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Red blood cell size differential method for time-
series detailed monitoring of anemic disorders with 
RBC size abnormalities in mean corpuscular volume 
(MCV) and/or red blood cell distribution width (RDW)
Sunao Atogami1,2*, Charles de Kerckhove3, Katsunori Yanagihara1 and Shimeru Kamihira1,3

Abstract: Background: Size heterogeneity in red blood cells (RBCs), as indicated by 
elevated RBC distribution width (RDW), is increasingly considered a prognostic factor 
in various diseases. However, the semi-quantitative nature of the RDW value ap-
pears limited when evaluating quantitative changes in time-series RBC size distribu-
tions over a clinical course. Methods: We developed a time-series anemia monitoring 
program by displaying progressive differences between six size fractions in an RBC 
size distribution. To standardize each variation precisely, our program includes an 
angular transformation that is applied to all measured count ratio data. Results: By 
representing microcytic and/or macrocytic changes in time series independently, 
this method appears to improve evaluations of anisocytosis, reflecting the respon-
siveness of treatments and effects, such as deficiencies in iron or vitamin B12. 
Time-series displays of RBC size changes also appear to enable verification of latent 
clinical developments at earlier stages and the characterization of imbalances 
between RBC supply and RBC loss in anemic pathologies. Conclusions: By display-
ing linear relationships between RBC size categories on a time scale, our proposed 
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monitoring method quantifies potentially applicable pathological information. This 
mode of representation appears to offer details about high RDW values and latent 
adverse outcomes related to anemic pathogenesis.

Subjects: Computer Graphics & Visualization; Hematology; Medical Statistics & Computing

Keywords: anemia monitoring; flow cytometry; measurement uncertainty; MCV; RDW

1. Introduction
In a complete blood cell count (CBC), performed as a routine laboratory test in anemia diagnosis, a 
hematology analyzer measures the volume of each erythrocyte to create a histogram of cell size 
distribution. This probability distribution provides two main output parameters: the mean corpuscu-
lar volume (MCV), which is the mean value of the distribution, and the red blood cell distribution 
width (RDW), which represents the degree of dispersion in the distribution (Kachel, 1982; Tatsumi et 
al., 1999). Recently, elevated RDW has been investigated as a predictor of mortality in various non-
hematological disorders, such as inflammation and circulatory diseases (Cauthen, Tong, Jain, & 
Tang, 2012; Hu et al., 2013; Lippi & Plebani, 2014; Montagnana, Cervellin, Meschi, & Lippi, 2012). 
However, when interpreting central values, such as MCV and RDW, in time series, it can be difficult to 
evaluate information about cellular volume changes with minimal or latent anisocytosis in the red 
blood cell (RBC) size distribution.

Accordingly, we established a new evaluation method called “RBC size differentials”, which ena-
bles time-series partial analysis of RBC size distribution derived from a hematology analyzer without 
additional cost. Using data from daily control checks for counting RBCs and white blood cells (WBCs), 
we investigated the measurement uncertainty of our flow cytometric approach and verified the reli-
ability of our computed indices obtained from RBC size differential methods.

2. Methods

2.1. Data collection
To examine CBC data, including MCV and RDW indices, we used an XE-5000 hematology analyzer (a 
recent model; Sysmex Corp., Kobe, Japan) at Sasebo City General Hospital from June 2013 to May 
2016 and an SF-3000 (a past model; Sysmex Corp., Kobe, Japan) at Nagasaki Harbor Medical Center 
Community Hospital from July 1998 to September 2005 for a pilot study. This study’s data were ac-
quired through standard blood test procedures with daily quality control checks. Data from 307,246 
clinical samples data from the XE-5000 analyzer and 5,087 clinical samples from the SF-3000 ana-
lyzer were registered in our database for RBC size differentials.

To obtain the probability distributions of RBC size, PNG-format digital images were first output 
from the XE-5000 analyzer. Next, the images were converted to numerical form by subdividing the 
x-axis into 256 points for compilation in a relational database. Alignment of the x-axis relative to the 
origin was confirmed by statistically comparing the cumulative mean value of RBC size to the cumu-
lative analyzer’s MCV data (for details, see Appendix 1 and Figure A1). Using the same approach, the 
printed image data of RBC size distributions from the SF-3000 analyzer were manually digitized in 
another database. When comparing MCV values for a single given probability distribution, values 
from relational databases were observed to be consistent with MCV values from the hematology 
analyzer output.

2.2. RBC size differential method

2.2.1. Establishing six RBC size fractions (Step 1)
Ranging between extreme limits of 41–160 fL, RBC size distributions were fractionized into the fol-
lowing six size fractions every 20 fL, called “RBC size differentials”, as shown in the RBC size 
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distribution in Figure 1: under-microcytic (uMic), microcytic (Mic), normocytic (Nor), macrocytic 
(Mac), megalocytic (Meg), and over-megalocytic (oMeg).

2.2.2. Computing the count ratio p of each RBC size fraction (Step 2)
Using the relational database, we computed the count ratio p as the percentage of each fraction’s area 
under the curve within the 41–160 fL RBC size distribution. The six count ratios’ values of p correspond-
ing to each of the respective fractions were labeled %uMic, %Mic, %Nor, %Mac, %Meg, and %oMeg.

