1 Title

2	The effect of spine postures on the hydrodynamic drag in <i>Epinephelus ongus</i> larvae
3	
4	Names and academic addresses of authors
5	Yuuki Kawabata ^{1,*} , Gregory N. Nishihara ¹ , Tomofumi Yamaguchi ^{1, 2} , Takayuki Takebe ² ,
6	Kazuhisa Teruya ² , Taku Sato ² and Kiyoshi Soyano ¹
7	
8	¹ Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
9	² Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute,
10	Fisheries Research Agency, Okinawa 907-0451, Japan
11	
12	*Author to whom correspondence should be addressed
13	Tel: +81-(0)95-850-7314; Fax: +81-(0)95-840-1881; email: yuuki-k@nagasaki-u.ac.jp
14	
15	Running headline
16	Spines for drag control in grouper larvae
17	

- 18 Abstract
- 19
- 20

21Laboratory behavioural observation and computational fluid dynamics (CFD) analysis 22were conducted to examine whether the movement of the elongated dorsal and pelvic 23spines changed the hydrodynamic drag in white-streaked grouper Epinephelus ongus 24larvae. The behavioural observation in the tank revealed that the larvae extended the 25dorsal and pelvic spines during passive transport and retracted during swimming; the 26angles of the dorsal and pelvic spines in relation to the anteroposterior axis were larger during the passive transport (28.84 \pm 14.27 ° and 20.35 \pm 15.05 °) than those during the 27swimming $(2.59 \pm 5.55^{\circ} \text{ and } 0.32 \pm 6.49^{\circ})$. The CFD analysis indicated that the 2829relative hydrodynamic drag acting on the larvae was approximately 1.25 times higher when the spines were extended (passive transport) than when the spines were retracted 30 (swimming), suggesting that the grouper larvae have an ability to adjust their 31hydrodynamic drag depending on the behavioural context. 32

33

34

35 Key words: computational fluid dynamics analysis; drag coefficient; elongated spine;

36 morphology; Serranidae

39	Over 90% of coral reef fishes have a dispersal life stage in which they are passively
40	transported by ocean currents (Leis, 1991; Leis & McCormick, 2002). Since most of the
41	juvenile and adult reef fishes are sedentary and show strong site fidelity (Zeller, 1997;
42	Kawabata et al., 2007; Meyer et al., 2010; Claisse et al., 2011), the dispersal stage is
43	considered to be the main factor responsible for the connectivity and population
44	structure of reef fishes (Hamner & Largier, 2012; Simpson et al., 2013). Therefore,
45	measuring larval dispersal is of great importance towards understanding population
46	dynamics as well as for determining management measures such as the establishment of
47	marine protected areas (Jones et al., 2005; Sale et al., 2005; Almany et al., 2007; Planes
48	et al., 2009).
10	
49	
49 50	
49 50 51	Even though the ocean current is the main factor for controlling dispersal,
49505152	Even though the ocean current is the main factor for controlling dispersal, behaviour has been recently begun to be recognized as an important factor that can
 49 50 51 52 53 	Even though the ocean current is the main factor for controlling dispersal, behaviour has been recently begun to be recognized as an important factor that can influence dispersal trajectories (Leis, 2006; Gerlach <i>et al.</i> , 2007; Leis, 2007; Paris <i>et al.</i> ,
 49 50 51 52 53 54 	Even though the ocean current is the main factor for controlling dispersal, behaviour has been recently begun to be recognized as an important factor that can influence dispersal trajectories (Leis, 2006; Gerlach <i>et al.</i> , 2007; Leis, 2007; Paris <i>et al.</i> , 2007; Putman <i>et al.</i> , 2012; Sponaugle <i>et al.</i> , 2012; Simpson <i>et al.</i> , 2013). In fact,
 49 50 51 52 53 54 55 	Even though the ocean current is the main factor for controlling dispersal, behaviour has been recently begun to be recognized as an important factor that can influence dispersal trajectories (Leis, 2006; Gerlach <i>et al.</i> , 2007; Leis, 2007; Paris <i>et al.</i> , 2007; Putman <i>et al.</i> , 2012; Sponaugle <i>et al.</i> , 2012; Simpson <i>et al.</i> , 2013). In fact, perciform fishes have swimming, orientation and sensory abilities that can influence

58	the studies have focused on the ability of organisms to control their hydrodynamic drag
59	so that they can adjust the distance transported by the flow and gravity, and therefore
60	influence their vertical and horizontal distribution.
61	
62	
63	Grouper (Serranidae) larvae have distinct morphology, which might affect
64	hydrodynamic drag; they have an elongated second dorsal and pelvic fin spines (Colin
65	et al., 1996; Kawabe & Kohno, 2009; Russo et al., 2009). Some anecdotal studies have
66	suggested that this distinguishing morphology is an adaptation for predator evasion
67	(Leis & Carson-Ewart, 1999; Kusaka et al., 2001), but other studies have suggested an
68	adaptation for maintaining position in the water column (Hirata et al., 2009; Kawabe &
69	Kohno, 2009). However, no experimental studies have been conducted on when and
70	how the larvae use spines and whether the use of the spines changes hydrodynamic
71	drag.
72	
73	
74	The objective of this study was to examine whether the movement of the

