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MiR-142 Is Required for Staphylococcus
aureus Clearance at Skin Wound Sites via
Small GTPase-Mediated Regulation of the
Neutrophil Actin Cytoskeleton

Katsuya Tanaka1,2, Sang Eun Kim1, Hiroki Yano2, Gaku Matsumoto1, Ryoma Ohuchida1,
Yuhoko Ishikura1, Masatake Araki3, Kimi Araki3, Seongjoon Park1, Toshimitsu Komatsu1,
Hiroko Hayashi1, Kazuya Ikematsu4, Katsumi Tanaka2, Akiyoshi Hirano2, Paul Martin5,
Isao Shimokawa1 and Ryoichi Mori1
MicroRNAs (miRNAs) are small noncoding RNAs that regulate protein translation by binding to comple-
mentary target mRNAs. We previously identified two mature members of the miR-142 family, miR-142-5p and
miR-142-3p, as inflammation-related miRNAs with potential roles in wound healing. Here, we demonstrated
that these two miRNAs are prominently expressed in wound-infiltrated neutrophils and macrophages and
play central roles in wound healing. We generatedmiR-142�/� mice using the exchangeable gene-trap method
and showed that healing of Staphylococcus aureus-infected skin wounds was significantly delayed in miR-
142�/� mice compared with that in wild-type mice. MiR-142�/� mice exhibited abnormal abscess formation at
S. aureus-infected skin wound sites and were also more susceptible to horizontal transmission of wound
infections. MiR-142�/� neutrophils showed altered phagocytosis as a consequence of chemotactic behavior,
including enhanced F-actin assembly, disturbed cell polarity, and increased cell motility. We showed that
these changes were linked to cytoskeletal regulation, and that expression of the small GTPases was markedly
increased in miR-142�/� neutrophils. Collectively, our data demonstrate that the miR-142 family is indis-
pensable for protection against S. aureus infection and its clearance at wound sites. MiR-142-3p and miR-142-
5p play nonredundant roles in actin cytoskeleton regulation by controlling small GTPase translation in
neutrophils at wound sites.

Journal of Investigative Dermatology (2017) 137, 931e940; doi:10.1016/j.jid.2016.11.018
INTRODUCTION
Skin wound healing can be considered to consist of three
phases: inflammation, proliferation/migration, and matura-
tion/resolution. During the inflammatory phase, neutrophils
are the first to migrate to the breach in the skin barrier to
protect against microbes. Subsequently, during the
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proliferation/migration phase, macrophages are drawn to the
wound where they secrete growth factors, cytokines, che-
mokines, and phagocytose-spent neutrophils, and other cell
and matrix debris. In parallel, leading-edge epithelial cells
are activated to re-cover the denuded wound surface, and
local endothelial cells contribute to the sprouting of new
blood vessels within the contractile granulation tissue.
Finally, in the wound maturation/resolution phase, immune
cells and contractile myofibroblasts resolve and/or die by
apoptosis, and excess extracellular matrix is degraded by
proteinase activity (Eming et al., 2014).
Staphylococcus aureus is an indigenous cutaneous bacte-

rium frequently linked to the exacerbation of chronic skin
wounds. Patients with diabetes and obese or immunosup-
pressed individuals are particularly at risk of nonhealing
wounds accompanied by abnormal inflammatory responses,
and associated with S. aureus overgrowth at such wound sites
(Jenkins et al., 2016).

