2	contracture model
3	
4	Ryo Sasabe, MS ^{1,2} , Junya Sakamoto, PhD ³ , Kyo Goto, MS ^{1,4} , Yuichiro Honda, PhD ² , Hideki
5	Kataoka,PhD ⁴ , Jiro Nakano, PhD ³ , Tomoki Origuchi PhD ¹ , Daisuke Endo, PhD ⁵ , Takehiko
6	Koji, PhD ⁵ , Minoru Okita, PhD ¹
7	¹ Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki
8	University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, Nagasaki
9	852-8520, Japan
10	² Department of Rehabilitation, Nagasaki University Hospital, Sakamoto 1-7-1, Nagasaki,
11	Nagasaki 852-8520, Japan
12	³ Department of Physical Therapy Science, Unit of Physical and Occupational Therapy
13	Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1,
14	Nagasaki, Nagasaki 852-8520, Japan
15	⁴ Department of Rehabilitation, Nagasaki Memorial Hospital, 1-11-54 Fukahori, Nagasaki,
16	Nagasaki 851-0301, Japan
17	⁵ Department of Histology and Cell Biology, Unit of Basic Medical Sciences, Nagasaki
18	University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, Nagasaki
19	852-8520, Japan

Effects of joint immobilization on changes in myofibroblasts and collagen in the rat knee

6)	1	۱
_ / .	L	
_	`	^

21	Corresponding author:
22	Minoru Okita, PhD
23	Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki
24	University Graduate School of Biomedical Sciences,
25	Address: 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8520, Japan
26	Telephone and Fax: +81-95-819-7919
27	E-mail: mokita@nagasaki-u.ac.jp
28	
29	Running title: Immobilization-induced joint capsule fibrosis
30	
31	Author's Contributions: JS, JN, TO, and MO contributed substantially to study
32	conception, design, data analysis, and interpretation of data. RS, JS, KG, HK, YH,
33	DE, and TK contributed to data acquisition. RS, JS, and MO drafted the
34	manuscript. All authors discussed the results, commented on the manuscript, and
35	approved the final manuscript.
36	
37	

39 ABSTRACT

The purpose of this study was to examine the time-dependent changes in the development of 40joint capsule fibrosis and in the number of myofibroblasts in the joint capsule after 41 immobilization, using a rat knee contracture model. Both knee joints were fixed in full flexion 42for 1, 2, and 4 weeks (immobilization group). Untreated rats were bred for each 43immobilization period (control group). Histological analysis was performed to evaluate 44 changes in the amount and density of collagen in the joint capsule. The changes in type I and 45III collagen mRNA were examined by in situ hybridization. The number of myofibroblasts in 46the joint capsule was assessed by immunohistochemical methods. In the immobilization group, 47the amount of collagen increased within 1 week and the density of collagen increased within 2 48 weeks, as compared with that in the control group. Type I collagen mRNA-positive cell 49numbers in the immobilization group increased at all time points. However, type III collagen 50mRNA-positive cell numbers did not increase. Myofibroblasts in the immobilization group 51significantly increased compared with those in the control group at all time points, and they 52increased significantly with the period of immobilization. These results suggest that joint 53capsule fibrosis with overexpression of type I collagen occurs and progresses within 1 week 54after immobilization, and an increase in myofibroblasts is related to the mechanism of joint 55capsule fibrosis. The findings suggest the need for a treatment targeting accumulation of type 56I collagen associated with an increase in myofibroblasts. 57

58 Key words: immobilization; joint capsule; fibrosis; myofibroblasts; collagen

59 INTRODUCTION

Joint contracture is characterized by loss of passive range of motion (ROM) and restriction 60 61 of the activities of daily living¹, and is an important clinical problem in orthopedics and rehabilitation medicine. The most common cause of joint contracture is immobilization ^{1; 2}, 62 which is a common orthopedic treatment for patients with severe traumatic injuries of the 63 joints or other musculoskeletal disorders ³⁻⁷. In addition, several studies demonstrated that 64 patients with conditions limiting their mobility are at a high risk for joint contracture⁸⁻¹⁰. Joint 65 immobilization without traumatic or inflammatory conditions (e.g., bed rest after spinal cord 66 injury or hemiplegia) may also be a factor in joint contracture. 67 Experimental research has shown two components contribute to the development of 68 69 immobilization-induced joint contractures: arthrogenic (bone, cartilage, synovial membrane, capsule, and ligaments) and myogenic¹¹. Arthrogenic components, particularly the joint 70capsule, play an important role in immobilization-induced joint contracture^{9; 12; 13}. One study 71reported that the ROM on extension increased significantly after incision of the posterior 72capsule in knee joints with immobilization-induced flexion contractures¹⁴. Thus, the joint 73capsule is one of the main contributors to the development of arthrogenic contractures. 74Previous studies suggested that immobilization induces joint capsule fibrosis ¹⁵⁻¹⁸. Higher 75amounts of type I collagen have been reported in the capsules of immobilized knees¹⁹, and 76synovial hypertrophy with fibrosis in the joint capsule has been observed after 77immobilization²⁰. These studies suggest that joint capsule fibrosis may be a primary cause of 78