2.2.3. Transforming the count ratio p variable to angle ratio θ to standardize precision (Step 3)
Because our method for representing true change requires the calculation of differences, variations 
in precision among the six fractions must be standardized. Subjecting the count ratio p data to a 
variance-stabilizing transformation (Kirk, 2013) resulted in distributions with a standard deviation 
(SD) value independent of the p variable. This angular transformation is a function defined as 
θ(p) = 2·arcsin√p, which we called Angit(p). The mean values of the transformed six angle ratio θs are 
then subtracted from one another, thus reducing disparities in precision. Corresponding to the frac-
tions identified in Step 2, the angle ratio θs were called θuMic, θMic, θNor, θMac, θMeg, and θoMeg.

Figure 1. Evaluation of 
measurement uncertainty 
in the blood cell differential 
method.

Notes: We evaluated the 
error-stabilizing effects of the 
Angit(p) and Logit(p) functions 
according to the degree of 
SD dispersion, which is the 
coefficient of variation (CV%) 
of each fluctuation's standard 
deviation (SD) variable. The 
Angit(p) function standardized 
uncertainty most effectively in 
the count ratio index because 
of its smaller SD dispersion. 
However, the uncertainty-
stabilizing effects in the 
subtraction index revealed 
a discrepancy between the 
RBC size differentials and 
WBC differentials (A-2-b:94% 
vs. B-2-b:2%). Furthermore, 
a synchronized fluctuation 
pattern with a mirror image 
and parallel image in the count 
ratio index was observed only 
in the RBC size differentials, 
which might amplify and 
offset the uncertainty in the 
subtraction index, as shown 
in the A-2 series graphs. All 
76 courses of quality control 
checking were analyzed 
similarly and are summarized 
in Table 1.
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2.2.4. Establishing RBC size differential indices (Step 4)
The six angle ratio θs were utilized alone as each RBC size differential index, with equal precision in 
theory. Furthermore, two additional RBC size differential indices were established by subtracting the 
θNor value from the θMic and θMac values. Respectively called [θMic–θNor] and [θMac–θNor] with 
equal precision in theory (Taylor, 1997), these indices reflect the difference in each RBC size fraction 
relative to the central Nor-fraction.

2.3. Measurement uncertainty in flow cytometric count data for blood cell differentials
We evaluated measurement uncertainty in our blood cell differential method with data from daily 
quality control checks based on the notion that the fluctuation in repeated measurements of the 
same sample should reflect the measurement uncertainty.

We compared the differences in the uncertainty in differential indices between the RBC size dif-
ferentials and WBC differentials. Using statistical analyses with 38 courses of two different series of 
quality control checks with different cell concentrations by the XE-5000 analyzer, we investigated 
the uncertainty-stabilizing effects of both angular transformation and Logit transformation on both 
the count ratio index and the subtraction index, according to the degree of the fluctuation’s disper-
sion based on each index’s SD, which is closely reflective of precision in general. The additional coef-
ficient of variation of these SD values, which we called “SD dispersion”, was calculated as (standard 
deviation of SD values/mean of SD values) × 100. For our rationale for applying the Angit(p) and 
Logit(p) functions, see Appendices 2 and 3.

2.4. Cut-off values of RBC size differential indices evaluated by receiver operating 
characteristic (ROC) curve analysis
Reference intervals of MCV and RDW were determined by satisfying the following clinically accepted 
criteria for normal RBC volume conditions: (1) an MCV from 80 to 100 fL (or 10-15L) (Sacher, McPherson, 
& Campos, 1991); and (2) an RDW-CV < 16%. RDW-CV was calculated as (standard deviation of 
mean corpuscular volume/mean corpuscular volume) × 100. A cut-off of 16% was identified as the 
upper limit of a normal sample (Rezende, Lijfering, Rosendaal, & Cannegieter, 2014). We evaluated 
the count ratio indices of θMic, θMic and θMac and the subtraction indices of [θMic–θNor] and [θMac–
θNor] as the discriminators for RBC size abnormality according to the clinical criteria for MCV and 
RDW values: normocytosis (80 ≦ MCV ≦ 100 and RDW-CV < 16%), microcytosis (MCV < 80 fL), mac-
rocytosis (MCV > 100 fL) and normal range of RDW (RDW-CV < 16%). We determined the optimal 
cut-off values based on the method using the Youden index by ROC analysis (Hajian-Tilaki, 2013) 
with 307,246 CBC samples from the XE-5000 analyzer and 5,087 samples of patients with hemato-
logical disorders from the SF-3000 analyzer. Then, we compared the cut-off points between the two 
hematology analyzers: a recent model and past model manufactured prior to sheath-flow method 
integration (Tatsumi et al., 1999). ROC analysis was performed by statistical computing, using R 
software via http://www.R-project.org (The R Project for Statistical Computing, Vienna, Austria).