MicroRNAs (miRNAs) are key indirect regulators of
protein translation, with each miRNA being able to target a
broad range of up to hundreds of mRNAs (Baek et al.,
2008; Selbach et al., 2008). It is becoming clear that
miRNAs play critical roles in numerous physiological
processes via their capacity to globally regulate the levels
of large numbers of proteins within a cell, and hence their
estigative Dermatology. www.jidonline.org 931
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functional analysis in complex scenarios is becoming
increasingly important (Lodish et al., 2008; Schwanhausser
et al., 2011).
We identified the miR-142 family members miR-142-3p

and miR-142-5p as inflammation-related miRNAs with po-
tential roles in wound healing by next-generation
sequencing analysis and comparison between wild-type
(WT) and PU.1-deficient (PU.1�/�) mice, which lack in-
flammatory cells (neutrophils, macrophages, mast cells, and
lymphocytes) and exhibit significantly faster and scar-free
skin wound healing compared with WT mice (Martin
et al., 2003). To test the potential function of skin wound
healing, we generated miR-142�/� mice and reported
that the healing of S. aureus-infected skin wounds was
significantly delayed in comparison with that in WT mice.
MiR-142�/� mice exhibited abnormal abscess formation at
sites of S. aureus-infected skin wounds and were consider-
ably more susceptible to horizontal transmission of wound
infections. At the cell level, miR-142�/� neutrophils showed
impairments of both chemotactic and phagocytic behavior,
due to abnormal expression of Rac and Rho family of
small GTPases and consequently disturbed F-actin
assembly. Collectively, our data suggest a mechanistic link
between miR-142 family regulation of small GTPase levels
and activity, and that these miRNAs function in the protec-
tion against S. aureus infection and its clearance at
wound sites.

RESULTS AND DISCUSSION
MiR-142 contributes to the clearance of S. aureus at skin
wound sites

We found that WT mice show comparatively high expression
of miR-142 family members in lung, spleen, colon, bone
marrow, and thymus, suggesting that they play critical roles in
immune defense (Supplementary Figure S1 online). To clarify
the role of miR-142 family members in skin wound healing,
we examined their expression in wound-associated cells. We
made wounds on the dorsal skin of WT mice, excised the
wound tissue 1 and 3 days later, and isolated wound-
infiltrated Ly-6Gþ neutrophils and CD11bþ cells, which by
immunoaffinity selection appeared to be up to 88% positive
for the murine macrophage marker F4/80 (Austyn and
Gordon, 1981). Quantitative PCR of the isolated cells
confirmed that the wound-infiltrated neutrophils and mac-
rophages indeed expressed miR-142-3p and miR-142-5p
(Figure 1a). To examine the biological function of these
miRNAs in skin wound healing, we generated whole-body
miR-142�/� mice using an exchangeable gene-trap clone:
Ayu21-KBW111 (http://egtc.jp/action/access/clone_detail?
id¼21-KBW111) (Araki et al., 2014) (Supplementary
Figure S2 online). Our miR-142�/� mice had a phenotype
similar to that of another miR-142�/� mouse strain, and
exhibited splenomegaly, altered lymphocyte and red blood
cell counts, and altered ratios of immune cells in the spleen
(Supplementary Figure S3 and Supplementary Table S1 on-
line) (Chapnik et al., 2014; Kramer et al., 2015).

Our initial studies of aseptic healing after streptozotocin-
induced type 1 diabetes showed no significant difference
between WTand miR-142�/� mice (Supplementary Figure S4
online). To determine whether the miR-142 family is
Journal of Investigative Dermatology (2017), Volume 137
involved in wound repair and in the clearance of S. aureus
infection in skin wounds, we made 4-mm excisional wounds
in the dorsal skin of WT and miR-142�/� mice (Figure 1b),
inoculated the wounds with S. aureus (1 � 108 colony-
forming units [CFU]/10 ml), and monitored wound
healing over the next several days (Figure 1c and d). In WT
mice, the S. aureus-infected wound had not healed by 7 days
after injury, but showed signs of healing between 7 and 14
days, with 90% of all wounds fully closed by 14 days.
Healing of infected wounds was considerably worsened in
miR-142�/� mice with wounds only just beginning to heal
after 10 days and only 69% of wounds healed at 14 days.
Histologic analysis allowed us to quantify the extent
of re-epithelialization at various points during repair.
Re-epithelialization at S. aureus-infected wound sites of
miR-142�/� mice (0.62 � 0.42 mm) was markedly slower
than for S. aureus-infected wound sites of WT mice (1.0 �
0.30 mm) (Figure 1eeg), but by 21 days, S. aureus-infected
wound sites of both WT and miR-142�/� mice were fully
closed. We assessed the quantity of live S. aureus at
the wound sites and found that 6.2-fold more bacteria were
present in the wounds of miR-142�/� mice (3.6 � 106 CFU/
ml) compared with those of WT mice (5.8 � 105 CFU/ml) at
3 days after injury (Figure 1h), suggesting that neutrophilic
clearance of infection might be the mechanistic link to poor
wound closure.
In general, bacterial infections are driven by close contact