79	pathology in joint contractures. Several studies examined changes in the expression of type I
80	and III collagen—the major structural collagens of the joint capsule ²¹ —to determine the
81	pathology of joint capsule fibrosis ^{19; 22; 23} . Although these studies utilized
82	immunohistochemical, biochemical, and molecular biological methods, the pathology of
83	joint capsule fibrosis could not be conclusively determined, as the findings were not in
84	agreement ^{19; 20; 22; 24} . Other studies examined factors related to the development of fibrosis
85	(e.g., the role of cytokines, and inflammatory and hypoxic conditions) in a rat knee joint
86	contracture model. However, fibrotic change was not observed with upregulation of these
87	factors ^{25; 26} . The changes in types I and III collagen in the capsule after immobilization
88	remain unclear.
89	A number of studies have implicated myofibroblasts in various fibrotic disorders.
90	Myofibroblasts contribute to tissue repair during wound healing by migrating into damaged
91	tissue and synthesizing extracellular matrix (ECM) ^{27; 28} . In liver fibrosis, hepatic stellate cells
92	differentiate into myofibroblasts and contribute to the production of ECM protein ²⁹ . The
93	myofibroblasts in renal fibrosis replace kidney parenchymal cells with scarring connective
94	tissue and ECM components ³⁰ . In pulmonary fibrosis, myofibroblasts promote ECM
95	deposition by releasing inflammatory mediators ²⁷ . In Dupuytren's contractures and
96	hypertrophic scarring after a burn injury, the number of myofibroblasts contributing to matrix
97	remodeling is increased ^{31; 32} . Immobilization after traumatic surgery reportedly increases the
98	number of myofibroblasts in the joint capsule ³³⁻³⁵ . In contrast, another study demonstrated that

99	only the reduction of cyclic mechanical stress increased the differentiation of lung fibroblasts
100	into myofibroblasts ³⁶ . Honda et al. reported that the myofibroblasts in the soleus muscle were
101	increased after immobilization ³⁷ . These previous findings suggest that the increase in
102	myofibroblasts may be induced by immobilization, which leads to immobilization-induced
103	joint capsule fibrosis; however, the influence of immobilization alone on myofibroblasts in the
104	joint capsule is unknown.
105	Although alterations in the joint capsule after immobilization have been demonstrated, the
106	pathology and mechanism of immobilization-induced arthrogenic contracture, and whether
107	joint capsule fibrosis occurs after immobilization, remain unclear. Identification of the basis
108	for immobilization-induced arthrogenic contracture would be useful for the development of
109	treatments to prevent such contractures. The aim of this study was to examine the
110	time-dependent changes in the development of joint capsule fibrosis and in the numbers of
111	myofibroblasts in the joint capsule after immobilization, using a rat knee contracture model.
112	
113	MATERIALS AND METHODS
114	Animals
115	Sixty 12-week-old male SPF Wistar rats were obtained from Kyudo Laboratories (Saga,
116	Japan); their weights were 350-450 g. All rats were housed in cages (2 or 3 per cage) at
117	22-24 °C with a 12-hour light-dark cycle and were allowed free access to food and water. The

118	experimental protocol was approved by the local ethics review committee for animal
119	experimentation (approval number. 1404161137).
120	

121 Experimental Design

The 60 rats were divided into an immobilization group (10 per time point) and a control 122123group (10 per time point). Rats in the immobilized group had the knee joints of both hind limbs fixed in full flexion for 1, 2, and 4 weeks, using plaster casts placed under anesthesia 124with intraperitoneal pentobarbital sodium (40 mg/kg). The plaster casts were replaced at least 125every 2 to 3 days to prevent loosening of the casts and edema of the hind limbs. Rats were 126able to move freely in their cages using their forelimbs. When the immobilized rats were 127128anesthetized, the controls were also anesthetized to avoid possible confounding by the 129aesthesia. 130

131 Measurement of ROM of Knee Joint Extension and Calculation of the Arthrogenic

132 **Contribution to Total Contracture**

At 1, 2, and 4 weeks of immobilization, the rats were anesthetized with pentobarbital sodium (40 mg/kg) and the ROM of knee joint extension was quantified by measuring the angle (from -25° to -135°) between the line connecting the greater trochanter of the femur to the center of the knee joint and the line connecting the center of the knee joint to the lateral malleolus of the fibula, with the knee joint passively extended using a tension of 0.3 N generated by

138	ultra-small-capacity load cells (LTS-1KA, Kyowa Electronic Instruments Co., Tokyo, Japan).
139	We confirmed that 0.3 N was the minimum tension required to achieve maximum extension in
140	the knee joints of control rats. The measured ROM at each immobilization time point was
141	used to calculate the arthrogenic (excluding the effect of skin and muscle) contribution to
142	limitation of ROM using the following formulas: (1) Limitation in ROM (= total contracture)
143	(°) = ROM (before immobilization) - ROM (after immobilization); (2) Limitation in ROM
144	due to periarticular component (= arthrogenic contracture) (°) = ROM after skin excision
145	(popliteal region) and myotomy (knee flexor) - Limitation in ROM. These procedures were
146	carried out after measurement of the ROM in the immobilization group; (3) Arthrogenic
147	restriction to total contracture (%) = arthrogenic contracture / total contracture × 100^{13} .
1 40	

149 **Tissue Sampling and Preparation**

After each immobilization time period, the animals in each group were sacrificed by 150injecting pentobarbital sodium. The hind limb knee joints of each group were excised and 151fixed with 4% paraformaldehyde, then decalcified with either 10% ethylenediaminetetraacetic 152acid (EDTA) in 0.01 M phosphate buffer, pH 7.4, or Morse solution at 4°C. The specimens 153decalcified with 10% EDTA were used for histological and immunohistochemical analysis, 154155while those decalcified with Morse solution were used for in situ hybridization. Each specimen was then dehydrated using a graded series of ethanol solutions and embedded in 156157paraffin.