2.5. Graph preparation for visualizing the changes in time-series CBC data
The clinical courses of all anemic patients with RBC size abnormalities or RDW elevation were evalu-
ated using our CBC time-series graph preparation program. For Cases 1–5, we compared similarities 
and differences in graph patterns among patients of differing pathologies by means of RBC size dif-
ferentials, superimposed RBC size distributions and other CBC data while considering hidden meas-
urement uncertainty in RBC size differential indices. All numerical computations and graphs for this 
study were conducted using Microsoft Excel software.

http://www.R-project.org
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2.6. Ethics
This study was approved by the Institutional Review Board of Nagasaki Harbor Medical Center 
Community Hospital and Sasebo City General Hospital and was conducted in accordance with the 
ethical principles of the Declaration of Helsinki. Its communication is consistent with the Code of 
Ethics of the American Medical Writers Association.

3. Results

3.1. Characteristics of measurement uncertainty in blood cell differential methods 
(Figure 1 and Table 1)
Figure 1 shows the fluctuation patterns of measurement uncertainty in each differential index: (1) 
Count ratio index and (2) Subtraction index in both methods of (A) RBC size differentials and (B) WBC 
differentials. Non-transformed differential indices are shown in the graphs at left (a-series), trans-
formed indices by Angit function in the middle graphs (b-series), and transformed indices by Logit 
function in the graphs at right (c-series). The statistical values of mean ± standard deviation in each 
index are noted at the positions of the corresponding lines, and computed SD dispersions (CV%) are 
noted at the bottom of each graph. All SD values and SD dispersion values from the total of 76 
courses of quality control checks are analyzed statistically in Table 1.

First, the angular transformation by Angit function standardized the uncertainty most effectively in 
the count ratio index, according to the smallest SD dispersion; however, the uncertainty in the sub-
traction index exhibited an obvious discrepancy between RBC size differentials and WBC differentials. 
Next, there were typical graphical findings of synchronized patterns in the fluctuations in the count 
ratio index, revealing both reciprocal mirror and parallel images between side-by-side fractions, 
which caused the amplification and offset of fluctuation in the subtraction index only in RBC size dif-
ferentials. Because the statistical comparison of SD values in the transformed count ratio index by 
Angit function revealed no difference between RBC size differentials vs. WBC differentials (A-1-b vs. 
B-1-b in Figure 1 and Table 1), we speculated that this discrepancy in the subtraction index might be 
caused by uncertainty other than precision, which was already equalized in the count ratio index.

3.2. Cut-off points of each RBC size differential index (Table 2)
ROC analysis indicated that for both hematology analyzers, θNor, θMic and θMac might be good dis-
criminators of normocytosis, microcytosis and macrocytosis, respectively. Furthermore, because the 
cut-off point of the [θMic–θNor] index was exactly 0.00π for both analyzers, microcytosis of 
MCV < 80 fL might correspond to the same distributions as the microcytic state of [θMic–θNor] > 0 for 
both analyzers. By contrast, for judgment of the macrocytic state, the cut-off point of the [θMac–
θNor] index was −0.02π for the XE-5000 analyzer and −0.05π for the SF-3000 analyzer. These differ-
ent shifts in cut-off point from 0.00π might depend on their skewness to the left in the RBC size 
distributions based on the mechanical difference in analyzers with or without sheath-flow methods 
(Tatsumi et al., 1999). However, the [θMic–θNor] and [θMac–θNor] indices might be good indicators 
of hematological microcytosis and macrocytosis, respectively, based on their high AUC% values.

3.3. How this method facilitates the visualization of states of size abnormality: 
Displaying multi-variable time series
Figures 2–4 show how the RBC volume differential time series might complement MCV and RDW in-
dicators to improve the pathological diagnosis of various anemic disorders. The x-axis in days is 
common to all time-series graphs, and the following indices are represented by the y-axes in the 
four time-series partitions from top to bottom: (1) hemoglobin (HGB) on the main y-axis and hema-
tocrit (HCT) on the second y-axis; (2) MCV on the main y-axis and RDW-CV% on the second y-axis; (3) 
angle ratio θ (π) on the main y-axis (linear scale) and its original count ratio p (%) on the second y-
axis (non-linear scale); and (4) RBC size indices. At the bottom, the superimposed RBC size distribu-
tions from the analyzer indicate partial qualitative changes (labeled “Frequency” for “Frequency 
distribution graph”). All the following cases appear to indicate relative RBC size fractional changes 
for specific time periods according to varying pathologies.
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3.4. Assessing time-series RBC size changes associated with erythroid maturation 
disorders (Figure 2)
In Case 1, before vs. after TS-1 chemotherapy for a lung cancer patient (typical case), and in Case 2, 
before vs. after an allogeneic bone marrow transplant with RBC transfusions for a severe aplastic 
anemia patient

In Case 1, there were a few spikes in the [θMac−θNor] line (marked with arrows) in accordance 
with drip infusion therapies, which might have been deviations due to possible unexpected uncer-
tainty propagation. Although the megalocytic fraction was stable after chemotherapies with CBDCA, 
PTX and BV, the increasing megalocytic trend with a complementary normocytic decrease immedi-
ately before Day 257 suggested DNA synthesis inhibitor effects due to disruption of erythroid matu-
ration by TS-1.

In Case 2, two time points of macrocytic states with high-level megalocytic fractions seemingly 
derived from pathological erythroid clones with maturation disorder gradually disappear due to con-
ditioning regimens, and the prominent microcytic increase might reflect RBC supply from transfu-
sions. After Day 89, normocytic and macrocytic increases without a macrocytic state appear to 
indicate normal erythroid recovery derived from transplanted stem cells, and the concurrent micro-
cytic decrease suggests rapid removal of older transfused RBCs from the peripheral blood.

