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Chapter 1 

Introduction 

1.1 Background 

The induction motors (IM) are very common and easy to find, because 

it is low in price and robust. Those are used in industrial applications such as 

electric train, pump, fan, machine tools, grinders, conveyors and home 

utilizations. Conventionally, till the last of the twentieth century, the induction 

motors are operated at a single speed, which is determined by the frequency 

of main voltage and the number of poles. Typically, they were operated from 

fixed-frequency sources 50 Hz or 60 Hz in most cases. 

To control the IM speed, a variable-frequency source is required, and 

such kind source did not readily exist. Thus, applications necessitating 

variable speed were serviced by direct-current motors (DCM). So, controlling 

the speed of IM is more difficult than controlling the speed of DCM, because 

the relationship between the motor current and the resulting torque is not 

linear for IM. 

The availability of solid-state power switches, development of power 

electronics and microelectronics change this scheme hugely. Recently 

developed solid-state power device such as insulated gate bipolar transistors 

(IGBT), metal-oxide semiconductor field-effect transistors (MOSFET) are 

applied to many favorable switches with wide range power ratings and 

switching frequency that make them suitable candidates for variable-

frequency generation. Now the power electronics are capable for supplying 

the variable voltage/current, or frequency drive to realize variable-speed 
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performance for IM. About the microelectronics, a digital signal processor 

(DSP) has been developed. By using C language, control algorithm is 

programed and realized without adding hardware. 

Recently, to reduce the pollution problem in urban area and the  

availability of fossil fuel, the electric car is getting attention; but because of 

the limited performance of the battery as an energy storage, it would take 

considerable time to use pure electric car commonly. Many of electric cars 

use interior permanent magnet synchronous motor (IPMSM) from the 

viewpoint of motor efficiency. However, it is interesting that the Tesla 

Company uses the IM for electric car. 

According to the development of pulse width modulation (PWM) 

inverter, the constant volt per hertz (V/f) control is applied at first as variable-

speed control method for IM. However, the constant V/f control cannot 

control torque instantaneously. On the other hand, the vector control (or field 

oriented control) can control torque instantaneously and control speed of IM 

quickly. In order to realize vector control, the information of rotor flux angle 

is indispensable. In order to estimate the rotor flux angle, the angular 

frequency is computed by adding the rotor speed to the slip angular frequency. 

The slip angular frequency is obtained from a current model of IM by 

assuming that the q – axis flux becomes zero. The rotor flux angle is obtained 

by integrating the angular frequency. Many researches for rotor resistance 

identification are reported to compute accurate the slip frequency [10], [16], 

[20], [21]. 

By using the rotor flux angle, the three phases currents are 

transformed to two-axis (d – q) currents. In general, the d – axis is selected as 

the direction of rotor flux vector. Therefore, the d – axis current is 

proportional to the magnitude of the rotor flux. The electromagnetic torque is 

proportional to the product of d – and q – axis currents. By controlling the d – 
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and q – axis currents quickly, the torque is produced instantaneously without 

transient. In general, this currents control are achieved by PI control through 

voltage control by PWM inverter. At steady – state the d and q variables 

become constant. The d and q currents correspond to the field current and the 

armature current of DCM respectively. 

However, the use of such direct speed sensor induces additional 

electronics, extra wiring, extra space, frequent maintenance, careful mounting 

and default probability. The use of speed sensor has problems occurred, 

mainly in harsh environment. Moreover, the speed sensor is sensitive for 

electromagnetic noise in hostile environments and has a limited temperature 

range. To avoid mechanical sensor (speed and position) of IM, several 

methods called sensorless vector control is used. In order to simplify the 

hardware, the speed sensorless vector control is studied and applied in 

practical uses. 

In order to improve the performance of induction motor control 

without speed sensor, many model reference adaptive system (MRAS) based 

methods are studied. Representative speed estimation is MRAS based method 

proposed by Schauder [1]. Figure 1.1 shows the two independent simulators 

are constructed to estimate the component of the rotor flux vector. Hence, 

voltage model does not involve the quantity of rotor electrical-angular speed, 

this model is used as a reference model, and current model which does 

involve rotor electrical-angular speed is used as an adjustable model. The 

errors between the states of the two models are used to derive a proper 

adaptation mechanism that generates the estimation of rotor electrical-angular 

speed for the adjustable model. The terminal currents and voltages are 

measured and transformed to α – β variables. However, the vector control 

system using MRAS speed estimate is composed independently. Therefore, 

the system becomes complex. The speed estimation using flux simulator is 
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used for flux observer-based field-orientation (FOFO) controller [2]. The 

motor speed is estimated by comparing the output fluxes of two simulators. 

Its estimated speed is in good agreement with actual speed at high speed, but 

it has transient error in the lower speed. 

The full-order observer is proposed in [3], [5], [22], [26]-[29]. Kubota 

estimates the α – β stator currents and α – β rotor fluxes in stationary 

reference frame [3], [5], [22]. The speed is estimated by using these variables. 

The vector rotator calculates the stator current command by using information 

from the flux angle from the observer. The influence of stator resistance 

variation on the speed estimation and the torque control at low speed region is 

minimized by identifying it. 

The flux observer based sensorless system has an unstable region in 

the regenerating mode at low speeds. To remedy the problem, Hinkkanen 

proposed a modified speed-adaptation law [28]. Instead of using only the 

current estimation error perpendicular to the estimated flux, the parallel 

component is also exploited in the regenerating mode. 
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Fig. 1.1 Model reference adaptive system (MRAS)  

proposed by Schauder [1]. 
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Design strategy of both observer gains and speed estimation gains for 

an adaptive full-order observer based sensorless system is necessary issue to 

assure the stability and the tracking performance. Suwankawin proposed a 

design of observer gains to achieve the stability over the whole operation 

especially in the low-speed region, including the regenerating operation [26]. 

The speed estimation gains are designed by considering the ramp response of 

the speed estimator. There is still an unstable region of experimental result in 

plugging region. 

Tursini proposed an adaptive speed-sensorless field-oriented control 

of an induction motor, based on a sliding-mode observer [24]. Using the 

voltage equation, the observer computes the stator current and the rotor fluxes 

in α – β stationary reference frame. In the case of sliding-mode observer, it is 

considered that the observer gains are very large. The rotor speed estimation 

is obtained by using relation with a Lyapunov function. The system 

performance with different observer gains and the influence of the motor 

parameters deviations are shown. Sliding-mode full-order observer also are 

reported in [25], [30]. 

Tsuji proposed a speed estimation method by using q–axis flux [15], 

[39], [40]. This method is based on a reduce order flux observer and the 

adaptive control method. The q – axis rotor flux converges to zero for speed 

estimation. To solve the pure integral problem of flux computation using the 

voltage model, a flux-observer modified by a current model is applied. The 

method is constructed by using synchronously rotating reference frame which 

is on the flux of current model. The fluxes from the current model becomes 

simple by defining d – q axis, and all fluxes quantities of current model and 

voltage model are in DC form. By using DC form, the system stability is 

easily analyzed. Fig.1.2 shows the system proposed by Tsuji. The q – axis 
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rotor flux is used to estimate the rotor speed by using PI controller. The flux is 

an output of flux-observer.  

Another reduced-order observer-based sensorless method are 

discussed by Harnefors [31], [32]. By using the flux electromotive forces 

(EMF) of the voltage model and current model, the reduce-order observer for 

the rotor flux is considered. The rotor speed is estimated by the EMF and 

rotor flux. The reduced-order observer is simpler than the full-order observer. 

Manipulated design of the observer can improve the stability of the 

sensorless system even at low speed regenerating operation. However, the 

configurations of these systems are relatively complicated. It is because the 

MRAS based methods need state observer and many PI controllers (d – q 

currents, speed and speed estimation). On the other hand, some simplified 

speed sensorless vector controls are proposed.  
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Simplifying the system configuration by removing the current 

regulators is proposed [33], and the stability is improved by adding a flux-

stabilizing controller using derivative of magnetic current [34]. However, 

these papers have no information about the stability of regenerating mode. A 

sensorless method using the induced d – axis and q – axis voltage obtained by 

a voltage model has been proposed [35], and a similar method is applied to 

railway vehicle traction [36]. However, the stable region is not clear in these 

papers. Furthermore, a primary flux control method are proposed in [17], [37] 

and the stability is improved at regenerating mode [38]. Simple method of 

stator – flux orientation is proposed in [23]. Some survey papers for IM 

sensorless control systems are reported in [4], [9], [18]. Parameter estimation 

of stator and rotor resistances are also important problem for the sensorless 

systems [6], [11]. 

In this thesis, a new simplified speed-sensorless vector control method 

of IM based on q – axis rotor flux is proposed [41] – [44]. A flux vector is 

obtained from voltage model, in which the derivative term is neglected. A 

flux angle of a current model must be aligned with the flux angle of voltage 

model. Since the output voltage of d – axis PI current controller is used for the 

flux angle estimation and speed control (q–axis voltage control), the system is 

simplified and stabilized at regenerating mode [41]. In conventional 

simplified methods, this scheme is not reported. A linear model of the 

proposed system in the state space equation is obtained to study the system 

stability by showing root loci. By virtue of the stability analysis, we can 

design the parameters of controller. The nonlinear simulation and 

experimental results of the proposed system show stable transient responses in 

both motoring and regenerating modes [43]. In order to improve the system 

stability at plugging region, a PI speed controller is studied instead of original 

I (integral) controller [42]. Furthermore, a simplified sensorless system that 
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uses a PI q– axis current controller and estimates the rotor speed is studied 

and compared [44]. 