159 Histological Analysis

160Longitudinal 6-µm serial sections were cut with a microtome, and 2 sections from each right knee sample (medial and lateral) were stained with hematoxylin-eosin (H&E) to identify 161 pathological changes such as inflammation in the joint capsule. Three sections from each 162163sample (105 µm apart) were stained with picrosirius red (picrosirius red stain kit, Polyscience, Inc., Warrington, PA, USA) to visualize collagen fibers in the posterior capsule; these sections 164 were used for semiquantification of collagen in the posterior capsule. The sections were 165magnified 40×, and images including the entire posterior capsule were captured using a digital 166camera (Nikon, Tokyo, Japan). Each image was overlaid with a lattice image (50 μ m \times 50 167 168μm) using Adobe Photoshop ver. 6.0 (Adobe Systems, San Jose, CA, USA); the number of intersection points with collagen fibers were then counted and the relative value based on the 169control group was calculated for each immobilization period. To evaluate the changes in 170collagen density, the posterior capsule was identified and 5 random points on each slide were 171photographed at 400× magnification with a digital camera. Each image was then binarized 172173(red-stained areas of collagen made to appear black while other areas appear white) and total 174area of black per field was calculated using Image J software (W. Rasband, National Institutes of Health, Bethesda, MD, USA). The individual performing the analysis was blinded to the 175group to which the rats belonged. 176

179Five rats per group at each time point were provided for in situ hybridization. Sections 180(6-µm thick) from each right hind limb knee sample were treated with 0.2 N HCl for 20 min and 10 g/mL proteinase K (Sigma-Aldrich Corp., St. Louis, MO, USA) at 37°C for 15 min. 181 After fixation for 5 min with 4% paraformaldehyde in 0.01 M phosphate-buffered saline 182183(PBS; pH 7.4), sections were immersed in PBS with 2 mg/mL glycine and kept in 40% deionized formamide in $4 \times SSC$ ($1 \times SSC = 0.15$ M NaCl and 0.015 M sodium citrate, pH 7.0) 184 until hybridization. Hybridization was carried out at 37°C overnight with 1 µg/mL 185digoxigenin-labeled sense and antisense oligo-DNA dissolved in hybridization buffer 186containing 10 mM Tris-HCl (pH 7.4), 0.6 M NaCl, 1 mM EDTA, 1× Denhardt's solution, 250 187 188µg/mL yeast tRNA, 125 µg/mL salmon testis DNA, 10% dextran sulfate, and 40% deionized formamide. After hybridization, the slides were washed twice with increasingly dilute 189concentrations of SSC (0.5, 1, $2 \times$ SSC/50% formamide) for 1 h at 37°C. Sections were 190reacted with the blocking solution for 1 h, reacted overnight with horseradish peroxidase 191 (HRP)-conjugated goat anti-digoxigenin antibody (Roche, Indianapolis, IN, USA), and 192193washed four times with 0.075% Brij 35 in PBS for 15 min. The HRP sites were visualized according to a method described in previous reports^{38; 39}. The 28s rRNA probe signals were 194 detected with HRP-conjugated mouse monoclonal anti-T-T dimer antibody (Kyowa Medex, 195Tokyo, Japan). The sequence of sense and antisense oligo-DNAs used is listed in Table 1; 196197each consisted of 45 base pairs representing a portion of rat mRNA. Positive cells were

198	identified by measurement of the staining density over the negative control (anti-sense) probe
199	using Image J software. The number of positive cells was counted and the ratio of positive
200	cells to total cell number (excluding vascular endothelial cells) in the posterior capsule was
201	calculated. More than 300 cells per section and 2 sections per rat were used for analysis. The
202	individual performing the analysis was blinded to the group to which the rats belonged.
203	

204 Immunohistochemical Analysis

Five rats per group at each time point were provided for immunohistochemical analysis. 205Sections (6-µm thick) from left knee joint samples of each hind limb were subjected to an 206antigen retrieval step by incubating 2 mg/mL hyaluronidase from bovine testes (Sigma, St. 207 208Louis, MO, USA) at 37°C for 30 min. Endogenous peroxidase was inactivated with 0.3% H₂O₂ in methanol for 10 min at room temperature (RT; 22-25°C). The sections were blocked 209with 5% bovine albumin in PBS for 60 min and incubated overnight at 4°C with a mouse 210monoclonal anti- α -smooth muscle actin (α -SMA) primary antibody (1:1000; Exalpha 211Biologicals Inc., Shirley, MA, USA). The sections were rinsed in PBS and incubated with a 212213biotinylated goat anti-mouse immunoglobulin G (1:1000; Vector Laboratories, Burlingame, CA, USA) for 60 min at RT. Each section was stained using avidin-biotin complex method 214(Vectastain Elite ABC kit; Vector Laboratories) for 60 min at RT. Sections were then 215visualized with a metal enhanced DAB substrate kit (Thermo Fisher Science Inc., MA, USA). 216217After the final washing step, each section was stained with 1% methyl green. Each section

218	was examined with an optical microscope and the entire posterior capsule was photographed
219	at 400× magnification with a digital camera. The number of total cells and α -SMA-positive
220	cells in the posterior capsule were counted (10 areas per section). The ratio of
221	α -SMA-positive cells to the total number of cells (excluding vascular endothelial cells) was
222	then calculated. This analysis was performed using Photoshop v. 6.0. Vascular areas were
223	omitted from the analysis. Two sections per rat and 10 microphotographs per section were
224	used for analysis. The individual performing the analysis was blinded to the group to which
225	the rats belonged.
226	
227	Statistical Analysis
228	All data are presented as mean \pm standard deviation (SD). The difference between groups for
229	each immobilization period was assessed using a non-paired t-test, whereas differences within
230	the same group were assessed using 1-way analysis of variance (ANOVA), followed by
231	Scheffe's post hoc test. Differences were considered significant at $p < 0.05$.
232	
233	RESULTS
233 234	RESULTS
233 234 235	RESULTS ROM and Arthrogenic Contribution to Total Contracture

control group for each time point and decreased significantly in a time-dependent manner.