3.5. Assessing time-series RBC size distributions for pathological abnormalities related 
to disseminated intravascular coagulation (DIC), with potentially shortened RBC 
lifespan (Figure 3)
In Case 3, caused by massive vascular bleeding, and in Case 4, caused by extravascular hemolysis 
with findings of RBC fragmentation.

In Case 3, the increase and subsequent decrease in the megalocytic fraction mirror the decrease 
and subsequent increase in the normocytic fraction; these transitions appear to reflect marrow re-
sponses to severe anemia caused by bleeding. Case 4 offers an interesting comparison because the 
normocytic and macrocytic increases appear to reflect marrow responses to severe anemia caused 
by hemolysis with RBC fragmentation, as indicated by the leftward shift of the frequency distribution 
graph. In both cases, the transient megalocytic increase might be a similar basic pattern of reaction 
to severe anemia, except for the brief presence of a microcytic state in Case 4.

3.6. Assessing changing microcytic states caused by iron deficiency in different clinical 
backgrounds (Figure 4)
In Case 5, showing a typical recovery course with ferric therapy, in contrast to Case 6, showing retar-
dation in anemia recovery due to massive menstrual bleeding for one week, and Case 7, showing the 
common complication of iron deficiency during vitamin B12 treatment.

Cases 5 and 6 both exhibited a decreasing [θMic-θNor] line and similar durations of a microcytic 
state (θMic > θNor). However, only Case 6 exhibited an additional macrocytic increase with a macro-
cytic state (θMac + 0.05π > θNor) and a bimodal pattern in the RBC volume distribution, which might 
be a transient response of excessive erythropoiesis to massive bleeding. In Case 7, concurrent with 
a decreasing [θMac-θNor] and θMeg, an upward trend in the [θMic−θNor] line and a subsequent mi-
crocytic state were observed. Because this [θMic−θNor] index increase appears to indicate the extent 
of iron deficiency, this time-series may help guide the timing or decision for ferric medicine treat-
ment–specifically, one week earlier than conducted for Case 7.

3.7. Assessing fractional rebalancing between RBC supply and RBC loss (Figures 2 and 3)
In our view, RBC size differential methods in time series have the potential to quantify each fraction’s 
change rates in the RBC size distribution. Although the superimposed RBC size distributions of Cases 
1 and 3 merely present similar increases in the megalocytic fraction, the RBC size differentials 
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Table 1. Statistics for the evaluation of measurement uncertainty in flow cytometric differential data

 Notes: The measurement uncertainty in flow cytometric RBC and WBC count data was evaluated with 38 courses of two different series of quality control checks by 
an XE-5000 analyzer. This statistical summary verified that the Angit(p) function standardized measurement uncertainty in the count ratio index most effectively 
for both RBC size differentials and WBC differentials. Next, the discrepancy in the subtraction index shown in Figure 1 was confirmed statistically and might be 
derived from the propagation of some type of uncertainty other than precision. We guessed that the instability of accuracy in the count ratio index, which would 
amplify or offset the uncertainty propagation in the calculated subtraction index, might occur easily in our RBC size differentials method due to fixed gating.
*Statistical significance was verified with Wilcoxon signed-rank test.
**Subtraction of Logit(ratio) equals Log(Odds ratio).

(a) RBC size differentials of quality control samples

RBC size differential index

Checks with QC****0810 series (n = 38) Checks with QC****0811 series (n = 38)

RBC count: (234 ± 2)×104/µL  
MCV: 76.5 ± 1.9 fL  

RDW-CV: 16.2 ± 1.0%

RBC count: (441 ± 3)×104/µL  
MCV: 83.1 ± 1.2 fL  

RDW-CV: 14.5 ± 0.3%

SD value SD dispersion SD value SD dispersion

Mean ±SD Mean (%) ±SD (%) Mean ±SD Mean (%) ±SD (%)

1. Count ratio index a %Mic 0.9% ±0.3%

64* ±11

1.5% ±0.4%

41* ±3%Nor 1.3% ±0.3% 1.1% ±0.3%

%Mac 0.3% ±0.1% 0.7% ±0.2%

b Angit(Mic):θMic 0.006π ±0.002π

37* ±15

0.010π ±0.003π

22* ±4Angit(Nor):θNor 0.009π ±0.002π 0.007π ±0.002π

Angit(Mac):θMac 0.005π ±0.001π 0.008π ±0.002π

c Logit(Mic) 0.038 ±0.014

39 ±13

0.066 ±0.017

33 ±6Logit(Nor) 0.063 ±0.018 0.044 ±0.013

Logit(Mac) 0.079 ±0.015 0.086 ±0.020

2. Subtraction index a %Mic−%Nor 2.2% ±0.7%
48 ±11

2.6% ±0.7% 93
±10

%Mac−%Nor 1.1% ±0.3% 0.5% ±0.2%

b [θMic−θNor] 0.015π ±0.004π
61 ±15

0.017π ±0.005π
99 ±10

[θMac−θNor] 0.006π ±0.002π 0.003π ±0.001π

c** Logit(Mic)−Logit(Nor) 0.099 ±0.027
50 ±18

0.109 ±0.029
55 ±11

Logit(Mac)−Logit(Nor) 0.046 ±0.008 0.047 ±0.010

(b) WBC differentials of quality control samples

WBC differential index

Tests with QC****0810 series (n = 38) Tests with QC****0811 series (n = 38)