1.2 Contents of Chapters 

This thesis is divided into five chapters with the arrangement:  

In chapter 1, the background and the purpose of this research are 

explained and the contents of chapters are specified. 

Chapter 2 describes a space vector representation of induction motor. 

A three-phase mathematical model of induction motor is transformed to a d – 

q model by using two-axis theory. This chapter introduces a non-linear model 

and a linear model of induction motor. The linear model of induction motor is 

derived by considering small perturbations at a steady state operating point. 

In chapter 3, new simplified speed-sensorless vector control methods 

of IM based on rotor flux linkage are proposed . The two simplified sensorless 

systems are called as system A and system B. The main difference is the 

presence (in system A) or the absence (in system B) of q – axis PI current 

controller. In system A, the angular frequency of rotor flux is estimated to 

bring q–axis flux to zero by using PI controller. The q – axis flux is obtained 

by the output of d – axis PI current controller with a non-interference control. 

The rotor speed is computed by subtracting a slip speed from the angular 

frequency. Flux angle is obtained by integrating the angular frequency. When 

q – axis flux is larger (smaller) than zero and rotor flux is leading (lagging) 

than d – axis, the controller must increase (decrease) the value of flux 

frequency. In system B, the computation of q – axis flux is as same as the 

system A. The angular frequency of rotor flux is computed by adding the q – 

axis flux to the speed command. The q – axis flux is also used to control the 

rotor speed, by adjusting the q – axis voltage. Non-linear models are derived 
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in both proposed systems A and B. From these non-linear models, linear 

models of the systems are derived in state space equations. The selection of PI 

current and speed controllers gains are outlined.  

Chapter 4 demonstrates systems stability by showing the root loci 

obtained by the linear models, the transient responses of simulation results 

and the stable regions. The performance of both systems A and B are 

compared by using linear models and non-linear models. Transient responses 

of linear and non-linear models are computed and compared. Since both 

responses are almost same around a steady state operating point, the validity 

of the linear models are confirmed. By using the proposed methods, not only 

the motoring operation but also the low speed regenerating operation can be 

stabilized. Quick torque and speed responses of nonlinear models are obtained 

in both systems A and B. A digital signal processor based PWM inverter fed 

IM system is equipped and tested. It is confirmed that the experimental results 

are very close to those of simulation. Therefore, the effectiveness of the 

proposed methods are also demonstrated experimentally. It is considered that 

the system B is superior to the system A because its simple structure. 

Chapter 5 is the conclusions presented in this thesis. 
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Chapter 2 

Models of Induction Motor 

 

2.1 Space Vector Representation of Induction Motor 

For convenience of proposed systems analysis, the models of IM are 

outlined. In order to analyze the IM, it must be embodied in three-phase 

mathematical model. From three-phase model, the IM is simplified into two-

phase by using the two-axis transformation [12], [13], [14]. 

To show windings configuration and to calculate inductances, the 

cross-section of simplified three-phase IM with two-poles is shown in Fig.2.1. 

The winding configurations are assumed the same to each phases of both the 

stator and the rotor. The winding of three-phase IM is separated by 120 

electrical degrees with respect to each other as shown by the coils a – *a ,b– *b  

and,c  – *c . 

Fig.2.2 shows a circuit model of the three-phase IM with two-poles. 

An equivalent three-phase winding is used in case of short-circuited squirrel-

cage rotor. The stator and rotor windings are wye connected. The sa , sb  and 

sc  mean the axes of stator a , b  and c  phase winding respectively. The angle 

r  is an angular displacement of a -phase rotor winding axis from the axis sa . 

By using the rotational angular velocity r , the angle r  is expressed as  

 

 
0

0
t

r r rdt                       .........................................................      (2.1) 



 11

The stator winding of IM is fundamentally the same as for a 

synchronous motor. In the below equations, the subscript s denotes variables 

and parameters associated with the stator circuits, and the subscript r denotes 

variables and parameters associated with the rotor circuits. 

In Fig.2.2 (b), the leakage inductance at stator and rotor windings are 

sl  and rl  respectively. The mutual inductances srM  has the relation with self-

inductances ssL  and rrL  as follows: 

 
2

ss rr srL L M                    .....................................................................      (2.2) 
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Fig. 2.1 Three-phase stator and rotor windings of IM. 
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The mutual inductance between stator and rotor changes when the 

rotor moves by the angle r . The rotor a -phase current rai  generates flux in 

the stator a -phase winding as shown in Fig2.3. If 0r  , all flux by rai  passes 

ssL  and the mutual inductance is srM . As the cosine component of the flux by 

rai  passes ssL , the mutual inductance becomes cossr rM  . The flux linkages in 

three-phase windings of the stator and the rotor are defined as sa , sb , sc  

and ra , rb , rc  respectively. By considering the cosine component of the 

angle of the winding, we can obtain the flux linkages of sa , sb , sc , ra , 

rb , rc  as follows: 

 

/ 2 / 2
/ 2 / 2
/ 2 / 2

sa s ss ss ss sa

sb ss s ss ss sb

sc ss ss s ss sc

l L L L i
L l L L i
L L l L i





       
             
            

 

2 2cos cos cos
3 3

2 2cos cos cos
3 3
2 2cos cos cos
3 3

r r r

ra

sr r r r rb

rc

r r r

i
M i

i

    

    

    

               
                              

    

    .....      (2.3) 

 

 

 

 

 

 

 

 



 14

/ 2 / 2
/ 2 / 2
/ 2 / 2

ra rar rr rr rr

rb rr r rr rr rb

rr rr r rrrc rc

il L L L
L l L L i
L L l L i




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           
          

 

2 2cos cos cos
3 3
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3 3
2 2cos cos cos
3 3

r r r

sa

sr r r r sb

sc

r r r

i
M i

i
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    

    

               
                              

    

    .....      (2.4) 

By using the flux linkages, the following voltage equations are 

obtained for stator and rotor windings. 

sa sa sa

sb s sb sb

sc sc sc

e i
e R i p
e i





     
           
          

                   ..................................................      (2.5) 

 

ra ra ra

rb r rb rb

rc rc rc

e i
e R i p
e i





     
           
          

                   ..................................................      (2.6) 

where, p  means d dt , sR  and rR  is stator resistance and rotor resistance 

respectively. 
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0r 
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Mutual inductance cos
0 2

sr r

r

M 
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Fig.2.3 Mutual inductance of windings. 
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In stationary reference frame, by considering cosine components of 

the angle that is formed between the winding axis and    axis as shown in 

Fig.2.4, the    components sf   and sf   for the stator side are obtained. 

The f  means voltage, current and flux linkage. The space vector is defined as 

 

s s sf f j f                      ................................................................      (2.7) 

sa



ra

sb

r



rb

rc
sc  

Fig.2.4    stationary reference frame. 
 

then, 
2 2
3 32

3
j j

s sa sb scf f e f e f
  

   
 
 

                    .................................      (2.8) 

For the rotor side, the following equations are defined: 

2 2cos cos( ) cos( )
2 3 3

2 23 sin( ) sin( )sin
3 3

r rar r
r

rb
r

r rr rc

f
f

f
f

f





    

   

                      

    .............      (2.9) 

 



 16

By using rf   and rf  , the space vector is defined as 

r r rf f j f                      ...............................................................     (2.10) 

 

then, 
2 2
3 32

3
r

j jj
r ra rb rcf e f e f e f

   
   
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 

                    ..........................     (2.11) 

The space vector of stator voltage is expressed as 
2 2
3 32 ( )

3
j j

s sa sb sce e e e e e
 

                      ...................................     (2.12) 

From (2.5), we have 

s s s se R i p                      ...............................................................     (2.13) 

The stator flux linkage is computed from (2.3) as 
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  

 
   
 
 

          
     

 

 


 
 
 
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By using sa sb sci i i   , sb sc sai i i    and sc sa sbi i i   , we have 

 

2 2
3 3

3
2

2 2cos cos cos
3 3

r

s s ss s

j jjj r j r
sr r r r r r r

l L i

M i e i e e i e e
  



    
  

   
 

             
     



  

3 3
2 2

r rj j
s ss s ss r rl L i M i e e       

 
   

3 3( )
2 2s ss s ss r rl L i M i                        ..............................................     (2.14) 

By setting 3
2s ss sL L l   and 3

2 srM M , (2.14) can be written as: 

s s s rL i M i                       ...............................................................     (2.15) 

Substituting (2.15) into (2.13), we have 

 s s s s re R p L i p M i                       ...............................................     (2.16) 

The space vector of rotor is expressed as follows: 
2 2
3 32

3
r

j jj
r ra rb rce e e e e e e

   
   
 
 

                    ............................     (2.17) 

From (2.6), we have 
2 2
3 32

3
r

j jj
r r r ra rb rce R i e p e e

    
 

    
 