(horizontal infection) (Fritz et al., 2012). We therefore next
investigated the role of miR-142 in the defense against natu-
rally transmitted S. aureus skin infection. We established a
horizontal infectionmodel in whichWTandmiR-142�/�mice
with aseptic skin wounds were housed in the same cage as a
WT mouse with an S. aureus-infected skin wound (Figure 1i).
We confirmed that wound-inoculated S. aureus bioparticles of
the hostmousehadbeen transmitted to twoasepticmice after 1
day (Figure 1j). We next assessed live S. aureus colonization
and found significantlymore (13.6-fold) S. aureus at thewound
sites ofmiR-142�/�mice (7.1� 105� 7.0� 105 CFU/ml) than
at those of WT mice (5.2 � 104 � 4.0 � 104 CFU/ml) after 3
days (Figure 1k).We could not detect S. aureus colonization in
the intact skin of WT and miR-142�/� mice. Collectively, our
data show that miR-142 participates in protection against
S. aureus infection at skin wound sites.

MiR-142L/L mice show altered abscess formation and
delayed immune cell phagocytosis at S. aureus-infected skin
wound sites

Neutrophils are the first cells to migrate to skin wound sites
(Eming et al., 2014) and are required for S. aureus clearance
(van Kessel et al., 2014). To examine the spatiotemporal recruit-
ment of neutrophils to S. aureus-infectedwound sites in vivo, we
crossed miR-142�/� mice to lysozyme M (lys)-enhanced green
fluorescent protein (EGFP) mice, in which EGFP is knocked into
the lys locus and is therefore specifically expressed in neutrophils
andcanbeusedas aneutrophil reporter at skinwound sites (Faust
et al., 2000; Kim et al., 2008). In vivo imaging analysis ofWT:lys-
EGFP mice revealed that significantly more (2.16-fold) neutro-
phils (as measured by EGFP fluorescence intensity) are recruited
to the sites of S. aureus-infected wounds than to aseptic wounds
at 1 day after injury, but the recruitment of neutrophils to

http://egtc.jp/action/access/clone_detail?id=21-KBW111
http://egtc.jp/action/access/clone_detail?id=21-KBW111
http://egtc.jp/action/access/clone_detail?id=21-KBW111
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Figure 1. MiR-142 is necessary for healing of S. aureus-infected skin wounds. (a) Expression of miR-142 family members in wound-infiltrated neutrophils and

macrophages, measured by qPCR (n ¼ 3). (b) Schematic diagram of the murine skin wound healing model. Excisional wounds (4 mm thickness) were made in

the shaved dorsal skin of adult male mice, and S. aureus was inoculated (1 � 108 CFU/10 ml) directly into the wound sites after injury. (c) Representative images

of the gross appearance of S. aureus-infected excisional wounds in WT and miR-142�/� mice. (d) Time course showing the proportion of wounds remaining

open compared with the initial wound area (WT, n ¼ 10; miR-142�/�, n ¼ 14). (e and f) H&E staining of re-epithelialization in WT (e) and miR-142�/� mice (f)

(wound margin [arrowheads] and the leading edge of epithelia [arrows]). (g) Measurement of epithelial tongue 10 days after injury (n ¼ 12). (h) Quantity of

colonizing S. aureus 3 days after injury, showing significantly higher levels at the wound sites of miR-142�/� mice (n ¼ 6) compared with WT mice (n ¼ 8).