238	Joint contractures due to immobilization developed and progressed with immobilization time.
239	Arthrogenic contracture started at 11.5° at 1 week and progressed to 43.5° at 4 weeks.
240	Arthrogenic contribution to total contracture was 40.0% at 1 week and increased to 63.0% at
241	4 weeks. Arthrogenic contracture and arthrogenic contribution to total contracture at 2 and 4
242	weeks of immobilization were significantly greater than those at 1 week (Table 2).
243	
244	Histological Analysis
245	The results of microscopic observation of all H&E-stained specimens of hind limb knee
246	joints did not reveal any abnormal findings such as cellular infiltration in either the control or
247	immobilization groups (data not shown). In addition, the posterior capsule thickness was
248	greater in the immobilization group compared to the control group, and this change
249	progressed with the period of immobilization (Figure 1).
250	The number of intersection points with collagen increased 1.2 \pm 0.1-fold at 1 week, 1.3 \pm
251	0.1-fold at 2 weeks and 1.5 \pm 0.2-fold at 4 weeks in the immobilization group (Figure 2A). At
252	each time point, the number of intersection points with collagen fibers was significantly
253	higher in the immobilization group than in the control group. The number of intersection
254	points with collagen fibers at 4 weeks of immobilization was significantly higher than at 1
255	week and 2 weeks of immobilization. In the control group, the density of collagen per unit
256	area ranged from 59.3 \pm 7.2% to 59.9 \pm 6.7%; in the immobilization group, the density of
257	collagen per unit area was $63.4 \pm 4.8\%$ at 1 week, $74.8 \pm 4.8\%$ at 2 weeks, and $77.6 \pm 5.8\%$ at

258	4 weeks (Figure 2B). The density of collagen in the immobilization groups was significantly
259	higher than in the control groups at the 2- and 4-week immobilization time points.
260	Additionally, the density of collagen in the immobilization group increased significantly with
261	increasing duration of immobilization (Figure 2).
262	
263	In situ hybridization
264	First, we performed competitive testing to confirm each probe's specificity. In the presence
265	of an excess of unlabeled antisense probe, the hybridization signal was essentially abolished
266	for each type of collagen.
267	The ratio of type I collagen mRNA-positive cells to total cells in the posterior capsule
268	ranged from 20.1 \pm 7.1% to 22.2 \pm 10.4% in the control group; in the immobilization group,
269	the ratios were 25.2 \pm 8.8%, 28.8 \pm 11.5%, and 41.7 \pm 12.7% at 1 week, 2 weeks, and 4 weeks
270	of immobilization, respectively (Figure 3, 4A). The ratio of type I collagen mRNA-positive
271	cells to the total cells in the posterior capsule was significantly higher in the immobilization
272	group than in the control group at each time point. Furthermore, in the immobilization group,
273	the ratio of type I collagen mRNA-positive cells to the total cells in the posterior capsule was
274	significantly increased with prolongation of the immobilization period. On the other hand,
275	there was no significant difference in the ratio of type III collagen mRNA-positive cells to
276	total cells in the posterior capsule between the control and immobilization groups at any time
277	point (Figure 3, 4B).

Immunohistochemical Analysis 279280The ratio of α -SMA-positive cells to total cells in the posterior capsule ranged from 3.3 \pm 2.0% to 4.4 \pm 2.8% in the control group. In the immobilization group, this ratio was 7.3 \pm 2812.6%, $10.2 \pm 2.8\%$, and $20.1 \pm 3.7\%$ at 1 week, 2 weeks, and 4 weeks of immobilization, 282respectively (Figure 5). The ratio of α -SMA-positive cells to total cells in the posterior 283capsule was significantly higher in the immobilization group than in the control group for 284each time point. In addition, the ratio of α-SMA-positive cells to total cells in the posterior 285capsule of the immobilization group significantly increased with increasing periods of 286immobilization. 287 288DISCUSSION 289Immobilization-induced contractures have been extensively studied. The joint capsule has 290been considered an important contributor to joint contractures after prolonged 291immobilization^{13-15; 17; 40}. Reported changes in the capsule after immobilization include 292293proliferation of connective tissues within the joint space and adhesions between the synovial folds and the surface of the articular cartilage^{15-18; 41}. In addition, the changes in type I and III 294collagen, which are the main components of the joint capsule, have been examined to 295evaluate fibrotic changes induced by immobilization. Liu et al. reported that type I and III 296

297 collagens in the shoulders of rats were increased after immobilization for 2 and 4 weeks 42 . In

298	contrast, Hagiwara et al. demonstrated that not every type of collagen was increased in the
299	knees of rats after prolonged immobilization ^{22; 23} . Onoda et al. reported that
300	immunoreactivity of collagen types I and III did not change in the joint capsule of a rat
301	immobilized-bleeding model ⁴³ . The results of each study were different and
302	immobilization-induced fibrotic changes in joint capsules have remained unclear. Nearly all
303	previous reports analyzed fibrotic changes with immunohistochemical scores of staining
304	intensity. Previous reports demonstrated that type I collagen accounted for 83% of the total
305	collagen in the synovial capsule ²¹ , which means that an increase in the proportion of type I
306	collagen would be minor. Thus, it may be difficult to detect an increase in type I collagen
307	using immunohistochemical staining. In a reverse transcription polymerase chain reaction
308	(RT-PCR), contamination by other tissues (e.g., ligament, periosteum, and muscle) can occur,
309	because the joint capsule is too small to extract. This may be one of the reasons for
310	contradictory results. In the current study, we used a simple, semiquantitative histological
311	method to clarify immobilization-induced joint capsule fibrosis, using the amount and
312	density of collagen as indicators of fibrosis according to immobilization time. Additionally,
313	type I and III collagen mRNA-positive cells in the joint capsule were detected by in situ
314	hybridization.
315	Moreover, we immunohistochemically examined the change in the number of
316	myofibroblasts, which synthesize high levels of ECM, particularly type I and III collagen,
317	labeled by α -SMA in the joint capsule.