WBC count: 2921 ± 67/µL WBC count: 6646 ± 120/µL

SD value SD dispersion SD value SD dispersion

Mean ±SD Mean (%) ±SD Mean ±SD Mean (%) ±SD

1. Count ratio index a %Neu 1.2% ±0.1%

19* ±6

1.0% ±0.1%

24* ±6%Lym 1.3% ±0.2% 0.8% ±0.1%

%Mon 0.9% ±0.1% 0.7% ±0.1%

b Angit(Neu):θNeu 0.008π ±0.001π

11* ±5

0.007π ±0.001π

13* ±6Angit(Lym):θLym 0.009π ±0.001π 0.006π ±0.001π

Angit(Mon):θMon 0.009π ±0.001π 0.007π ±0.001π

c Logit(Neu) 0.051 ±0.005

38 ±7

0.042 ±0.004

39 ±9Logit(Lym) 0.056 ±0.007 0.038 ±0.004

Logit(Mon) 0.098 ±0.012 0.074 ±0.011

2. Subtraction index a %Neu−%Lym 2.3% ±0.2%
14 ±8

1.6% ±0.2%
16 ±8

%Mon−%Lym 1.9% ±0.3% 1.3% ±0.1%

b [θMic−θNor] 0.015π ±0.001π
6 ±5

0.010π ±0.001π
6 ±5

[θMac−θNor] 0.015π ±0.002π 0.011π ±0.001π

c** Logit(Neu)−Logit(Lym) 0.096 ±0.010
22 ±8

0.067 ±0.007
25 ±9

Logit(Mon)−Logit(Lym) 0.132 ±0.018 0.097 ±0.012
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indicate that the increase in the θMeg line from 0.10 to 0.20π required approximately one month in 
Case 1 but only 10 days in Case 3. Similarly, the durations of the notable microcytic states were 
32 days in Case 2 but only 8 days in Case 4.

These differences in the change rate with respect to the time scale might be attributable to differ-
ences in pathogenesis and the peripheral relative rebalancing between RBC supply (including trans-
fusion) and RBC destruction or loss.

4. Discussion

4.1. Clinical significance of RBC size distribution and their variation with time
With the common application of MCV and RDW in treating anemia, RBC size has been shown to be a 
useful property for diagnosing pathological erythropoiesis. These indicators are directly affected by 
the heterogeneity of peripheral RBC populations at any given time because considerable variation 
has been noted beyond the mean RBC lifespan of approximately 115 days (Cohen et al., 2008; 
Franco, 2012), which is longer than the lifespans of other blood cells. Therefore, the RBC size distribu-
tion is often composed of heterogeneous RBC populations with differing maturation processes and 
differing ages from enucleation to destruction (Erslev & Beutler, 1995; Quigley et al., 2014). Because 
partial changes in RBC size distribution can reflect shifts in this balance between RBC supply and RBC 
age, this approach with trend analyses might improve the understanding of pathogenic 

Table 2. Cut-off points and %AUC (area under the curve) values of each RBC size differential 
index to discriminate abnormal states in RBC size distributions

Notes: Values at top of each cell show cut-off points; Values at bottom within brackets show %AUC.
 Relationships between the indices of RBC size differentials and four criteria for diagnostic RBC conditions: normocytosis 
(80 ≦ MCV ≦ 100 and RDW-CV < 16%), microcytosis (MCV < 80 fL), macrocytosis (MCV > 100 fL) and the normal range 
of RDW (RDW-CV < 16%) were evaluated by ROC (receiver operating characteristic) analysis of 307,246 CBC samples 
on the XE-5000 analyzer and 5,087 samples of patients with hematological disorders using the SF-3000 analyzer. The 
differential indices of θNor, θMic and θMac showed high AUC% values, which might indicate good discrimination of 
normocytosis, microcytosis and macrocytosis, respectively. Furthermore, the [θMic-θNor] index with a cut-off point of 
0.00π might be a meaningful indicator of microcytosis due to the microcytic state of only “θMic > θNor”. By contrast, 
although the cut-off point shift from 0.00π in the [θMac-θNor] index might reflect the degree of skewness to the left in 
the RBC size distributions in both analyses, the [θMac-θNor] index might also be an indicator of macrocytosis because 
of the macrocytic state of nearly “θMac > θNor”.