(i) Illustration of the horizontal infection study. WTand miR-142�/� mice with aseptic skin wounds were placed in the same cage as the host WT mouse bearing

an S. aureus-infected wound. (j) Inoculated S. aureus (red) was naturally transmitted to other wound sites through direct contact. Nuclei were counterstained

with DAPI. (k) Quantity of colonizing S. aureus was significantly higher at the wound sites of miR-142�/� than at those of WT mice 3 days after cohousing with

the S. aureus-infected host mouse (n ¼ 7). ND, not detected. All data are expressed as the mean � SD. *P < 0.05, **P < 0.01, ***P < 0.001 by two-way analysis

of variance (d), unpaired t-test (g) with Welch’s test (h, k). CFU, colony-forming units; H&E, hematoxylin and eosin; qPCR, Quantitative PCR; SD, standard

deviation; WT, wild type.
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wounds is1.65-fold lower in infectedmiR-142�/�:lys-EGFPmice
than in WT:lys-EGFP mice (Figure 2a and b).
A hallmark of S. aureus infection is abscess formation at

the skin wound site, which involves neutrophils “walling off”
the site of infection to enable effective bacterial clearance
(Kobayashi et al., 2015; Molne et al., 2000). Histologic
analysis of cross sections of WT wound tissues 3 days after
injury showed abscesses with clearly recognizable borders
under the dermis (Figure 2c). However, there was no clear
abscess border in the wounds from miR-142�/� mice, but
www.jidonline.org 933
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Figure 2. MiR-142 is necessary for abscess formation and phagocytosis at

the sites of S. aureus-infected skin wounds. (a) Representative in vivo

fluorescence microscopy images of EGFP-expressing neutrophils at S. aureus-

infected skin wound sites. Activity fluorescent imaging on a color scale

overlaid on a gray scale image of wound sites. (b) Recruitment of neutrophils

at S. aureus-infected skin wound sites, as measured by in vivo fluorescence.

Values are the mean radiant efficiency ([p/s/cm2/sr]/[mW/cm2]) � SD (aseptic

model, n ¼ 6; infection model, n ¼ 8). (c) H&E staining shows altered abscess

formation and cytomorphology of neutrophils at the wound sites of miR-

142�/� mice 3 days after injury. The dotted line indicates the abscess

interface. High-magnification view of the white asterisks indicates the

recruitment of neutrophils (open arrowheads). Closed arrowheads indicate

wound margin. (d) Images of Gram staining were obtained using serial

sections. High-magnification view of the white asterisks indicates S. aureus

(arrows). Images shown are representative of eight independent experiments
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rather the abscess area had expanded beyond the wound area
under the intact skin. Intriguingly, wound-infiltrated neutro-
phils in miR-142�/� mice exhibited a hyper-stretched
morphology. Gram staining revealed the apparent abun-
dance of S. aureus inmiR-142�/� mice compared with that in
WT mice (Figure 2d). Overall, 8% of WT mice (1/12 mice)
and 50% ofmiR-142�/� mice (6/12 mice) retained an abscess
at the wound site 10 days after injury.
We next measured phagocytic activity at the wound sites

in vivo (Jones et al., 2013). For this, the wounds were inocu-
lated with fluorescent S. aureus particles that do not become
fluorescent until they are within a phagosome and then can be
detected as punctate foci by confocalmicroscopy, allowing the
extent of phagocytosis to be quantified. We found that the
number of phagosomes at the wound sites ofmiR-142�/�mice
was significantly lower than that at the wounds of WT mice
(Figure 3a and b), indicating that miR-142�/� mice might
exhibit abnormally low levels of phagocytosis.
To confirm that miR-142 plays a functional role in leuko-

