, 64, max (n-160)	Grip strength (kg)	-5	1.82 (1.17 – 2.83)
40-64 years (n=160)	Pain [‡]	Yes/No	4.87 (2.25 - 10.54)
	Rapid walking speed (m/s)	- 1 SD [§]	2.19 (1.24 - 3.87)
65 + years (n=104)	Comorbidity [†]	Yes/No	4.40 (1.47 - 13.16)
	Pain [‡]	Yes/No	4.72 (1.77 – 12.60)

Table 3. Multiple logistic regression models for incident ADL disability at follow-up

[†] Presence of heart disease, lung disease, stroke, or diabetes mellitus.

[‡] Presence of knee or back pain.

 $^{\$}$ Rapid walking speed : 1SD=0.24 m/s