 

          ......................     (2.18) 

hence, 

 r rj j
r r r re R i e p e                        .............................................     (2.19) 
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The space vector of the rotor flux linkage is computed from (2.4) as 

 
2 2
3 32

3
r

j jj
r ra rb rce e e

    
 

   
 
 

    

2 2
3 3

2 2
3 3

3 2 cos
2 3

2cos
3

r
j jj

r rr r sr r sa sb sc

j j
r

r

sb sc sa

l L i e M i e i e i

i e i e i

 

 

 

 





                
          



 

2 2
3 32cos

3
j j

r sc sa br si e i e i
 

 
             

          .........................     (2.20) 

therefore, 

3 3
2 2r r rr r sr sl L i M i     

 
                     ...........................................     (2.21) 

 

By setting 3
2r rr rL L l  , the rotor flux linkage is expressed as 

r r r sL i M i                       ...............................................................     (2.22) 

 

From (2.19), we have 

( ) ( )r r r r r r r se R i p j L i p j M i                 ...............................     (2.23) 

 

The space vector equation of IM from equations (2.16) and (2.23) is 

expressed as 

 

( ) ( )
s s s s

r r r r r r

e R L p Mp i
e p j M R p j L i 

     
            




        ...........................     (2.24) 
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The voltages se  and re  in (2.24) are divided into real and imaginary 

parts to have    stationary reference model as 

 

0 0
0 0

s ss s

s ss s

r rr r r r r

r rr r r r r

e iR L p Mp
e iR L p Mp
e iMp M R L p L
e iM Mp L R L p

 

 

 

 

 
 

    
        
    
             

    .............     (2.25) 

 

 

2.2 d – q Model 

We consider a rotating d q  axis shown in Fig.2.5. Where,   is the 

angle between   axis and d  axis. The d  axis rotates at an arbitrary 

angular velocity  . Then,   can be expressed by the following equation: 

 

0
(0)

t
dt                       ............................................................     (2.26) 

 

The    stationary reference frame quantities are transformed into 

rotating reference frame quantities using d q  transformation as follows: 

 

 j j
sdq s s sf e f j f e f 

 
                        ....................................     (2.27) 

 
j

rdq rf e f                     ....................................................................     (2.28) 
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sa



q






sf 

sf 

s df
s qf

d

cossf  

cossf   sinsf  

sinsf  

cos sinje j       j
sdq s s

j
s

f f j f e

f e


 







 







sf

 
Fig.2.5 Reference frame transformation from    to d q . 

 

Hence, the transformation of reference frame from    to d q  

axis can be expressed as 

 

cos sin
sin cos

sd s

sq s

f f
f f





 
 

    
        

                   ........................................     (2.29) 

 

 

From (2.16) and (2.27), we have 

 

  

j
sdq s

j
s s s r

e e e

e R p L i p M i











  

 

 
 

   j j j j
s sdq s sdq rdqsdqe R i e L p e i e M p e i          

s sdq s sdq s sdq rdq rdsdq qR i L pi j L i M p i j M pie               ..........     (2.30) 
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From (2.23) and (2.28), we have 

 

     

j
rdq r

j
r s r r r r

e e e

e p j M i R p j L i



  







    

 

 
 

     
   

j j j j j j
r rdq sdq r sdq

j j j j
r rdq

rdq

r r rdq

e R e i e M p e i e j M e i

e L p e i e j L i

e

e

     

   





  

 

  

 

   

 
 

r rdq sdqr sdq r sdqdq R i M pi j M i j Me i         

r rdq r rdq r rrdq rdqL pi j L Le i j i                ..................................     (2.31) 

The voltage equations of (2.30) and (2.31) can be written in matrix 

form as 

   
sdq sdqs s s

rdq rdqr r r r r

e iR L p j L Mp j M
e iMp j M R L p j L

 
   

       
             


   ......     (2.32) 

 

Hence, sdqe  and rdqe  can be divided into real and imaginary parts as 

follows: 

   
   

sd sds s s

sq sqs s s

rd rdr r r r r

rq rqr r r r r

e iR L p L Mp M
e iL R L p M Mp
e iMp M R L p L
e iM Mp L R L p

 
 

   
   

      
        
        
              

 

                                                                                               ............     (2.33) 

 

The relation between sdqf  and three-phase variables can be expressed 

as 
2 2
3 32

3
j jj

sdq sa sb scf e f e f e f
    

   
 

                   ...........................     (2.34) 
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Therefore, we have 

2 2cos cos cos
3 32

3 2 2sin sin sin
3 3

sa
sd

sb
sq

sc

f
f

f
f

f

    

    

                                            

    ........     (2.35) 

 

The relation between rdqf  and three-phase variables can be expressed 

as 
2 2
3 32

3
r

j jjj
rdq ra rb rcf e e f e f e f

    
   

 
                    ...................     (2.36) 

Therefore, we have 

 

2 2cos cos cos
3 32

3 2 2sin sin sin
3 3

ra
rd

rb
rq

rc

f
f

f
f

f

    

    

                                            

    ......     (2.37) 

 

From (2.14) and (2.21), the flux linkages are expressed as 

0 0
0 0

0 0
0 0

sd sds

sq sqs

rd rdr

rq rqr

iL M
iL M
iM L
iM L






    
    
    
    
    
       

                   ....................................     (2.38) 
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Since the rotor is squirrel-cage short-circuited type and the voltage 

equations are derived from (2.33) and (2.38) by using rotor flux linkage as 

follows: 

 

 

0 10
0

10

s s s
r r

sdsd
s s s

sqr rsq

rd
r

r r rq

r
r r

M MR L p L p
L L

ie M ML R L p p
iL Le

M p

M p

 

 


 

  

 
 

    
 

         
    
            
     

 
     

  ....     (2.39) 

where, 
2

1
s r

M
L L

    and r
r

r

L
R

   (rotor open circuit time constant). 

2.3 Electromagnetic Torque 

To determine the torque developed in IM, we can calculate the input 

power as follows: 

 

in sa sa sb sb sc sc ra ra rb rb rc rcP e i e i e i e i e i e i       

   
sa ra

sa sb sc sb ra rb rc rb

sc

in

rc

i i
e e e i e e e i

i i
P

   
       
      

 

 

( ) ( )T T T TT T
s s s r r r r

T T T T
s s s s r r r r

in C C C CP

C C C C

 

 

ｓe i e i

e i e i
 

T T
s s r rinP  e i e i                    ............................................................     (2.40) 
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where, 

1 11
2 2 2
3 3 30

2 2

sC

   
  

   

, 
2 2cos cos cos
2 22

3 2 2sin sin sin
2 2

r r r

r

r r r

C

   

   

             
             

 

 

s
s

s

e
e




 
  
 

e , s
s

s

i
i




 
  
 

i , r
r

r

e
e




 
  
 

e , r
r

r

i
i




 
  
 

i  

 

Therefore, 

 

in s s s s r r r rP e i e i e i e i                              ...............................     (2.41) 

 

By using space vector, inP  is expressed as 

 Rein s s r rP e i e i      

  


Re s s s s s r r s r s

r r r r

in

r r r

i R i L pi M pi i M pi j M i

R i L

P

pi j L i





     

  

      

  
  

2 2 2 21 1
2 2s s r r s sin r rR i R i L p i L p iP         

   1 Re
2 s r s r r s rM p i i i i j M i i                           .................     (2.42) 

The each term of (2.42) is considered as 
2

s sR i : primary copper loss 

2
r rR i : secondary copper loss 

2 21 1
2 2s s r rL p i L p i   : reactive power of self-inductance 
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1 ( )
2 s r s rM p i i i i   : reactive power of mutual inductance 

Re( )r s rj M i i    : mechanical power 

Hence, the electromagnetic torque e  is given by 

  *Re
2

r s r
e

r

j M i i

P









 
 

 *Im
2 s re
P M i i                       ...........................................................     (2.43) 

where, P : number of poles. 

Therefore, 

 2e sq rd sd rq
P M i i i i    2 sq rd d rq

r
e s

P M i i
L

                       ...........     (2.44) 

2.4 Non – linear State Equation 

In order to compute the transient responses, we derive a non-linear 

state equation from (2.39). The non-linear state equation is expressed as 
2

r rqsd s rd
sd sd sq

s s s r r s r r s r

Me R M Mpi i i
L L L L L L L L

 
      

 
      

 
         (2.45) 

2
sq rqs r rd

sq sd sq
s s r r s r s r r s

e MR M Mpi i i
L L L L L L L L

 
      

 
      

 
       (2.46) 

 1
rd sd rd r rq

r r

Mp i    
 

             .......................................     (2.47) 

  1
rq sq r rd rq

r r

Mp i    
 

             ........................................     (2.48) 
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The mechanical equation of motion is expressed as 

   
2

2 4 2r e L sq rd sd rq L
r

P M P Pp T i i T
J J L J

                 ...............     (2.49) 

where, J : inertia of the rotor plus load, LT : load torque. 

The above equations are described by a non-linear state equation 

 , ,s s s Lp Tx f x u                    ......................................................     (2.50) 

where, sx  is state vector and su  is input vector of IM. 