cyte S. aureus attachment/engulfment at an early stage of
infection in vivo, we harvested S. aureus-infected skin from
wound sites at day 1 after injury, and performed transmission
electron microscopy, which allowed us to observe the
extracellular and subcellular localization of S. aureus in
wound-infiltrated neutrophils at wound sites and intracellular
vacuolar compartments (Kobayashi et al., 2010). S. aureus
was found in clearly defined membrane-enclosed vacuoles in
WT and miR-142�/� mice, indicating that miR-142 is not
absolutely essential for phagosome synthesis (Figure 3c). We
determined the number of S. aureus within phagosomes and
found that this number in miR-142�/� neutrophils was
significantly reduced (mean value, 5 S. aureus/neutrophil)
when compared with that in WT neutrophils (mean value, 12
S. aureus/neutrophil) (Figure 3d). These results indicate that
miR-142 in neutrophils could at least contribute to the pro-
cess of S. aureus clearance until engulfment.

We next measured the time course of phagocytosis of bac-
teria by bone marrow-derived neutrophils in vitro. The pro-
portion of phagosome-positive WT neutrophils gradually
increased for 10 minutes after coculture of these cells with
fluorescent S. aureus bioparticles (Figure 3e). In contrast,miR-
142�/� neutrophils were largely still not phagosome-positive
at 30 minutes and beyond. Taken together, these results indi-
cate that miR-142 may play a critical role in neutrophil clear-
ance of S. aureus infection during skin wound healing.

MiR-142 regulates neutrophil polarity and uropod retraction
during chemotaxis

The morphology of miR-142�/� neutrophils appeared similar
to that of neutrophils in zebrafish deficient in miR-142ab, in
which these cells fail to developmentally disperse, suggesting
that the migratory capacity of miR-142 in mammalian neu-
trophils might also be altered (Fan et al., 2014). To investigate
(c, d). Scale bars ¼ 500 mm (c and d, low magnification), 10 mm (c and d,

high magnification). All data are expressed as the mean � SD. *P < 0.05,

***P < 0.001 by one-way analysis of variance followed by Tukey’s test. EGFP,

enhanced green fluorescent protein; H&E, hematoxylin and eosin; lys,

lysozyme M; SD, standard deviation; WT, wild type.
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the mechanisms of neutrophil chemotaxis, we incubated
bone marrow-derived neutrophils in the presence of a local
source of the chemotactic peptide N-formylmethionyl-leucyl-
phenylalanine (fMLP) and imaged their migratory tracks
by differential interference contrast imaging microscopy.
fMLP-stimulated miR-142�/� neutrophils exhibited multiple
leading edges and a hyper-stretched morphology (reminis-
cent of that seen in vivo in miR-142�/� mice, as mentioned
above), as they migrated toward the attractant (Figure 4a,
Supplementary Movies S1 and S2 online). To structurally and
www.jidonline.org 935
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functionally characterize the neutrophils during chemotaxis,
we examined the F-actin network in cells stained with fluo-
rescent phalloidin using structured illumination microscopy,
a form of super-resolution fluorescence microscopy (Cox,
2015). Before stimulation, WT and miR-142�/� neutrophils
had identical morphologies (Figure 4b); however, on fMLP
Journal of Investigative Dermatology (2017), Volume 137
stimulation, miR-142�/� neutrophils exhibited markedly
increased F-actin content within their lamellipodia
(Figure 4c), as well as clear uropod retraction defects
(Supplementary Figure S5 online). We visualized chemotaxis
of WT:lys-EGFP and miR-142�/�:lys-EGFP neutrophils by
confocal microscopy and confirmed that fMLP-stimulated
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neutrophils by the miR-142 family.

MiR-142-3p and miR-142-5p control

lamellipodia and stress fiber/focal

adhesion via Rac1 and RhoA protein

synthesis. Rupture of miR-142

function leads to abnormal

morphology and chemotaxis. All data

are expressed as the mean � SD.