318	This study showed that ROM for knee extension in the immobilization group was
319	significantly lower than that in the control group at 1 week after immobilization, and
320	continued to decrease gradually with immobilization time. The arthrogenic contribution to
321	limitation of ROM increased in a time-dependent manner. These results indicate that
322	immobilization induces arthrogenic contractures that progress with immobilization time,
323	similar to the findings described in a previous report ¹³ . Furthermore, Richard and Wright
324	found that 47% of the total resistance to midrange movement in a normal cat wrist joint was
325	accounted for by the capsule, representing the highest contribution among the periarticular
326	soft tissues; in comparison, the tendons account for only about 10% ⁴⁴ . Accordingly, we
327	surmise that the joint capsule contributes more to arthrogenic contracture than other
328	periarticular components.
329	On gross and microscopic observation, hypertrophic changes in the posterior capsule were
330	detected in immobilized knee joints, and this change progressed in a time-dependent manner.
331	Semiquantitative analysis showed that the number of intersection points with collagen fibers
332	in the posterior capsule increased as early as 1 week after immobilization and progressed until
333	4 weeks after immobilization. This result indicates that collagen fibers in the posterior capsule
334	increased as a result of immobilization. Previous studies ¹⁵⁻¹⁸ have shown an
335	immobilization-related increase in connective tissue, which is consistent with our results. The
336	reduction of ROM in the immobilized knee joint accompanied by synovial hypertrophy in the

338	extensibility of the joint capsule depends on its thickness ^{45; 46} . Thus, it is presumed that
339	hypertrophy of the joint capsule contributes to immobilization-induced arthrogenic
340	contracture. At 2- and 4-week time points, the density of collagen in the posterior capsule of
341	the immobilization groups was higher than that in the control groups. This change might have
342	resulted from an increase in collagen fibers; however, other factor might have been involved.
343	Previous research has shown that biochemical changes occur in the composition of
344	periarticular fibrous connective tissues including the joint capsule after immobilization, with
345	notable reduction of water and glycosaminoglycans ⁴⁷⁻⁵⁰ . These changes may then result in
346	narrowed collagen interfascicular spaces, altered plasticity and pliability of connective tissue
347	matrices, and reduced lubrication efficiency. We suggest that similar changes occurred in the
348	posterior capsule in the immobilization group. Although several previous studies have
349	analyzed various aspects of immobilization-induced joint capsule fibrosis, quantitative
350	changes in collagen with immobilization time have not yet been reported. In this study, we
351	showed longitudinal changes in the collagen content during development of
352	immobilization-induced joint capsule fibrosis. These results were the most important findings
353	in this study.
354	We observed that the ratio of type I collagen mRNA-positive cells in the posterior capsule
355	was increased at 1 week after immobilization and increased in a time-dependent manner. This
356	indicates that immobilization may evoke an increase in cells with the ability to produce type I
357	collagen. In contrast, the type III collagen mRNA-positive cells did not increase. These results

358	suggest that the increase in the amount of collagen in the posterior capsule may derive from
359	overexpression of type I collagen. Schollmeier et al. found that type I collagen was increased
360	at sites of fibrosis and connective tissue proliferation ²⁴ . Furthermore, in other fibrotic
361	conditions such as idiopathic pulmonary fibrosis and cirrhotic liver, type I collagen was found
362	to be disproportionately increased, whereas there was minimal change in type III collagen ^{51; 52} .
363	Thus, it is surmised that type I collagen plays a major role in fibrotic conditions in a variety of
364	tissues. The same seems true of immobilization-induced joint capsule fibrosis; however, type
365	III collagen mRNA and protein levels were increased in the joint capsule after immobilization
366	following traumatic surgery ³⁴ . This discrepancy of results for type III collagen increase after
367	immobilization may be explained by the traumatic condition of the joint. In any case, the
368	reasons for the increase in type I collagen mRNA-positive cells remains unclear and detailed
369	studies are needed to fill in this gap in the knowledge.
370	In this study, the α -SMA-positive cells in the posterior capsule significantly increased in the
371	immobilization group from 1 week after immobilization, and varied with immobilization time.
372	We used α -SMA as a marker of myofibroblasts. Previous studies suggested that reduction in
373	cyclic mechanical stimulation is a key factor promoting differentiation of fibroblasts into
374	myofibroblasts ^{36; 37; 53} . Joint immobilization may reduce the mechanical stimulation to
375	fibroblasts in the joint capsule, and this change may be a trigger of fibroblast differentiation
376	into myofibroblasts. Another possible cause of an increase in myofibroblasts might be
377	explained by hypoxia. Research has shown that α -SMA protein expression increases in

378	hypoxic fibroblasts, indicating that hypoxia promotes fibroblast differentiation into
379	myofibroblasts ^{37; 54} . In addition, Yabe et al. reported that joint immobilization induced
380	hypoxic conditions in the rat knee joint capsule ²⁵ . Thus, hypoxia due to joint immobilization
381	might promote fibroblast differentiation into myofibroblasts. Immobilization might have a
382	direct and/or indirect influence on the increase in myofibroblasts in the joint capsule.
383	Furthermore, myofibroblasts produce large amounts of collagen and play a pivotal role in
384	tissue fibrosis ^{36; 55} . Our results indicate that type I collagen mRNA-positive cells and
385	α -SMA-positive cells in the posterior capsule increased in a time-dependent manner; greater
386	increases in α -SMA-positive cells compared to type I collagen mRNA-positive cells were
387	noted at all time points from 1 to 4 weeks of immobilization. Thus, type I collagen
388	mRNA-positive cells in the posterior capsule might be myofibroblasts that increased due to
389	immobilization. Therefore, we believe that immobilization-induced increases of
390	myofibroblasts are strongly related to the development of joint capsule fibrosis.
391	There are some limitations to this study. First, the changes in type I and III collagen protein
392	concentrations were not investigated. The joint capsule of the rat knee is too small to facilitate
393	the examination of collagen levels using biochemical and molecular biological methods. In
394	addition, a large part of the capsule is composed of type I collagen, which makes it more
395	difficult to perform semiquantitative analysis using immunohistochemistry. This limitation
396	could be overcome by using larger animals such as rabbits or canines. Another limitation of
397	this study is that we were unable to completely elucidate the underlying pathophysiology of