, , , ,
T

s sd sq rd rq ri i      x                    .............................     (2.51) 

T

s sd sqe e    u                    .....................................................     (2.52) 

2.5 Linear State Equation 

An essential problem connected to the modeling of the induction 

machine is the non-linearity of the equations that describe its operation. This 

non-linearity is caused by the voltage equations and the electromagnetic 

torque relation as well, due to the products between the state variables. When 

a control system is designed, it is very convenient to linearize the machine 

equations [7], [8]. 

The stability analysis of non-linear system is difficult in general. So, 

we derive a linear model of IM by considering small perturbation at a steady 

state operating point which is obtained by setting 0p  . The linear model of 

IM is derived as follows from (2.50): 

s s s s s L Lp T      x A x B u B                    ...................................     (2.53) 
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where, 

, , , ,
T

s sd sq rd rq ri i           x  

, ,
T

s sd sqe e       u  
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Chapter 3 

Speed Sensorless Vector Control 

Systems 

3.1 Proposed System A 

A speed sensorless vector control system in which the rotor speed of 

IM is estimated explicitly is proposed and analyzed to investigate the system 

stability. We call the sensorless system “system A”. 

3.1.1 Block Diagram of System A 

In order to simplify the controller and to stabilize the system at low 

speed regenerating operations, the speed sensorless vector control system A is 

proposed as shown in Fig.3.1. As described in (2.39), the d q  rotating 

reference frame equations of IM are modified as 

 

Voltage model: 

* * * * *( ) v v
sd s s sd s sq rd rq

r r

M Me R L p i L i p
L L

                  ...............      (3.1) 

* * * * *( ) v v
sq s sd s s sq rd rq

r r

M Me L i R L p i p
L L

                  ...............      (3.2) 
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Fig.3.1 Block diagram of system A. 

 

Current model 

* * * *
* *

1 ˆ0 ( ) ( )sd rd r rq
r r

M i p    
 

               ....................................      (3.3) 

* * *
* *

1ˆ0 ( ) ( )sq r rd rq
r r

M i p   
 

               ....................................      (3.4) 

Where, * *
r r rL R  , ˆr : estimated rotor speed. 

The synchronously rotating angular frequency *  of d q  reference 

frame is defined to satisfy that the rotor flux of the current model *
rq  is zero. 

Therefore,  
* 0rq                     ..............................................................................      (3.5) 
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This means that the d q  axis is selected to synchronize the direction 

of the current model rotor flux. By assuming that the d   axis current 

reference *
sdi  is constant, from (3.3) we have 

* *
rd sdMi                     .........................................................................      (3.6) 

By substituting (3.5) and (3.6) into (3.4) we have 

*
* *

ˆ sq
r

r sd

i
i

 


                     .................................................................      (3.7) 

Therefore, the estimated slip speed e  is defined as 

* *
sq

e
r sd

i
i




                    .........................................................................      (3.8) 

The assumption of constant *
sdi  causes that the d   axis flux becomes 

constant described in (3.6). Therefore, we make the following assumption: 

0v
rdp                     ..........................................................................       (3.9) 

By using (3.9), from (3.1) we have 
*

* * * * v
sd s sd s sq rq

r

Me R i L i
L

                        .....................................     (3.10) 

In (3.10), the induced voltage *
de  is defined as 

*
* v
d rq

r

Me
L

                      ...............................................................     (3.11) 

In the proposed system, the induced voltage *
de  is computed by using 

the output voltage of d  axis PI current controller. We can estimate the phase 

of rotor flux *  by changing *  to satisfy 

0v
rq                     .............................................................................     (3.12) 
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Fig.3.2 shows the rotor flux vector of current model *
r  and that of 

voltage model v
r . The *

r  is on the d   axis. When 0v
rq  , we must 

increase *  and we must decrease *  when 0v
rq   to satisfy (3.11). 

Because the v
rq  is proportional to *

de  in (3.11), the angular speed *  

is estimated by using PI control as 

* *
d

KK e
T s







 

   
 

                   .......................................................     (3.13) 

The sign of K  must be changed according to the sign of * as 

 *sign  is 1 if * 0   and 1  if * 0  . 

 *K sign K                     ........................................................     (3.14) 

The angle of the rotor flux is computed by integrating the angular 

speed as follows: 
*

*

s
                     ..........................................................................     (3.15) 
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Fig.3.2 The rotor flux vectors and d q  reference frame. 
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The rotor speed is estimated by using (3.7). The speed PI control and 

q   axis PI current control are composed like conventional system as shown 

in Fig.3.1. 

By assuming 0v
rq   and *v

rd sdM i  , we have following equation 

from (3.2): 
2

* * * * * *( )sq s sd s s sq sd
r

Me L i R L p i i
L

        

* * ** ( )s s qs sd sq se L i R L p i                       ..........................................     (3.16) 

The 2 /3   transformation of Fig.3.1 is performed as 

* * *

* * *

2 2cos cos cos
3 32

3 2 2sin sin sin
3 3

sa
sd

sb
sq

sc

i
i

i
i

i

    

    

                                            

    ......     (3.17) 

*
*

*
* * *

*
*

* *

cos sin
2 2 2cos sin
3 3 3

2 2cos sin
3 3

sa
sd

sb
sq

sc

e
e

e
e

e



   

   

 
   

                                     
    

    ......................     (3.18) 

3.1.2 Description of System 

The following assumptions are set in analysis. 

(1) *
sdi  is constant. 

(2)  Voltage control is performed ideally and the following equation is 

valid: 
*
sa sae e , *

sb sbe e , *
sc sce e                    ............................................     (3.19) 
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In order to analyze an IM, the d q  reference frame that rotates 

synchronously with the flux angle *  is taken as   of (2.26). Thus, *  . 

Therefore, the d q  transformation is expressed as 

* * *

* * *

2 2cos cos cos
3 32

3 2 2sin sin sin
3 3

sa
sd

sb
sq

sc

f
f

f
f

f

    

    

                                            

 .     (3.20) 

 

From (3.18), (3.19) and (3.20) we have 
*
sd sde e , *

sq sqe e                    ...........................................................     (3.21) 

 

The PI d   axis controller is expressed as 

 **
d p sd sd cde K i i e                      ...................................................     (3.22) 

where, 

 *i
cd sd sd

Ke i i
s

                     ............................................................     (3.23) 

Then the derivative of cde  is expressed as 

 *
cd i sd sdpe K i i                     .........................................................     (3.24) 

 

The PI angular speed estimator is expressed as 
* *

de K e                       ...............................................................     (3.25) 

where, 

*
d

Ke e
T s






                     ....................................................................     (3.26) 
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Then, the derivative of e  is expressed as 

*
d

Kpe e
T





                     .................................................................     (3.27) 

By using (3.22), we have 

  *
p sd sd cd

Kpe K i i e
T





                       .......................................     (3.28) 

From (3.22) and (3.25) 
* *

p sd p sd cde K K i K K i K e                           ...............................     (3.29) 

The output variable of PI speed controller *
sqi  is expressed as 

 * * ˆis
sq ps r r

Ki K
s

     
 

 

* *
*

*
*
sq

ps r cdsq
r sd

i
i

i K   


 
     

 
                   ......................................     (3.30) 

where, 

* *
* *
sqis

cd r
r sd

iK
s i

  


 
    

 
                   .............................................     (3.31) 

By using *  in (3.29), we have  

* *
* *
sq

cd is r p sd p sd cd
r sd

i
p K K K i K K i K e e

i    


 
       

 
         .......     (3.32) 

The d  axis voltage is expressed as 

 * * * * *
sd p sd sd cd s sq s sde K i i e L i R i     　                    ........................     (3.33) 

The q – axis  voltage is expressed as 

 * * * *i
sq p sq sq s sd

Ke K i i L i
s

     
 

 

 * * **
p sq sq cq s ssq dK i ee i L i                       ....................................     (3.34) 
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where, 

 *i
cq sq sq

Ke i i
s

                     ............................................................     (3.35) 

 

Then, the derivative of cqe  is expressed as 

 *
cq i sq sqpe K i i                     .........................................................     (3.36) 

3.1.3 Steady State Analysis 

In this system, we can choose any value of speed command *
r  and 

magnetizing current command *
sdi . Load torque LT  is an arbitrary input that 

depends on any load connected to motor. When we set the *
r , *

sdi , LT , other 

all quantities can be determined. It has three degrees of freedom. In order to 

simplify the procedure of computation, the slip speed is given instead of the 

load torque.  

Actually, angular frequency * , rotor speed r  are constant in steady 

state condition, and then the differential equation of the system becomes 

linear. If the system is linear, it is similar to DC circuit. Then, we can set the 

differential operator 0p   in steady state analysis because there is no change 

of state quantity.  