*P < 0.05 and **P < 0.01 by the

unpaired t-test (b, e). fMLP,

N-formylmethionyl-leucyl-

phenylalanine; GAPDH,

glyceraldehyde-3-phosphate

dehydrogenase; miRNA, microRNA;

SD, standard deviation; SIM,

structured illumination microscopy;

30-UTRs, 30-untranslated region; WT,

wild type.
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miR-142�/�:lys-EGFP neutrophils behaved similarly to miR-
142�/� neutrophils (Figure 4d, Supplementary Movies S3 and
S4 online). Time-lapse videos of 2-hour duration revealed
that miR-142�/�:lys-EGFP neutrophils moved toward a high
concentration of fMLP at a higher velocity than WT:lys-EGFP
neutrophils (Figure 4e and f). The fMLP-stimulated movement
of miR-142�/�:lys-EGFP neutrophils was also significantly
more sustained than that of WT:lys-EGFP neutrophils (WT
82.5 � 4.7 minutes [43 cells from 3 mice];miR-142�/� 105.0
� 4.2 minutes [47 cells from 3 mice], P ¼ 0.0006;
Supplementary Movies S3 and S4). However, miR-142�/�:
lys-EGFP neutrophils tended to lose their polarity more
rapidly than WT cells, leading to a haphazard migratory route
(Figure 4g), even though preferential migration directionality
in miR-142�/�:lys-EGFP neutrophils (22 per 47 cells with a
higher frequency of migration in the direction of 0� � 45�)
was not significantly different from that in WT:lys-EGFP
neutrophils (21 per 46 cells with a higher frequency of
migration in the direction of 0� � 45�) (Figure 4h). In general,
neutrophils migrate toward a wound or site of infection and
then remain static while secreting biomolecules at the site of
inflammation. We speculate that miR-142�/� neutrophils
may have defective “stop signaling,” which normally allows
them to shift from the migratory phase to the cytokine
secretory phase, resulting in a greater susceptibility of miR-
142�/� mice to infection at wound sites. Taken together, our
data indicate that miR-142 in neutrophils contributes to the
maintenance of polarity and the shift from the migratory to
the static, bactericidal state.

Expression of small GTPases is regulated by miR-142 in
neutrophils

The small GTPases Rho, Rac, and Cdc42 are necessary for
various aspects of leukocyte migration induced by
www.jidonline.org 937
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chemotactic cues during the innate immune response
(Bokoch, 2005), and mouse genome informatics (see
Supplementary Materials and Methods online) predicts that
all three of these molecular switches may be candidate
target genes for miR-142 (Supplementary Figure S6 online).
Indeed, miR-142-3p knockdown enhances the migration of
human CD4þ T cells and modulates actin cytoskeleton
regulation through Rac1 and Rock2, which are miR-142-3p
target genes (Liu et al., 2014). Our related previous in vivo
imaging studies of small GTPases in Drosophila embryo
wound inflammation showed that Rac, Cdc42, and Rho
signaling contributes to immune cell lamellipodial activity,
migratory polarity, and uropod retraction, respectively, as
these cells migrate to wound sites (Stramer et al., 2005).
Here, we show that the expression of Rho and Rac, but not
Cdc42, was significantly increased and their localization
was altered in fMLP-stimulated miR-142�/� neutrophils,
compared with those in WT neutrophils, as measured by
immunoblotting and immunocytochemistry (Figure 5aed).
To investigate the direct mechanism behind this, we tested
whether the miR-142 family can bind to mammalian Cdc42,
Rac1, and RhoA target 30-untranslated region (30-UTR)
mRNAs. Specifically, we cotransfected the murine fibroblast
cell line with miR-142-3p or miR-142-5p mimics with a
firefly luciferase vector encoding the 30-UTRs of the pre-
dicted mRNA target sites (Supplementary Figure S6). Anal-
ysis of luciferase activity showed that the miR-142-3p and
miR-142-5p mimics bound to Rac1 and RhoA 30-UTRs,
respectively (Figure 5e). These results suggest that miR-142-
3p and miR-142-5p interact with Rac1 and RhoA mRNA 30-
UTRs, respectively, which may in part influence neutrophil
chemotaxis (Figure 5f).