Criteria (sample ratio) RBC size differential index

θMic θNor θMac [θMic−θNor] [θMac−θNor]

XE-5000 analyzer

Normocytosis or not (26:10) − 0.48π 
(96.6%)

− − −

Microcytosis or not (10:131) 0.40π 
(99.1%)

− − 0.00π 
(99.8%)

−

Macrocytosis or not (10:147) − − 0.41π 
(97.2%)

− −0.02π 
(99.5%)

RDW ᧸16% or not (42:10) − 0.49π 
(89.4%)

− − −

Total sample number = 307,246

SF-3000 analyzer

Normocytosis or not (10:17) − 0.43π 
(96.6%)

− − −

Microcytosis or not (10:289) 0.38π 
(98.9%)

− − 0.00π 
(99.8%)

−

Macrocytosis or not (10:19) − − 0.35π  
(93.9%)

− −0.05π  
(98.4%)

RDW᧸16% or not (10:12) − 0.42π  
(84.4%)

− − −

Total sample number = 5,087
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developments affecting background anemic disorders, e.g. various RBC maturation abnormalities or 
RBC destruction/loss due to hemolysis or bleeding.

4.2. Prerequisite condition for time-series RBC size differential analysis
According to measurement error theory as concerns least-squares fitting (Taylor, 1997), a straight 
line drawn between two measured values requires the stability of the y-axis precision to be compa-
rable to that of the x-axis of time. Therefore, in considering our variance-stabilizing transformation 
for standardizing the random error of all measured count ratio values, we emphasized our objective 
of time-series differences and not improving the measurement precision itself. The adoption of our 
semi-Angit(p) plot, which was derived to compare time-series cell differential indices based on flow 
cytometric count data, shares similarities with certain other approaches. For example, in real-time 
PCR (polymerase chain reaction) measurement procedures, including the serial dilution method, 
semi-logarithmic graphs are necessary for calibration curves. For our rationale for applying Angit(p) 
instead of the more widespread Logit(p) function, see Appendices 2 and 3 and the supporting statis-
tical analyses in Table 1. The linear semi-Angit(p) plotting time-series graphs are necessary to attain 
our objective of linearized statistical analyses in detail, as applied in Figures 2–4.

4.3. Potential isolation of clear clinical trends and hidden systematic error
By indicating substantial relative changes within heterogeneous RBC populations, potentially also 
quantitatively, time-series RBC size differentials might support the identification of clear pathologi-
cal trends. Our assumption, based on measurement error theory (Taylor, 1997), suggests that 

Figure 3. Notes: Time-series 
investigation of anemic 
pathogenesis in disseminated 
intravascular coagulation (DIC) 
using the XE-5000 analyzer.

Clinical problem: The patients 
in both cases developed DIC 
from different pathologies, 
but their anemias were similar 
and seemed likely related to 
shortened RBC lifespan due 
to massive bleeding in Case 3 
and extra vascular hemolysis in 
Case 4. Main Relevant Results 
from Superimposed RBC Size 
Distributions: [“-fr”=“fraction”]. 
Case 3: From Day 8 to 17, 
Meg-fr increased, whereas 
Nor-fr decreased; from Day 
18 to 35, Nor-fr increased, 
and Meg-fr decreased. Case 
4: From Day 1 to 8, uMic-fr 
and Mic-fr increased, whereas 
Nor-fr decreased; from Day 
9 to 34, Nor-fr and Mac-fr 
increased, and uMic-fr and 
Mic-fr decreased conversely. 
Inferred clinical significance of 
time-series differential indices: 
The RDW elevations can be 
explained by an increase in the 
θMeg index in Case 3, which 
suggests an early response 
of erythropoiesis to severe 
anemia. By contrast, the early 
presence of the microcytic 
state of [θMic−θNor] > 0π 
and subsequent increase in 
θMeg index might underlie 
the RDW elevation in Case 4. 
This short microcytic state 
in Case 4 may suggest RBC 
fragmentation concurrent with 
blood transfusion because of 
the appearance of helmet cells 
in blood smear tests in Case 
4 but not in Case 3. The down 
arrows in the [θMic-θNor] index 
in both cases suggest potential 
instability of the accuracy, 
except for the second arrow in 
Case 4, which was associated 
with blood transfusion.
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time-series trends would output: true pathological change + systematic error + random error. 
Therefore, if random error propagation can be statistically controlled according to our linearization 
method, our suggested graphical approach might, in some cases, potentially reveal hidden system-
atic error through sudden disturbances in otherwise constant trends as typical graphical patterns 
(see Figure 1). Examples of in vitro systematic error, appearing as a rightward or leftward shift in RBC 
size distribution, include irregular RBC swelling due to differences in osmotic pressure between plas-
ma with hyperglycemia and the relatively hypotonic counting medium (Strauchen et al., 1981) or 
cellular membrane abnormalities. Thus, the instability of accuracy in RBC size differentials might 
occur easily and consequently affect uncertainty propagation in the subtraction index, as shown in 
Figure 1. It would therefore be necessary to evaluate time-series changes that may include fluctuat-
ing systematic error using precision-stabilized semi-Angit(p) plotting graphs.

4.4. Practical approach to evaluate clinical trends in RBC size differentials
We identified early therapeutic responses based on RBC size differentials, which enabled the evalu-
ation of microcytic and macrocytic changes independently. This ability was particularly relevant for 
anisocytotic bimodal distributions, in which the MCV value may be within the normal range (80–
100 fL) and RDW might become incalculable, as shown in Case 2 and Cases 5–7. The latent bimodal 
distributions apparent in these cases suggest that RBC size differentials (1) may help guide the tim-
ing or decision for additional treatments; and (2) may enable detailed monitoring of secondary RBC 
size abnormalities caused by inflammatory and circulatory disorders. As an example of typical use 
in microcytic anemias, the initial therapeutic response could be monitored based on the decreasing 
[θMic−θNor] index as an effect of ferric treatment, whereas an increase in the [θMic−θNor] index 
might indicate recurrence of iron deficiency.