The following equations is obtained by letting 0p  in steady state 

condition: 
*

sd sdi i , *
sq sqi i , * 0de  , 0cde  , * ˆr r                     ..............     (3.37) 
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From (2.39), the induction motor is expressed as 
*

* *
sd s sd s sq rq

r

Me R i L i
L

                        ............................     (3.38) 

*
* *

sq s sd s sq rd
r

Me L i R i
L

                        .............................     (3.39) 

 *10 sd rd r rq
r r

M i    
 

                        ............................     (3.40) 

 * 10 sq r rd rq
r r

M i    
 

                        ............................     (3.41) 

 

e LT                     ............................................................................     (3.42) 

 

From (3.33) and (3.37), we have 
* * * *
sd s sd s sqe R i L i                      ..................................................     (3.43) 

 

If we assume *
s sR R , from (3.38) and (3.43), we have 

0rq                     ............................................................................     (3.44) 

 

From (3.40) and (3.44) 

rd sdM i                     .....................................................................     (3.45) 

 

From (3.41) and (3.44), 

*
*

sq sq
r

r rd r sd

M i i
i

 
  

                      ...............................................     (3.46) 
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By assuming *
r rR R  and using (3.7), we have 

ˆr r                     ...........................................................................     (3.47) 

 

Therefore, 
*

r r                     ...........................................................................     (3.48) 

 

By comparing (3.34) and (3.39), we have 

cq s sqe R i                    .......................................................................     (3.49) 

 

A steady-state solution is calculated in the following procedures by 

setting * 1minrN    , 1minslN    , and *
sdi  as given values. 

[1] Electrical angular speed command *
r  is calculated by 

*
* 2

2 60
r

r
P N                     ..................................................................     (3.50) 

 

[2] Similarly, electrical slip angular frequency sl  is calculated by 

* 2
2 60

sl
sl r

P N                         .................................................     (3.51) 

 

[3] 0rq   is calculated by referred to(3.12)  

 

[4] rd sdM i   

 

[5] sqi  is calculated by 

sl r
sq rdi

M
                     .................................................................     (3.52) 
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[6] Slip speed e  is equal to sl  and rotor speed r  is equal to *
r . 

 

[7] *  is calculated by 
*

r sl                       ..................................................................     (3.53) 

 

[8] * *
sd s sd s sqe R i L i     

 

[9] * *
sq s sd s sqe L i R i   

 

[10] cq s sqe R i   

 

[11] *
cd sqi   

 

[12] *e    

 

[13] 
2

2e sd sq
r

P M i i
L

   

 

The non-linear state equation of induction motor in the rotating 

reference frame that rotates synchronously with *  is obtained from (2.45) to 

(2.49). In these equations, sde , sqe  and   must be replaced with *
sde , *

sqe  and 

*  respectively by using (3.21). 
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3.1.4 Linear Model 

From (2.53) the linear model of IM of Fig.3.1 is expressed by 

s s s s s L Lp T      x A x B u B                    ..................................     (3.54) 

where, 

[ , , , , ]T
s sd sq rd rq ri i         x  

* * *[ , , ]T
s sd sqe e     u  

In these equations, sde , sqe ,   and   were replaced with *
sde , 

*
sqe , *  and *  respectively. 

By considering small perturbation at a steady state operating point, the 

following equations are obtained from equation (3.24), (3.28), (3.32) and 

(3.36). 

cd i sdp e K i                       ..........................................................     (3.55) 

p sd cd
K Kp e K i e
T T
 


 

                        .....................................     (3.56) 

*
* *

sq
cd is r p sd cd

r sd

i
p K K K i K e e

i   


 
           

 
    .......     (3.57) 

*
cq i sq i sqp e K i K i                        .............................................     (3.58) 

By using (3.30), (3.58) becomes 

* * 1ps
cq i ps p sd i sq

r sd

K
p e K K K K i K i

i 
 

       
 

 

*
i ps cd i ps i cd i ps rK K K e K K e K K K               .....     (3.59) 
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These equations can be expressed in a matrix form as follows:  

 

* *

* *

0 0 0 0

0 0 0 0

0 0 0

1 0 0 0

0 0 0 0
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



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0
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       
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


 
  

Simply is expressed as 

x z rp   z = A x + A z + B r                    .......................................     (3.60) 

where, 
T

cd cd cqe e e       z = , *
r   r =  

 

From the equations (3.29), (3.33) and (3.34) we have 
*

p sd cdK K i K e e                            .....................................     (3.61) 

 
* * *
sd p sd cd s sq s sqe K i e L i L i              

 * *1p s sq sd s ssd qK K L i ie L i         

 * 1s sq cd sd qs sK L i e L i ee                            ..........................     (3.62) 
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* * * *
sq p sq p sq cq s sde K i K i e L i           

*
* *

* 1ps
p ps r p cd p sq

r sd
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K
K K K K ie

i
 


 
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  
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cq s sd p ps p sdsq e L i K K K ie K      

   * * *
p ps s sd cd s sd p pssq K K L i K e L i K K ee            ...........     (3.63) 

 

We can write a matrix form of  su  as follows: 

x s zF F F     s ru x z + r                    ..........................................     (3.64) 
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 


                           

 

From equation (3.54), (3.61) and (3.64) the linear model of proposed 

system A can be derived as follows: 

 

   
0

s s x s z s rs s L
L

x z r

p T
         

                    

A B F B F B Fx x B
r

A A Bz z
 ....     (3.65) 

 

Simply we can express as 

s L Lp T     x A x B r + B                    .......................................     (3.66) 
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Where, 
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B
 

 

The output equation is expressed as 

y C x                      ......................................................................     (3.67) 

Where, 

 0 0 0 0 1 0 0 0 0C   
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3.2 Proposed System B 

In the proposed system B, q  axis current controller is removed. 

Therefore, the system B is simpler than the system A. 

3.2.1 Block Diagram of System B 

Figure 3.3 shows the block diagram of proposed system B. The output 

voltage *
de  of d  axis PI current controller is used in both the flux angle 

estimation and the speed control ( q axis voltage control). 

 

IM

+
*
sdi

sdi

*

sae

sbe

sce

*
sae
*
sbe
*
sce

*
sde

*
sqe

*

sci

sbi

sai

++
*
r

1/ s

sqi

+

*
s sdL i++

+

PWM
INV.

* *1/( )r sdi

*
sR

*
sL 

e

+

c

*
de

+

2
3

2
3

*
sdi

pK iK
+ s

+pcK icK
s

K

 
Fig.3.3. Block diagram of system B. 
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The *
de  is proportional to v

rq  as described in (3.11). By using *
de , the 

angular frequency *  is modified as follows: 
* * *

r e dK e                        ......................................................     (3.68) 

The term *
r e   is considered as feed-forward value of the angular 

frequency. The gain K  sign must be changed according to *  as 

 *K sign K                     ........................................................     (3.69) 

The estimated rotor speed ˆr  is defined as 

*ˆr e                       ...................................................................     (3.70) 

where, 

* *
sq

e
r sd

i
i




  

From (3.68) and (3.70), we have 
* * ˆd r rK e                       ...............................................................     (3.71) 

Therefore, the speed control can be accomplished by using *
dK e . Since the 

torque current sqi  is controlled by the q   axis voltage *
sqe , we compute the 

*
sqe  as 

 * * *
sq s sd r e ce L i                         ..............................................     (3.72) 

where, 

*ic
c pc d

KK e
s

    
 

                   .......................................................     (3.73) 

Other equations of Fig.3.3 are the same as those of Fig. 3.1. 
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3.2.2 Description of System 

The proposed system B shown in Fig.3.3 is described. The d   axis 

PI current controller is described by (3.22) – (3.24). The output of PI speed 

controller c  is computed by 
*

c pc d ciK K e                      .........................................................     (3.74) 

where, 

*ic
ci d

K K e
s
                     .................................................................     (3.75) 

The derivative of ci  is expressed as 
*

ci ic dp K K e                     ................................................................     (3.76) 

The angular frequency is expressed as 

  * * *
* *
sq

r p sd sd cd
r sd

i
K K i i e

i  


                        .........................     (3.77) 

The variable cde  is defined in (3.23). 

The d  axis voltage is calculated by (3.33). The q  axis voltage is 

written as 

  * * * *
* *
sq

sq s sd r pc p sd sd cd ci
r sd

i
e L i K K K i i e

i  


 
       

 
         .........     (3.78) 

In order to analyze the IM of Fig.3.3, the d q  axis that rotates 

synchronously with the flux angle *  is defined. If the ideal voltage control of 

(3.19) is assumed, the actual d q  voltage are equal to those references as 

described in (3.21). Therefore, the equation of IM is described by (2.39). By 

replacing the variables sde , sqe , and   with *
sde , *

sqe , and *  respectively. 
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3.2.3 Steady State Analysis 

At steady state condition, the derivative operator p  is set to zero. By 

the integral controllers of d   axis current and speed, we have 
*

sd sdi i                    .............................................................................     (3.79) 
* 0de                     ...............................................................................     (3.80) 

Therefore, 0cde   from (3.22). 

The actual IM equations at steady state are described in (3.38) – (3.42). 