Chapnik et al. (2014) reported that megakaryocytes from
miR-142�/� mice exhibit disturbed actin cytoskeletal dy-
namics owing to changes in the expression levels of several
cytoskeletal regulatory genes, such as cofilin-2 (Cfl2), Rho
GTPase activating protein 35 (Arhgap35), and Wiskott-
Aldrich syndrome-like (Wasl), all of which are target genes
for miR-142-3p. Taken together with our results, this suggests
that the miR-142 family might play a role in regulating
neutrophil migration by modulating Rac and Rho expression
levels and the consequent regulation of the actin cytoskel-
eton, which is clearly pivotal for efficient neutrophil
migration.
We found that the miR-142 family may regulate the

expression of small GTPases and thus orchestrate neutrophil
motility during chemotaxis, but it is known that the small
GTPase family also plays a central role in phagocytosis. For
instance, Fc receptor-mediated phagocytosis, which depends
on binding to the Fc portion of antibodies, is mediated by
Cdc42 and Rac, and the internalization of complement-
opsonized particles is dependent on Rho (Caron and Hall,
1998). Our findings in this study reveal that miR-142 may
be involved in neutrophil migration through effects on small
GTPase expression, and we speculate that it may also control
engulfment efficiency. Macrophage, lymphocyte, and cyto-
kine production are important for bacterial killing (Hume
et al., 2006). We are currently investigating the molecular
mechanism linking miR-142 and other biological functions
(i.e., cytokine production) in detail.
Journal of Investigative Dermatology (2017), Volume 137
Several hereditary diseases that involve genes critical for
neutrophil function or production have been identified, some
of which are associated with immunodeficiency and severe
susceptibility to bacterial infection; for example, using a
zebrafish model of wound repair and systemic infection, we
revealed that immunodeficiency-related Wiskott-Aldrich
syndrome protein (WASp), which is known to coordinate
actin polymerization, plays an essential role in leukocyte
wound recruitment and S. aureus clearance (Jones et al.,
2013). A number of studies have shown that Rac isoforms
are crucially important for neutrophil functions in mice, such
as chemotaxis, bacterial killing, and nicotinamide adenine
dinucleotide phosphate oxidase pathway activation (Koh
et al., 2005; Pick, 2014), and genetic defects in small
GTPase family members also affect neutrophil function in
humans; for example, neutrophils derived from individuals
with a point mutation in Rac2 exhibit decreased chemotactic
polarization, azurophilic granule secretion, and superoxide
anion production (Williams et al., 2000). Although miR-142
deficiencies have not yet been identified in humans, our
findings implicate miR-142 family members in disorders
related to neutrophil function and immunodeficiency.
In conclusion, we have revealed that the miR-142 family

regulates actin cytoskeleton dynamics in neutrophils by
controlling small GTPase translation, and showed that it plays
a central role in the protection against S. aureus infection at
skin wound sites. Our findings suggest that these miRNAs
might be involved in multiple regulatory steps that enable the
killing of opportunistic pathogens at wound sites.

MATERIALS AND METHODS
Skin wounding

All experiments were conducted according to the provisions of the

Ethics Review Committee for Animal Experimentation at Nagasaki

University. The wound model was established as described previ-

ously (Mori et al., 2014). In brief, full-thickness excisional wounds

(4-mm biopsy punch; Kai Industries, Seki, Japan) were made in the

dorsal skin (after shaving under anesthesia) of 6- to 12-week-old

mice (Figure 1b). Wound tissues were harvested using a 6-mm bi-

opsy punch (Kai Industries). The gross appearance of wound closure

was recorded using a digital camera. Wound areas were calculated

using Photoshop CS4 (Adobe Systems, San Jose, CA).