Figure 4. Notes: Identification 
of time-series trends of iron 
deficiency states related to 
clinical events and treatments 
using the SF-3000 analyzer.

Clinical problem: Case 5 
showed typical recovery 
from iron-deficiency anemia. 
However, in both Cases 6 
and 7, retardation in the 
recovery of HGB and/or HCT 
was apparent by three weeks 
after the start of medication: 
the cause in Case 6 appeared 
to be severe menstrual 
bleeding; the cause in Case 7 
appeared to be iron deficiency 
complications related to 
treatment for pernicious 
anemia. Main relevant results 
from the superimposed 
RBC size distributions: 
[“-fr”=“fraction”]. Cases 5 
and 6: Both cases exhibited a 
similarly decreasing microcytic 
fraction and increasing Nor-fr. 
However, only Case 6 exhibited 
an emerging peak in Mac-fr 
with a bimodal pattern in the 
RBC size distribution. Case 7: 
Concurrent with a decreasing 
megalocytic state (in which 
Meg-fr was dominant), an 
upward trend in not only Nor-fr 
but also Mic-fr was observed. 
Inferred Clinical Significance 
of Time-Series Differential 
Indices: The durations of the 
microcytic states of [θMic−
θNor] > 0π in both Case 5 and 
Case 6 were similar at slightly 
more than three weeks after 
the start of medication, but the 
transient macrocytic state of 
[θMac−θNor] > −0.05π in Case 
6, which suggests a response 
of excessive erythropoiesis to 
massive bleeding, might have 
caused the very early recovery 
in MCV value. In Case 7, the 
microcytic state might reflect 
the extent of iron deficiency, 
and the prior progressing trend 
toward a microcytic state 
might help guide the timing/
need for ferric treatment to 
occur at least one week earlier 
than conducted for Case 7.
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4.5. Limitation and future areas of study
Uncertainty propagation in the subtraction index of RBC size differentials will always change errati-
cally according to slight instability in the accuracy of the count ratio index, which might be caused 
by the fixed gating method of six fractions in RBC size distribution against adjustable gating in WBC 
differentials. However, quantitative monitoring with subtraction indices, such as the [θMic−θNor] and 
[θMac−θNor] indices, might have a significant advantage over objective evaluation of various de-
grees of anisocytosis from latent levels to overt levels. Therefore, by means of precision-stabilized 
semi-Angit(p) plotting graphs, we must investigate the clinical trends in each differential index’s 
lines and simultaneously assess the influence of the instability of accuracy using typical pattern 
recognition, as above. Additionally, because elevated RDW has recently been investigated as a pre-
dictor of mortality in various non-hematological disorders (Cauthen et al., 2012; Hu et al., 2013; Lippi 
& Plebani, 2014; Montagnana et al., 2012), the RBC size differential method might offer greater RDW-
related detail over the clinical courses of cases with poor prognoses. In our view, such cases might 
be associated with pathological rebalancing between RBC supply and RBC lifespan. Therefore, we 
hope to investigate these possibilities further via real-time integration of the size differential-time 
course analysis program into our routine practice to evaluate the initial hematological responsivity 
under various therapies (Price et al., 2011).

5. Conclusion
This study demonstrates that a clinical monitoring method using time-series RBC size differentials, 
with measurement precision standardized for reliable difference comparisons, can offer the follow-
ing advantages: a more detailed RBC size distribution examination complementing the MCV and 
RDW indicators; an easily visualized, improved representation of anemic disorder treatment; and the 
possibility of indicating time-series rebalances in daily RBC supply vs. mean RBC age for each size 
fraction.
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Appendix 1

Procedures for data acquisition of RBC size distributions from PNG-format digital images

The probability distributions of each RBC size fractioN were obtained by converting the PNG-format 
digital images output from the analyzer. After subdividing the x-axis into 256 points for compilation 
in a relational database, the y-value (frequency) of each corresponding x-value (fL) was determined 
by subtracting the reference height (shown in Figure A1 with red arrow) from the height to the bot-
tom pixel of the volume distribution curve (shown in Figure A1 with green arrow). Figure A1. How RBC 
size distributions are obtained from digital image data (Appendix 1). Our method obtained data digitally 
using the XE-5000 analyzer’s output PNG-formatted images. Figure A1 shows the x-axis composition of 
256 pixels and how the y-value of each x-value is determined by 1) locating the pixel at the bottom of the 
volume distribution graph’s light blue line (green arrow); and 2) finding the height difference between the 
green arrow and the reference red arrow.
Next, the zero-point for all RBC volume histograms was determined statistically by comparing the 
mean value calculated from all histograms with the corresponding mean value from all analyses 
reported for MCV by one-channel increments. This resulted in an origin shift to the right by 1 fL. All 
probability distribution-related calculations, from 41 to 160 fL, were performed again after zero-
point adjustment and were once again compiled in a relational database such that each channel 
value was equivalent to the corresponding original femtoliter value.