By assuming *
s sR R , the q  axis flux rq  becomes zero as the same of 

system A. Therefore, (3.46) is valid in this case too. From (3.80), we have 

* *
* *
sq

r
r sd

i
i

 


                     ................................................................     (3.81) 

By assuming *
r rR R , the following equation is obtained from (3.46) 

and (3.81): 
*
r r   

From (3.78) and (3.81), we have 
* * * *
sq s sd ci s sde L i L i                      ....................................................     (3.82) 

By comparing (3.39), (3.45) and (3.82)  

*
s sq

ci
s sd

R i
L i

                     ......................................................................     (3.83) 

 

Steady-state values are calculated by giving *
rN , slN  and *

sdi  as known 

values, similar to the case of system A. 
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3.2.4 Linear Model 

The linear state equation of the IM is described by (3.54). From (3.55), 

(3.76), (3.77) for a small signal perturbation, the following equations are 

obtained: 

 

cd i sdp e K i    

 

 ci ic cd p sdp K K e K i      

 

 * *
* *

sq
r p sd cd

r sd

i
K K i e

i  



         

 

The d  axis voltage *
sde  in (3.33) is linearized as 

 *

* * *

*
* *1

sd p sd cd s sq s sq

sq
s sq p sdsd s sq

r sd

e K i e L i L i

i
L i K K i L i

i
e 

   

  


         

 
        

 

 

  *1s sq cd s sq rK L i e L i                          ...........................     (3.84) 

 

The q axis voltage *
sqe  in (3.78) is linearized as 

 * * *
* *

sq
sq s sd r pc cd p sd ci

r sd

i
e L i K K e K i

i  


 
           

 
    ............     (3.85) 
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The state equation of the controller is expressed as 

x s z rp      z A x A z B r                    ............................................     (3.86) 

0 0 0 0 0 0
0 0 0 0 0
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  

 

 

s x s z r      u F x F z F r                    .........................................     (3.87) 
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L i
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




 
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The linear model of whole system is obtained as follows: 

0
s s x s z s rs s L

L
x z r

p T
         

                    

A B F B F B Fx x B
r

A A Bz z
 

 

Simply, 

r L Lp T     x A x B r + B                    .....................................     (3.88) 
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where, 
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The output equation is expressed as 

y C x                      ........................................................................     (3.89) 

where, 

 0 0 0 0 1 0 0C   

3.3 Gain Selection of Controller 

3.3.1 Current Controller 

Figure 3.4 shows a block diagram of the PI current control system of 

IM. The IM is modeled as a series circuit of the resistance srR  and leakage 

inductance sL . The disturbance means a counter electromotive force. The 

resistance srR  is expressed as 
2

sr s r
r

MR R R
L

 
   

 
                   .........................................................     (3.90) 
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Fig.3.4 Block diagram of the current control system. 
 

Assuming that there are no disturbances, the closed-loop transfer 

function of the current control becomes the following equations: 

 

 
   *

1
1

p i

s sr i p i

K T sI
I L s R T s K T s




  
 

The iT  is usually designed as [45] 

s
i

sr

LT
R


                    ..........................................................................     (3.91) 

The current transfer function becomes as 

*
1

1
p

s p eq

KI
I L s K T s
 

 
                   ...............................................     (3.92) 

where, 

s
eq

p

LT
K


  

Cut-off frequency c  of this transfer function is expressed by the 

following equation: 

 

1p
c

sr i eq

K
R T T

                      ...............................................................     (3.93) 
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By setting the cut-off frequency c , the proportional gain pK  is 

determined by (3.93). 

3.3.2 Speed Controller 

The block diagram of speed control system is shown in Fig.3.5. When 

the vector control is ideal, the torque can be controlled as 

 
2

*

2e sd sq T sq
r

PM i i K i
L

                      .....................................................     (3.94) 

 

The loop transfer function 0G  of Fig. 3.5 is 

 

0
1

1 2
is T

ps
eq

K PKG K
s T s Js

     
                   ........................................     (3.95) 

 

The Bode diagram of (3.95) is shown in Fig.3.6. The angular 

frequency pi  is expressed as 

 

/pi is psK K                     ..................................................................     (3.96) 
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Fig.3.5 Block diagram of the speed control system. 
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Fig.3.6 Bode diagram of loop transfer function 0G . 

 

In order to have sufficient phase margin, the following equation 

should be satisfied [45]: 

/5pi sc                     ......................................................................     (3.97) 

Under the condition (3.97), the crossover frequency sc  is obtained as 

2
T ps

sc

PK K
J

                     ..................................................................     (3.98) 

If we set the pi  and sc , the gains psK  and isK  is determined by (3.98) and 

(3.96). 
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Chapter 4  

Simulation and Experimental 

Results 

4.1 Experimental System 

4.1.1 Microcomputer control system  

The IM control system by using a digital signal processor (DSP) is 

shown in Fig.4.1. The power circuit is composed by rectifier, smoothing 

capacitor, and IGBT inverter. A DC machine is used as a load through a 

torque sensor for the induction machine. Torque sensor is used for detecting 

the torsion of the shaft. The motor currents and DC link voltage are detected 

to the DSP through an analog to digital (A/D) converter. 

PWM gate signal generator is connected to IGBT inverter. These 

signals are carried by an optical fiber cable and are not affected by noise. 

Resistor is connected to the braking circuit and the regenerative energy is 

consumed as heat. When the IM operates as a generator, IGBT brake circuit is 

turned on. The dangerous voltage rise can damage the rectifier circuit diode 

and the smoothing capacitor, because its energy is not returned to the power 

supply.  
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Fig.4.1 Experimental system. 

 

 

The interrupt signal INT1 of the DSP is sent from the PWM gate 

signal generator to synchronize the period of PWM. The host computer has a 

segment that can be connected to the DSP, so it can transfer control program, 

or display information on the screen from DSP. The PWM inverter and DSP 

control circuit is made by My Way Co., Ltd. Block diagram of DSP 320C32 

is shown in Fig.4.2. 
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Fig.4.2 Block diagram of DSP TMS320C32. 

 

The experimental program of the DSP is written by using C language. 

The developed program is divided into the main routine, INT1 interrupt 

routine and the timer0 interrupt routine. Fig.4.3 shows the flow chart of the 

sensorless vector control B. 

First, the main program starts. After the permission of interrupt, the 

INT1 and Timer0 interrupts can be accepted to DSP and the main program 

enters into infinite loop to communicate with the host computer. For example, 

the waveform data is sent to the host computer such as speed and current, 

when INT1 signal enters the DSP from the gate signal generator, the main 

program is stopped. Timer0 interrupt program is accepted to DSP after the 

INT1 program ended. The INT1 has dominant priority. The main program 

priority is the lowest, and it is executed when two interrupt  programs are 

ended. The INT1 program runs every 200 s . 
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200 s
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Fig.4.3 Flow chart of sensorless vector control B program. 
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The experimental programs are changed to machine language by using 

C compiler and sent to RAM of DSP. This process is called “downloading”. 

Process and communication program commands are made by My Way Co. 

Ltd. It is necessary for both the DSP and the PC. 

4.1.2 Parameters of System 

The IM specifications used in the experimental system are shown in 

Table 4.1. 

 

The leakage inductance sL  is computed as 

2 2

2
0.111 1 0.115 0.00978H

0.115s s
s r

ML L
L L


   

        
  

 

 

Resistance of stator and rotor of (3.90) is computed as 
2 20.111.54 0.787 2.26

0.115sr s r
r

MR R R
L

            
  

 

 

Integration time iT  is computed from (3.91) as  

0.00978 0.00433
2.26

s
i

sr

LT
R


    

 

By choosing that the cut-off frequency of (3.93) is 1500 rad/s, the 

current PI gains are computed as follows: 

0.00978 1500 14.7p sr i c s cK R T L        

14.7 3395
0.00433

p
i

i

K
K

T
  
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Table 4.1 Parameters of the three-phase IM. 

Number of poles P[poles] 4 

Rated Output [kW] 1.5 

Rated Torque [N-m] 8.43 

Speed [min-1] 1700 

Rated Line Voltage [V] 200 

Rated Current [A] 6.4 

Excitation Current *
sdi  [A] 4.2 

Moment Inertia J[kg・m2] 0.0126 

Primary Resistance Nominal Value Rs[Ω] 1.54 

Secondary Resistance Nominal Value Rr[Ω] 0.787 

Iron Loss Resistance Rm[Ω] 391 

Primary Self-inductance Ls[H] 0.115 

Secondary Self-Inductance Lr[H] 0.115 

Mutual Inductance M[H] 0.11 

Motor Manufacturer 
Mitsubishi Electric 

Corporation 

 
 

For the design of PI speed control system, torque constant is computed 

as  
2 2

* 4 0.11 4.2 0.8838
2 2 0.115T sd

r

PMK i
L


   


 

 

The PI speed proportional gain (3.98) is computed by 

2 2 0.0126 0.00713
4 0.8838

sc sc
ps sc

T

JK
PK
   

   

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When the cut-off frequency of PI speed control system sc  is set to 20 , then  

0.0713 20 0.1426psK     

 

The angular frequency pi  of PI speed controller is set to 4 rad/s. 

 

The integral gain isK  of PI speed controller is computed as 

4 0.1426 0.5704is pi psK K     

 

The integration time isT  of PI speed controller is computed as 

0.1426 0.25
0.5704

ps
is

is

K
T

K
    

 

Table 4.2 shows the control parameters of  system A. 

 

Table 4.2 Control Parameters of System A. 