398	immobilization-induced joint capsule fibrosis; moreover, hypoxic conditions were not
399	evaluated. Honda et al. reported that immobilization-induced muscle fibrosis was associated
400	with hypoxia, as well as with upregulation of interleukin-1 β and transforming growth
401	factor- β^{37} . Future studies are needed to determine the relationship between these factors and
402	development of joint capsule fibrosis, as well as the pathophysiology of arthrogenic
403	contractures.
404	In conclusion, this study demonstrated that joint immobilization induces an increase in the
405	number of myofibroblasts in the joint capsule from early stages of immobilization in the
406	absence of traumatic or inflammatory conditions. Upregulation of myofibroblasts may
407	promote expression of type I collagen, which subsequently induces fibrosis in the joint
408	capsule, resulting in an increase in the amount and density of collagen. These changes
409	represent a portion of the pathophysiology underlying immobilization-induced arthrogenic
410	contractures. In addition, this study suggests that treatment targeting accumulation of type I
411	collagen by limiting the increase in myofibroblasts would be beneficial in preventing
412	immobilization-induced contractures.
413	
414	Acknowledgments
415	The source of funding for this study was JSPS KAKENHI Grant Number 26750189 (RS)

416 and 15H03045 (MO). The authors have no financial conflicts of interest related to this project.

433 **REFERENCES**

434	1.	Wong K, Trudel G, Laneuville O. 2015. Noninflammatory Joint Contractures Arising
435	from In	nmobility: Animal Models to Future Treatments. Biomed Res Int 848290.
436	2.	Kaneguchi A, Ozawa J, Kawamata S, et al. 2016. Development of arthrogenic joint
437	contrac	ture as a result of pathological changes in remobilized rat knees. J Orthop Res.
438	3.	Ahn JH, Lee SH, Choi SH, et al. 2011. Evaluation of clinical and magnetic resonance
439	imaging	g results after treatment with casting and bracing for the acutely injured posterior
440	cruciate	e ligament. Arthroscopy 27:1679-1687.
441	4.	Kerkhoffs GM, van den Bekerom M, Elders LA, et al. 2012. Diagnosis, treatment
442	and pre	vention of ankle sprains: an evidence-based clinical guideline. Br J Sports Med
443	46:854-	-860.
444	5.	Akeson WH, Amiel D, Abel MF, et al. 1987. Effects of immobilization on joints.
445	Clin Or	thop Relat Res:28-37.
446	6.	Gault SJ, Spyker MJ. 1969. Beneficial effect of immobilization of joints in
447	rheuma	toid and related arthritides: a splint study using sequential analysis. Arthritis Rheum
448	12:34-4	14.
449	7.	Partridge RE, Duthie JJ. 1963. Controlled Trial of the Effect of Complete
450	Immob	ilization of the Joints in Rheumatoid Arthritis. Ann Rheum Dis 22:91-99.
451	8.	Clavet H, Hebert PC, Fergusson D, et al. 2008. Joint contracture following prolonged

452	stay in the intensive care unit. Canadian Medical Association Journal 178:691-697.
453	9. Moriyama H, Yoshimura O, Kawamata S, et al. 2007. Alteration of knee joint
454	connective tissues during contracture formation in spastic rats after an experimentally induced
455	spinal cord injury. Connect Tissue Res 48:180-187.
456	10. Dittmer DK, Teasell R. 1993. Complications of immobilization and bed rest. Part 1:
457	Musculoskeletal and cardiovascular complications. Can Fam Physician 39:1428-1432,
458	1435-1427.
459	11. Trudel G. 1997. Differentiating the myogenic and arthrogenic components of joint
460	contractures. An experimental study on the rat knee joint. Int J Rehabil Res 20:397-404.
461	12. Lee S, Sakurai T, Ohsako M, et al. 2010. Tissue stiffness induced by prolonged
462	immobilization of the rat knee joint and relevance of AGEs (pentosidine). Connect Tissue Res
463	51:467-477.
464	13. Trudel G, Uhthoff HK. 2000. Contractures secondary to immobility: is the restriction
465	articular or muscular? An experimental longitudinal study in the rat knee. Arch Phys Med
466	Rehabil 81:6-13.

14. Chimoto E, Hagiwara Y, Ando A, et al. 2007. Progression of an arthrogenic motion
restriction after immobilization in a rat experimental knee model. Upsala Journal of Medical
Sciences 112:347-355.

470 15. E. Burke Evans GWNE, James K Butler, Johanna Blumei. 1960. Experimental

- 471 immobilization and remobilization of rat knee joint. J Bone Joint Surg Am 42A:737-758.
- 472 16. T. H. Thaxter RAM, C. E. Anderson. 1965. Degeneration of Immobilizaed Knee
- 473 Joints in Rats. J Bone Joint Surg Am 567-585.
- 474 17. Enneking WF, Horowitz M. 1972. The intra-articular effects of immobilization on
- the human knee. J Bone Joint Surg Am 54:973-985.
- 476 18. Finsterbush A FB. 1973. Early changes in immobilized rabbits knee joints : a liight
- and electron microscopic study. Clin Orthop Relat Res 92:305-319.
- 478 19. Matsumoto F, Trudel G, Uhthoff HK. 2002. High collagen type I and low collagen
- 479 type III levels in knee joint contracture: an immunohistochemical study with histological
- 480 correlate. Acta Orthop Scand 73:335-343.
- 481 20. Sotobayashi D, Kawahata H, Anada N, et al. 2016. Therapeutic effect of
- 482 intra-articular injection of ribbon-type decoy oligonucleotides for hypoxia inducible factor-1
- 483 on joint contracture in an immobilized knee animal model. J Gene Med 18:180-192.
- 484 21. Kleftogiannis F, Handley CJ, Campbell MA. 1994. Characterization of extracellular
- 485 matrix macromolecules from bovine synovial capsule. J Orthop Res 12:365-374.
- 486 22. Hagiwara Y, Ando A, Onoda Y, et al. 2010. Expression patterns of collagen types I
- and III in the capsule of a rat knee contracture model. J Orthop Res 28:315-321.
- 488 23. Hagiwara Y, Chimoto E, Ando A, et al. 2007. Expression of type I collagen in the
- 489 capsule of a contracture knee in a rat model. Ups J Med Sci 112:356-365.