Appendix 2

Induction of error variance stabilizing transformation for estimating the count ratio measurement 
uncertainties

The cytometric blood cell count method is considered random sampling without replacement, 
such that the cell count number x follows a hypergeometric distribution. Furthermore, if the meas-
ured total count number n is sufficiently large and constant, as is certainly the case, such a hyper-
geometric distribution can be approximated by the simpler binomial distribution.

Thus, for the variance of cell count ratio p, the division of x by n can be expressed as follows:
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If the true value and the uncertainty of the measured value of count ratio p are represented as ṗ and 
!p, respectively:

Here, a Taylor series expansion yields the linear approximate equation:

Next, according to the “Delta method” (Oehlert, 1992), taking the variance of both sides yields the 
following:

Next, the error variance stabilizing function f(p), which estimates

V
[

f (p)
]

= Const, is given by the following:

Thus, given that the total count number n is constant, we can conclude the following:

p(1 − p)

n

V[p] = V
[

ṗ + "p
]

= V
[

ṗ
]

+ V
[

"p
]

= V
[

"p
]

=
p(1 − p)

n

f (p) = f (ṗ + "p) ≈ f (ṗ) + f ′(ṗ) ⋅ "p

V
[

f (p)
]

≈ V
[

f (ṗ) + f ′(ṗ) ⋅ "p
]

= V
[

f (ṗ)
]

+
(

f ′(ṗ)
)2

⋅ V
[

"p
]

=
(

f ′(ṗ)
)2

⋅

p(1 − p)

n

f ′(ṗ) =

√

Const ⋅ n
p(1 − p)

≈ f ′(p)

f (p) =
√

Const ⋅ n ⋅
p

∫
0

du
√

u(1 − u)
= 2

√

Const ⋅ n ⋅ arcsin
√

p

Figure A1. How RBC size 
distributions are obtained from 
digital image data (Appendix 1).

Notes: Our method obtained 
data digitally using the XE-
5000 analyzer’s output PNG-
formatted images. Figure A1 
shows the x-axis composition 
of 256 pixels and how the 
y-value of each x-value is 
determined by 1) locating 
the pixel at the bottom of the 
volume distribution graph’s 
light blue line (green arrow); 
and 2) finding the height 
difference between the green 
arrow and the reference red 
arrow.
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Figure A2. Geometric 
relationships between the 
Angit transformation and Logit 
transformation shown in a 
semicircular model.

Notes: The diagram above 
shows the geometric 
relationships among count 
ratio p, Angit(p) and Logit(p) 
based on the assumption 
of Bernoulli trials with the 
variance σ2 = p(1-p).1. Angit(p) 
= twice the length of arc 
OR(Arc) = θ2. Logit(p) = twice 
the natural log of line segment 
OS(p/σ)Thus, Angit(p) indicates 
the standardization of the 
difference in probability p 
using Arc; by contrast, Logit(p) 
indicates the standardization 
of the relative ratio in 
likelihood p/σ using the natural 
log of p/σ.

In contrast to the Logit function used in logistic analysis, we call this function Angit(p), with the 
transformed value defined as the angle ratio θ, as below:

where the value of the angle ratio θ varies from 0 to π such that we define the unit of angle ratio θ 
as π and set the range of variable θ as simply 0 to 1.

Appendix 3

The propagation of uncertainty in angular transformation vs. Logit transformation

The variance of the count ratio p, expressed as V[dp], is equal to p(1−p)
n

because the cytometric RBC count ratio p can be approximated as a binomial distribution, where 
the total count number n is constant.

Based on the relationship dAngit(p) = dp
√

p(1−p)
 and substituting p(1−p)

n
 for V[dp],

the error variance of Angit(p) with angle ratio θ is estimated as below:

Conclusion: The error variance of Angit(p) is not affected by the quantity of the count ratio p and thus 
is constant.

The error variance of Logit(p) is estimated as below, with the same V[dp] substitution as above:

f (p) = 2 ⋅ arcsin
√

p

! = Angit(p) = 2 ⋅ arcsin
√

p,

V
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]
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n
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n
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1
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Conclusion: The error variance of Logit(p) can be near-stable in a p range such as [0.2, 0.8]; however, 
it is clear from the denominator alone that the instability is very high as p approaches 0 or 1.

As transformations of the same input variable, the Angit(p) and Logit(p) functions can be visual-
ized and compared geometrically as well (see Figure A2). In the evaluation of cell count data by flow 
cytometry, it would be important to apply these transformations properly; Angit(p) appears applica-
ble to the entire range of p for a precision-stabilized scale that is linear, whereas Logit(p) appears to 
be a useful linear-like operator only within an approximate p range of 0.2–0.8. Figure A2. Geometric 
relationships between the Angit transformation and Logit transformation shown in a semicircular model. 
The diagram above shows the geometric relationships among count ratio p, Angit(p) and Logit(p) based on the 
assumption of Bernoulli trials with the variance σ2=p(1-p).1. Angit(p) = twice the length of arc OR(Arc) = θ2. 
Logit(p) = twice the natural log of line segment OS(p/σ)Thus, Angit(p) indicates the standardization of the 
difference in probability p using Arc; by contrast, Logit(p) indicates the standardization of the relative ratio 
in likelihood p/σ using the natural log of p/σ.
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