Current PI Proportional Gain Kp 14.7 

Current PI Integral Gain Ki 3395 

Current PI Integration Time Ti 0.00433 

Current PI Cut-off Frequency ωc 1500 

Speed PI Proportional Gain Kps 0.1426 

Speed PI Integral Gain Kis 0.5704 

Speed PI Integration Time Tis 0.25 

Speed PI Cut-off Frequency ωsc 20.0 

PI Proportional Gain |Kpω|                   K  20.0 

PI Integral Gain |Kiω|                     /K T   20.0 
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In system B, the PI current control gain and integration time are the 

same with system A, and other gains are derived from the analysis of system 

stability. Control parameters of system B are shown in Table 4.3. 

 

Table 4.3 Control Parameters of System B. 

Current PI Proportional Gain Kp 14.7 

Current PI Integral Gain Ki 3395 

Current PI Integration Time Ti 0.00433 

Current PI Cut-off Frequency ωc 1500 

PI Proportional Gain Kpc 1.0 

PI Integral Gain Kic 20.0 

Gain |Kω| 5.0 

4.1.3 Experimental IM – DCM System 

Figure 4.4 shows the experimental DCM circuit for the forward 

rotation of IM. In the motoring operation of IM, the direction of rotation, the 

rotating magnetic field direction and the produced torque eT  are in the same 

direction. The load torque LT  has equal magnitude to the eT  in the opposite 

direction at the steady state operation. 

If the terminals X and Y are directly connected, the current flows 

through the bulb in the direction of aI  in motoring operation. The armature 

current aI  becomes maximum when all the light bulbs which are connected 

parallels are switched on. The DCM voltage generated is proportional to the 

velocity. Therefore, this voltage becomes smaller during low-speed operation; 

the armature current aI  does not increased even if all the light bulbs are 

turned on. To solve this problem, we use a diode bridge which is connected 
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between the terminals X and Y. This polarity can be changed depending on 

whether the DCM operation as motoring or regenerating. By increasing the 

voltage of the variable transformer connected to the diode bridge, DC voltage 

of the diode bridge and armature current aI  are increased. 

The load torque LT  delivered by DCM is proportional to aI . In this 

way, it is possible to perform experiment with different load torque. The 

maximum torque in this experiment is 8.0 N-m. The speed of IM does not 

change even by changing the load torque LT . 

 

DCM

A

H

+

-

A

A

+

-

J

K

3φ
～

When Motoring

When Regenerating

+-

+ -

- +

Motoring ：

Regenerating ：

Motoring

Regenerating

Max 10 A

Max 1.1 A

Ｖ

+ -

+-

Forward 
Rotation

IM Light 
Bulb

X Y

X

X

Y

Y

+

+

-

-

Motoring

Regenerating

      Direction of Rotation

Torque Generated by IM
      Torque Generated by 

DCM

L f aT K I I

'AH f rV K I N

Torque Generate 
by DCM

The Terminal 
Voltage of DCM

Braking

Rotating Magnetic 
Field Direction

Braking

0N rN eT LT

0N rN eT LT

0N rN eT LT

0 :N

:rN
:eT
:LT

aI

fI

 
Fig. 4.4 Experimental DCM circuit for motoring and 

regenerating operations of IM. 
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By considering the climbing slopes, the IM is under resistance from 

the gravity, that is the load torque as shown in Fig.4.5. This situation is called 

motoring operation. When the motor rotates higher than the synchronous 

speed, it generates a braking force. This condition is called regenerating 

operation. In this process, the mechanical energy is converted to electrical 

energy (so-called operation as an induction generator). There is also another 

circumstance, when the direction of synchronous speed is opposite to the rotor 

rotation. This situation is called plugging. In this case, the direction of motor 

rotation follows the load torque and the direction of the torque produced by 

the motor follows the synchronous speed. 

In regenerating operation and forward rotation, the DCM must be 

operated as a motor. For this reason, in the diode bridge, X and Y are 

connected to (–) and (+) respectively. The armature current aI  becomes 

opposite in regenerating operation, the load torque LT  generated by DCM is 

also reversed. However, the speed of IM is does not change if the speed 

command of IM control system is constant. Therefore, torque current sqi  and 

eT  change automatically to keep the constant velocity until eT  is equal to LT  

the same value in the opposite direction. As a result, the direction of eT  is 

reversed with respect to the rotation direction rN . Mechanical energy goes 

into the IM; and it is operated as a generator. During this time, DCM provides 

mechanical energy. This energy is used by the resistance of IM and inverter, 

but a lot of energy is used to charge the DC capacitor. Then, the capacitor 

voltage increases rapidly. The energy is not sent to the three-phase power 

supply side because of the diode bridge, but there is a brake circuit in order to 

keep a constant capacitor voltage by turning on and off the dynamic brake 

(DB) switch. Fig.4.6 shows the experimental IM connected to the DC motor 

as a load and a torque detector in between. 
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Fig.4.6 IM with DCM as a load and a torque detector in between. 
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4.2 System Stability 

Figure 4.7 shows the root trajectories that are computed by the linear 

model of proposed system B. The speed command *
rN  is 1700 min , and slip 

speed slN  are changed from 180min  to 180min as parameter of load. The 

different integral gain icK  such as 100.0, 50.0, 33.3, 25.0 and 20.0 are 

selected. If the integral gain icK  is very large, the system becomes unstable. 

However, if icK  is selected smaller than 100.0, the system is stable at both 

motoring and regenerating operation. 
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Fig.4.7 Root trajectories with parameters of slip speed slN  and 

integral gain icK  (system B). 
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Figure 4.8 shows the root trajectories when the gain K  and the 

integral gain icK  are changed. The speed command *
rN  is 1700min , and slip 

speed slN  is 135.0min . It is observed that the system becomes stable by 

choosing larger value of K  and smaller value of icK . 
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Fig.4.8 Root trajectories with parameters of integral gain icK  

and gain K  (system B). 
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To see the movement of roots by changing the gain K  and the slip 

speed slN  is shown in Fig.4.9. The gain K  is changed to 0.1, 1.0, 3.0, and 

10.0 and the slip speed slN is changed from 180 min to 180 min . When 

K  is larger than 3.0, the system becomes stable at motoring and 

regenerating operation. When K  is small the system is unstable at high load 

in both motoring and regenerating operations. 
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Fig.4.9 Root trajectories with parameters slip speed slN  and gain 

K  (system B). 
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In Fig.4.10, the root loci is shown when * 11500 minrN  , 20.0icK  , 

3.0K  , for the change of slip speed slN  from 180 min  to 180 min . The 

system is stable in all operating points. By comparing Fig.4.9 and Fig.4.10 the 

system works more stable at higher speed in motoring operations, because the 

real part of the root is smaller. 

Figures 4.11 and 4.12 show the root trajectories computed by the 

linear models of the systems A and B in the case of * 150 minrN   and 

* 1100 minrN   respectively. The slip speed is changed from 180 min  to 

180 min  as parameter of load by the increment 14 min . The system is stable 

at low speed regenerating operation. However, the system is unstable at 

plugging region as shown in Fig.4.11 (a) and (b) by the poles on real axis in 

both systems. 
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Fig.4.10 Root trajectory at 11500 min  (system B). 
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(b) System B 

Fig.4.11 Root trajectories with parameter slN  at speed 
* 150minrN   (systems A and B). 
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(b) System B 

Fig.4.12 Root trajectories with parameter slN  at speed 
* 1100 minrN   (systems A and B). 
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Figures 4.13 shows the unstable operating region of system A with 

parameters; 20.0pK   , 20.0iK   , and 20.0sc  . The sc  is cut-off 

angular frequency of the speed control. These gains are selected to have wide 

stable operating points. 

 

 

 

* 1minrN   

20.0

20.0
20.0

p

sc

i

K

K












1min
slN
  

 
 

Fig.4.13 Unstable region of system A. 
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In Fig.4.14 shows the unstable operating region when speed command 

and slip speed are changed with parameters 5.0K  , 20.0icK  , and 

0.0pcK   for system B. By comparing the results of Fig.4.13 and 4.14, it is 

observed that the unstable plugging region is almost same. 
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Fig.4.14 Unstable region with parameter 0.0pcK   for system B. 
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The increasing gain value of speed control proportional gain pcK  can 

improve the stability region at low speed of motoring and plugging operation 

as shown in Fig. 4.15. 

 

 

 

 

* 1minrN   

5.0
20.0
1.0

ic

pc

K
K
K

 




1min
slN
  

 
Fig.4.15 Unstable region with parameter 1.0pcK   of system B. 
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4.3 Simulation Results 

Figure 4.16 shows the simulation results of non-linear and linear 

models of system A. The simulation results of linear and non-linear are 

almost same. Therefore, the modeling of the system is appropriate. The 

parameters used in this simulations are pK  =20.0, iK  = 20.0 and sc = 20.0 

for system A. In the case of system B, the result is shown in Fig. 4.17. For 

system B, the parameters are: K =5.0, icK = 20.0, and pcK =1. The load 

torque 4.0 N-mLT   is selected. 

In Figs.4.18, 4.20 and 4.22, the transient responses of system A and B 

are shown for the step change of speed command at motoring operation. 

These figures are correspondent to low-speed, medium-speed and high-speed 

operations. On the other hand, the transient responses at regenerating 

operations are shown in Figs 4.19, 4.21 and 4.23 for low-speed, medium-

speed and high-speed operations respectively.  