490	24.	Schollmeier G, Sarkar K, Fukuhara K, et al. 1996. Structural and functional changes
491	in the ca	nnine shoulder after cessation of immobilization. Clin Orthop Relat Res 310-315.
492	25.	Yabe Y, Hagiwara Y, Suda H, et al. 2013. Joint immobilization induced hypoxic and
493	inflamm	natory conditions in rat knee joints. Connect Tissue Res 54:210-217.
494	26.	Hagiwara Y, Chimoto E, Takahashi I, et al. 2008. Expression of transforming growth
495	factor-b	eta1 and connective tissue growth factor in the capsule in a rat immobilized knee
496	model.	Ups J Med Sci 113:221-234.
497	27.	Hinz B, Phan SH, Thannickal VJ, et al. 2007. The myofibroblast: one function,
498	multiple	e origins. Am J Pathol 170:1807-1816.
499	28.	Gabbiani G. 2003. The myofibroblast in wound healing and fibrocontractive diseases.
500	J Pathol	200:500-503.
501	29.	Seki E, Brenner DA. 2015. Recent advancement of molecular mechanisms of liver
502	fibrosis.	J Hepatobiliary Pancreat Sci 22:512-518.
503	30.	Zell S, Schmitt R, Witting S, et al. 2013. Hypoxia Induces Mesenchymal Gene
504	Express	ion in Renal Tubular Epithelial Cells: An in vitro Model of Kidney Transplant

505 Fibrosis. Nephron Extra 3:50-58.

- 506 31. Verjee LS, Midwood K, Davidson D, et al. 2009. Myofibroblast distribution in
- 507 Dupuytren's cords: correlation with digital contracture. J Hand Surg Am 34:1785-1794.
- 508 32. Nedelec B, Shankowsky H, Scott PG, et al. 2001. Myofibroblasts and apoptosis in

509	human l	hypertrophic scars: the effect of interferon-alpha2b. Surgery 130:798-808.
510	33.	Hildebrand KA, Sutherland C, Zhang M. 2004. Rabbit knee model of post-traumatic
511	joint co	ntractures: the long-term natural history of motion loss and myofibroblasts. J Orthop
512	Res 22:	313-320.
513	34.	Hildebrand KA, Zhang M, Germscheid NM, et al. 2008. Cellular, matrix, and growth
514	factor co	omponents of the joint capsule are modified early in the process of posttraumatic
515	contract	cure formation in a rabbit model. Acta Orthop 79:116-125.
516	35.	Hildebrand KA, Zhang M, Hart DA. 2007. Myofibroblast upregulators are elevated
517	in joint	capsules in posttraumatic contractures. Clin Orthop Relat Res 456:85-91.
518	36.	Blaauboer ME, Smit TH, Hanemaaijer R, et al. 2011. Cyclic mechanical stretch
519	reduces	myofibroblast differentiation of primary lung fibroblasts. Biochem Biophys Res
520	Commu	in 404:23-27.
521	37.	Honda Y, Sakamoto J, Nakano J, et al. 2015. Upregulation of
522	interleu	kin-1beta/transforming growth factor-beta1 and hypoxia relate to molecular
523	mechan	isms underlying immobilization-induced muscle contracture. Muscle Nerve
524	52:419-	427.
525	38.	Koji T, Brenner RM. 1993. Localization of estrogen receptor messenger ribonucleic
526	acid in 1	hesus monkey uterus by nonradioactive in situ hybridization with digoxigenin-labeled
527	oligode	oxynucleotides. Endocrinology 132:382-392.

528	39.	Hikiji H, Endo	D, Horie K	, et al. 2014	. TDAG8	activation	inhibits	osteoclastic	bone
529	resorr	ntion FASEB 128	8.871-879						

- 530 40. Trudel G, Jabi M, Uhthoff HK. 2003. Localized and adaptive synoviocyte
- 531 proliferation characteristics in rat knee joint contractures secondary to immobility. Archives
- 532 of Physical Medicine and Rehabilitation 84:1350-1356.
- 533 41. Ando A, Hagiwara Y, Onoda Y, et al. 2010. Distribution of Type A and B
- 534 Synoviocytes in the Adhesive and Shortened Synovial Membrane during Immobilization of
- the Knee Joint in Rats. The Tohoku Journal of Experimental Medicine 221:161-168.
- 536 42. Liu YL, Ao YF, Cui GQ, et al. 2011. Changes of histology and capsular collagen in a
- rat shoulder immobilization model. Chin Med J (Engl) 124:3939-3944.
- 538 43. Onoda Y, Hagiwara Y, Ando A, et al. 2014. Joint haemorrhage partly accelerated
- 539 immobilization-induced synovial adhesions and capsular shortening in rats. Knee Surg Sports
- 540 Traumatol Arthrosc 22:2874-2883.
- 541 44. Richard J J, Wright. V. 1962. Relative importance of various tissues in joint stiffness.
- 542 J Appl Phisiol 17:824-828.
- 543 45. Itoi E, Grabowski JJ, Morrey BF, et al. 1993. Capsular properties of the shoulder.
- 544 Tohoku J Exp Med 171:203-210.
- 545 46. Stewart KJ, Edmonds-Wilson RH, Brand RA, et al. 2002. Spatial distribution of hip
- 546 capsule structural and material properties. J Biomech 35:1491-1498.