Artificial and horizontal S. aureus infection at skin wound
sites

S. aureus type strain (NBRC 100910) was obtained from the National

Institute of Technology and Evaluation (Tokyo, Japan). Mice were

inoculated with S. aureus (1 � 108 CFU/10 ml) at the skin wound

sites. The presence of S. aureus at the wound sites was quantified by

two methods. S. aureus gene-specific PCR was performed with a

Quick Primer S. aureus kit (Takara Bio, Kusatsu, Japan) and an ABI

PRISM 7900HT Sequence Detection System (Applied Biosystems,

Foster, CA). Alternatively, bacteria were quantified by counting CFU

after culture.

For the horizontal S. aureus infection study, two WT mice and one

miR-142�/� mouse were placed overnight in a cage (17 cm in

length, 30 cm in width, and 13 cm in height) to check that they

did not fight each other. The next day, skin wounds were made

on all three mice and the wound site of one WT mouse was inoc-

ulated with Alexa Fluor 594-conjugated S. aureus BioParticles

(10 ml of 20 mg/ml; Life Technologies, Carlsbad, CA) or S. aureus
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(1 � 108 CFU/10 ml). The second WT mouse and the miR-142�/�

mouse were placed in the same cage as the host mouse for 3 days.

The amount of S. aureus at the wound sites was then quantified by

CFU counting.

Analysis of phagocytosis at wound sites

pHrodo Red S. aureus Bioparticles (10 ml of 10 mg/ml; Life Tech-

nologies) were inoculated into the skin wounds. After excision, tis-

sues were fixed in 4% paraformaldehyde, embedded in O.C.T.

Compound, and frozen. Sections (60 mm thick) were counterstained

with DAPI. Phagosomes were visualized by z-stack confocal fluo-

rescence microscopy (C2þ system; Nikon Corporation, Tokyo,

Japan) equipped with Plan Apo VC20x (0.75 NA), and the images

were processed using IMARIS software (Bitplane, Zurich,

Switzerland).

Analysis of phagocytosis in vitro

Ly-6Gþ neutrophils were isolated from bone marrow by MACS

Separation (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany),

in accordance with the manufacturer’s instructions. The phagocy-

tosis assay was performed with pHrodo Red S. aureus Bioparticles.

In brief, 30 ml of pHrodo Red S. aureus Bioparticles (1 mg/ml) were

mixed with neutrophils suspended in Dulbecco’s modified Eagle’s

medium without phenol red (1 � 105 cells/200 ml) and placed in a

glass-bottomed dish. Cells were incubated in an atmosphere of 5%

CO2 at 37
�C in a stage top incubator (Tokai Hit, Fujinomiya, Japan).

Cells were examined by confocal microscopy (C2þ system; Nikon

Corporation) equipped with Plan Apo VC20x (0.75 NA). Images

were acquired every minute and fluorescent phagosome-positive

cells were counted every 10 minutes.

Statistical analysis

Data are presented as the mean � standard deviation. Differences

between means were analyzed with GraphPad Prism 6 software

(GraphPad Software, San Diego, CA).

SUPPLEMENTARY MATERIALS AND METHODS
The generation of miR-142�/� mice and miR-142�/�:lys-EGFP mice;

isolation of tissue neutrophils, macrophages, T lymphocytes, and B

lymphocytes; establishment of the streptozotocin-induced diabetes

model; and methods for miRNA isolation and quantitative PCR

analysis, histology, transmission electron microscopy, chemotaxis

assay, immunocytochemistry, total protein extraction and immuno-

blotting, and assay for miRNA binding to the 30-UTR of mRNA are

described in the Supplementary Materials and Methods.
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