In system A, the estimated speed ˆr is shown to compare with rotor 

speed, while in system B flux frequency *  is shown. Both systems A and B 

are stable in both regenerating and motoring operations. 

 

 

 

 

 

 

 

 

 



 76

-1
ˆ

m
in

r
N







-1
m

in
r

N







 
(a) Non-linear simulation 

 

-1
ˆ

m
in

r
N







-1
m

in
r

N







 
(b) Linear simulation 

 
Fig.4.16 Transient responses in motoring operation of system A. 
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Fig.4.17 Transient responses in motoring operation of system B. 

 

 

 



 78

e d
* [

V
]

i sq
[A

]
ˆ r

N
r

N
[m

in
-1

]
[m

in
-1

]

 
(a)  System A  

 

*
N

r
N

 
(b) System B  

 
Fig.4.18 Transient response for the step change  

50 min-1→150 min-1 → 50 min-1  and 4.0LT  N-m  
with selected parameters. 
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Fig.4.19 Transient response for the step change  

50 min-1→150 min-1 → 50 min-1  and 4.0LT   N-m  
with selected parameters. 
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Fig.4.20 Transient response for the step change  

500 min-1→600 min-1 → 500 min-1  and 4.0LT  N-m  
with selected parameters. 
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(a) System A 

 

 
(b) System B 

 
Fig.4.21 Transient response for the step change  

500 min-1→600 min-1 → 500 min-1  and 4.0LT   N-m  
with selected parameters. 
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Fig.4.22 Transient response for the step change  

1000 min-1→1100 min-1 → 1000 min-1  and 4.0LT  N-m  
with selected parameters. 
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Fig.4.23 Transient response for the step change  

1000 min-1→1100 min-1 → 1000 min-1  and 4.0LT   N-m  
with selected parameters. 
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4.4 Experimental Results 

All experimental results are shown in the case of system B. Figures 

4.24, 4.25 and 4.26 shows the simulation and the experimental results for low, 

medium and high speed respectively. rN  is actual motor speed  r  and *N  

is synchronous speed  * . The control parameters are set as 5.0K  , 

20.0icK   and 0.0pcK  . The load torque LT  is set to 4.0 N-m (half of rated 

torque). From these comparisons, the experimental results are very close to 

those of simulation. Therefore, the validity of proposed method is confirmed, 

except for high frequency ripples. The high frequency ripples of *N  and *
de  

are caused by PWM voltage control in experimental system. However, since 

the flux angle *  is obtained by integrating * , the actual rotor speed has 

little ripples.  
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Fig.4.24 Transient response for the step change 
50 min-1→ 150  min-1 → 50 min-1

 at 4.0LT  N-m. 
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Fig.4.25 Transient for the step change  
500 min-1→600 min-1 → 500 min-1  at 4.0LT  N-m. 
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Fig.4.26 Transient response for the step change  
1000 min-1→1100 min-1 → 1000 min-1  at 4.0LT  N-m. 
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Figures 4.27, 4.28 and 4.29 shows the simulation and the experimental 

result in regenerating operation. Same change of speed command are tested 

under the load torque 4.0 N-mLT    for low, medium and high speed 

respectively. In any cases, quick responses of rN  are obtained. The high 

frequency ripples of *N  in Figs. 4.27, 4.28 and 4.29 are smaller than those in 

Figs. 4.24, 4.25 and 4.26. The reason for this difference can be considered 

that the amplitude modulation ratio of regenerating operation is smaller if the 

voltage control has allowance under limited DC-bus voltage; the distortion of 

stator currents is reduced. The larger we choose the gain K , the larger high 

frequency ripples of *N  are induced. 
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Fig.4.27 Transient response for the step change 
50 min-1→ 150  min-1 → 50 min-1

 at 4.0LT   N-m. 
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Fig.4.28 Transient for the step change  
500 min-1→600 min-1 → 500 min-1  at 4.0LT   N-m. 
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Fig.4.29 Transient response for the step change  
1000 min-1→1100 min-1 → 1000 min-1  at 4.0LT   N-m. 
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Figure 4.30 shows the transient responses of experiment for the step 

change of speed command from 1100 min  to 1100 min  and back to 

1100 min . In this figure, the motor is driven between the operating points of 

motoring and regenerating through the unstable plugging region. It is 

observed that the system is operated stably. The control parameter 1.0pcK   

is set for the following experiments. 

Figure 4.31 shows the experimental results when the speed command 

is changed from 1100 min  to 15 min . In these case, the system can be 

operated stably. On the other hand, in Fig. 4.32, the speed command is 

changed from 1100 min  to 125 min . The system becomes unstable at 

plugging region and is operated using speed sensor for the protection after 

0.98st  . This experimental result can prove the unstable region of Fig.4.15. 
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Fig.4.30 Transient response for the step change  

100 min-1→ 100  min-1 → 100 min-1  at 4.0LT  N-m. 
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Fig.4.31 Transient response for the step change  

100 min-1→ 5 min-1 at 5.0LT  N-m. 
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Fig.4.32 Transient response for the step change  

100 min-1→ 25  min-1 at 5.0LT  N-m. 
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Moreover, Figs.4.33 and 4.34 shows the experimental results for the 

step change of the speed command *
rN  with speed changed 50 min-1→ 150 

min-1→ 50 min-1 corresponding to Fig.4.18 (b) and 4.19 (b) in motoring and 

regenerating operation respectively. These figures can compare the responses 

of actual rotor speed rN  for control parameter 1.0pcK  .  

Figure 4.35 shows the transient response at no-load condition  0LT  , 

with speed changed 50 min-1→ 150 min-1→ 50 min-1 corresponding to Figs. 

4.33 and 4.34. The speed responses give almost the same characteristics for 

each load torque. However, the sqi  differs from each parameter of LT . 
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Fig.4.33 Transient response for the step change  
50 min-1→150 min-1 → 50 min-1  at 4.0LT  N-m. 
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Fig.4.34 Transient response for the step change  
50 min-1→150 min-1 → 50 min-1  at 4.0LT   N-m. 

 

[m
in

 -1
]

[m
in

 -1
]

[V
]

[A
]

*
N

r
N

 
 

Fig.4.35 Transient response for the step change 
50 min-1→ 150  min-1 → 50 min-1

 at 0LT  N-m. 
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Chapter 5 

Conclusion 
 

 

 

 

Study on simplified speed sensorless vector control system for 

induction motors is described in this thesis. The results obtained from this 

study are summarized as follows: 

(1) New simplified speed sensorless vector control methods of IM based on 

rotor flux linkage are proposed. The two simplified sensorless systems 

are called as system A and system B. In both methods, the q   axis flux 

is obtained by the output voltage of d  axis PI current controller with a 

non-interference control. 

(2) In system A, the angular frequency of rotor flux is estimated to bring 

q axis flux to zero by using PI controller. The flux angle is obtained 

by integrating the angular frequency. The rotor speed is computed by 

subtracting a slip speed from the angular frequency. 

(3) In system B, the computation of q axis flux is as same as the system A. 

The angular frequency of rotor flux is computed by subtracting the 

q axis flux from the speed command adding with a slip speed. The 

q  axis flux is also used to control the rotor speed by adjusting the 

q  axis flux. The flux angle is obtained by integrating the angular 

frequency. 

 



 97

(4) In both systems A and B, the q   axis flux is obtained from voltage 

model, in which the derivative term of the d  axis flux is assumed zero 

because of constant magnetizing current command. A flux angle of a 

current model is aligned with the flux angle of voltage model by 

changing the angular frequency of current model. Since the output 

voltage of d  axis PI current controller is used for the flux angle 

estimation and speed control ( q axis voltage control), the system is 

simplified and stabilized at regenerating mode.  

(5) By choosing a reference frame which rotates synchronously with the 

computed flux angle, non-linear models are derived in both proposed 

systems A and B. From these non-linear models, linear models of the 

systems are derived in state space equations by considering a small 

perturbation around a steady-state operating point. 

(6) The performance of both systems A and B are compared by using linear 

models and non-linear models. Transient responses of linear models and 

non-linear models are computed and compared. Since both responses 

are almost same around a steady state operating point, the validity of 

the linear models are confirmed. By using the linear models, the system 

stability is studied by showing root loci. 

(7) In plugging mode of both systems, most of the poles of the root-loci are 

located on the positive real axis, it means the system becomes unstable. 

In motoring and regenerating operations of systems A and B, all poles 

are located in the left half plane. Therefore, the system is stable in both 

operations. 

(8) By virtue of the stability analysis, we can design the parameters of 

controller in both systems. 
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(9) A digital signal processor (DSP) based PWM inverter fed IM system is 

equipped and tested. It is confirmed that the experimental results are 

very close to those of non-linear simulation except for high frequency 

ripples. Therefore, the effectiveness of the proposed methods are also 

demonstrated experimentally.  

(10) The nonlinear simulation and experimental results of the proposed 

system show stable and quick transient responses in both motoring and 

regenerating modes. 

(11) By using PI speed control ( q axis voltage control), the unstable region 

is improved comparing with the case of I control in system B. 

(12) It is considered that the system B is superior to the system A because its 

simple structure in the case of speed control applications. 
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