547	47.	Akeson WH, Amiel D, LaViolette D, et al. 1968. The connective tissue response to
548	immobi	lity: an accelerated ageing response? Exp Gerontol 3:289-301.
549	48.	Akeson WH, Woo SL, Amiel D, et al. 1973. The connective tissue response to
550	immobi	lity: biochemical changes in periarticular connective tissue of the immobilized rabbit
551	knee. C	lin Orthop Relat Res 356-362.
552	49.	Woo SL, Matthews JV, Akeson WH, et al. 1975. Connective tissue response to
553	immobi	lity. Correlative study of biomechanical and biochemical measurements of normal and
554	immobi	lized rabbit knees. Arthritis Rheum 18:257-264.
555	50.	Amiel D, Akeson WH, Harwood FL, et al. 1980. The effect of immobilization on the
556	types of	Collagen synthesized in periarticular connective tissue. Connect Tissue Res 8:27-32.
557	51.	Aycock RS, Seyer JM. 1989. Collagens of normal and cirrhotic human liver. Connect
558	Tissue l	Res 23:19-31.
559	52.	Zhang K, Rekhter MD, Gordon D, et al. 1994. Myofibroblasts and their role in lung
560	collage	n gene expression during pulmonary fibrosis. A combined immunohistochemical and
561	in situ h	ybridization study. Am J Pathol 145:114-125.
562	53.	Peters AS, Brunner G, Blumbach K, et al. 2012. Cyclic mechanical stress
563	downre	gulates endothelin-1 and its responsive genes independently of TGFbeta1 in dermal
564	fibrobla	sts. Exp Dermatol 21:765-770.

565 54. Robinson CM, Neary R, Levendale A, et al. 2012. Hypoxia-induced DNA

566	hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter
567	methylation and the development of a pro-fibrotic phenotype. Respir Res 13:74.
568	55. Kuhn C, McDonald JA. 1991. The roles of the myofibroblast in idiopathic
569	pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active
570	extracellular matrix synthesis. Am J Pathol 138:1257-1265.
571	
572	

574 FIGURE LEGENDS:

575	Figure 1. Picrosirius red staining of the knee joint. The arrowhead shows the posterior capsule.
576	The posterior capsule in the immobilization group was thicker than that in the control group.
577	This change progressed as the immobilization period lengthened. F, femur; T, tibia; scale bar
578	= 1 mm.
579	
580	Figure 2. Semiquantitative results for collagen in the posterior capsule. The number of
581	intersection points with collagen fiber (A) and the density of collagen in the posterior capsule
582	(B). Data are expressed as mean \pm SD. *P < 0.05 vs. control; [#] P < 0.05 vs. 1-wk
583	immobilization group; $^{\dagger}P < 0.05$ vs. 2-wk immobilization group.
584	
585	Figure 3. In situ hybridization for type I collagen mRNA (upper panels) and type III collagen
586	mRNA (lower panels). Control was a 16-wk-old rat and immobilization was for 4 wk. Arrows
587	indicate normal cells and arrowheads indicate collagen mRNA-positive cells.
588	The bars next to each photograph show the threshold level; cells were classified as collagen
589	mRNA-positive based on this threshold level. S, sense probe; AS, antisense probe; scale bar =
590	50 μm.
591	

592 Figure 4. The ratio of type I collagen (A) and type III collagen (B) mRNA-positive cells to

593	total cells. Data are expressed as mean \pm SD. *P < 0.05 vs. control; [#] P < 0.05 vs. the 1-wk
594	immobilization group; $^{\dagger}P < 0.05$ vs. the 2-wk immobilization group.
595	
596	Figure 5. Immunohistochemical staining for α -SMA in the posterior capsule (upper panels).
597	Controls are 16-wk-old rats. Arrowheads indicate α -SMA-positive cells. Scale bar =100 μ m.

- 598 The figure under the panel shows the ratio of SMA-positive cells to the total number of cells.
- 599 Data are expressed as mean \pm SD. *P < 0.05 vs. control; [#]P < 0.05 vs. the 1-wk
- 600 immobilization group; $^{\dagger}P < 0.05$ vs. the 2-wk immobilization group.

Object	Arrangement	Gene bank
gene		No.
CoL1a1		
Sense	5'-AGACTGGCAACCTCAAGAAGTCCCTGCTCCTCCAGGGCTCCAACG-3	BC133728.1
Antisense	5'-CGTTGGAGCCCTGGAGGAGCAGGGACTTCTTGAGGTTGCCAGTCT-3'	
CoL3a1		
Sense	5'-ACTGTCCCGCGGAAGCACTGGTGGACAGATGCTGGTGCTGAGAAG-3	BC087039.1
Antisense	5'-CTTCTCAGCACCAGCATCTGTCCACCAGTGCTTCCGCGGGACAGT-3'	
28S rRNA		
Sense	5'-GCCGCCGCAGGTGCAGATCTTGGTGGTAGTAGCA-3'	NR046246.1
Antisense	5'-TGCTACTACCACCAAGATCTGCACCTGCGGCGGC-3'	

TABLE 1: Sequences of probes used for in situ hybridization

 $\mathbf{2}$

 $\mathbf{5}$

		ROM (°)	Total contracture	Arthrogenic	Arthrogenic
	Control	Immobilization	(°)	contracture (°)	contribution to
					total contracture
					(%)
1 wk	-27.5 ± 2.6	$-54.0 \pm 6.2*$	29.0 ± 6.5	11.5 ± 2.5	40.0 ± 10.3
2 wk	-28.5 ± 2.4	-79.5 ± 12.1 * #	54.5 ± 12.1	31.0 ± 9.1 [#]	56.9 ± 6.9 [#]
4 wk	-28.0 ± 3.5	-94.0 ± 10.2 * ^{#†}	69.0 ± 10.7	$43.5\pm7.5~^{\#}$	63.0 ± 6.3 [#]

TABLE 2: Range of motion and arthrogenic restriction

10 Data are expressed as mean \pm SD. *P < 0.05 vs. control; #P < 0.05 vs. 1 wk immobilization

11 group; $\dagger P < 0.05$ vs. 2 wk immobilization group.

Figure 1

Figure 3

Figure 5