2005; Simpson et al., 2005; Leis et al., 2009). However, as far as it is known, none of

57

 $\mathbf{5}$

75	elongated spines changed the hydrodynamic drag experienced by grouper larvae.
76	White-streaked grouper Epinephelus ongus (Bloch, 1790) was chosen as a model
77	species, because it is an abundant grouper species in the Indo-West Pacific. Since there
78	were no data on the larval morphology of this species, the ontogenetic changes of the
79	lengths of the dorsal and pelvic spines were investigated from the hatchery-reared
80	specimens in advance. The postures of the spines during swimming and passive
81	transport were then measured by a video camera in a laboratory setting. Finally, the 3D
82	shape of the larva with elongated spines was reconstructed, and hydrodynamic drag
83	when the spines were extended and retracted was calculated using computational fluid
84	dynamics (CFD) analysis.
85	
86	
87	Since serranid species including this species were rarely caught by plankton
88	nets or light traps around the Yaeyama islands (Nanami et al., 2013b), hatchery-reared
89	fish were utilized for the experiments. Fertilized eggs of E. ongus were obtained from
90	natural spawning wild broodstock kept in captivity at the Yaeyama Laboratory,
91	Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute,
92	Fisheries Research Agency, Okinawa, Japan. The eggs were incubated and the 1-day-old

93	larvae were kept in 2.3 kL fiber-reinforced plastic tanks at a density of c . 10 ⁴ individuals
94	kl ⁻¹ . They were fed with SS-type rotifers <i>Brachionus rotundiformis</i> (Thai strain) at a
95	density of c. 20 individuals ml ⁻¹ from 2 days post hatching (dph), and Nannochloropsis
96	oculata was added at a density of c. 5×10^6 cells ml ⁻¹ . Then, SS type rotifers were
97	substituted with S-type rotifers (Yaeyama strain) from 5 dph. Artemia franciscana
98	nauplii and dry pellets (Rich, Scientific Feed Laboratory Co. Ltd., Japan) were provided
99	in addition to rotifers from 16 and 24 dph, respectively. Rotifers and Artemia were
100	discontinued from 26 and 40 dph, respectively. The details of the rearing protocol were
101	similar to those of the coral trout Plectropomus leopardus (Lacepède, 1802) (Takebe et
102	al., 2011). Animal care and experimental procedures were performed in accordance with
103	the Guidelines for Animal Experimentation of Nagasaki University with approval of the
104	Institutional Animal Care and Use Committee.

106

107 A sample of 10 individuals were taken every day from day 0 to day 10, and at 108 2-4 days intervals from day 10 to day 48; as a result, 220 individuals were sampled in 109 total. The fish were anaesthetized using tricaine methansulphate (MS-222; 100 mg I^{-1}) 110 and the total length (L_T) and lengths of the second dorsal spine and pelvic spine were

111	measured to the nearest 0.0005 mm using an ocular micrometre under a stereoscopic
112	microscope. After the measurement, specimens were fixed in 10 % formalin-seawater
113	solution.
114	
115	
116	Dorsal and pelvic spines started to grow at the same time at c . 4 mm L_T (Fig. 1).
117	Both spines were then quickly elongated until the maximum lengths were attained at c .
118	7-10 mm $L_{\rm T}$ (Fig. 1). Maximum ratios of the spine lengths to $L_{\rm T}$ were attained at c. 6-9
119	mm $L_{\rm T}$ (Fig. 1). The dorsal and pelvic spines were thick along their full length, and their
120	morphology was similar to other Epinephelus species (Kusaka et al., 2001; Kawabe &
121	Kohno, 2009); the second dorsal spines have three ridges with a number of small
122	spinelets, and the pelvic spines have four ridges with a number of small spinelets.
123	
124	
125	In order to investigate whether the fish changes the posture of the spines
126	depending on the behavioural context, the behaviour of 10 live larvae [8.68 \pm 0.85 mm
127	$L_{\rm T}$ (mean ± standard deviation)] was recorded in a glass aquarium [590 (length) x 50
128	(width) x 290 (height) mm] from the side using a video camera (HDR-XR520V,

129	Handycam, Sony, Tokyo, Japan) at 30 frames s ⁻¹ . The aquarium was filled with seawater
130	to a depth of 230 mm, and the water temperature was 26.5 °C. In order to establish a
131	weak flow (c. 20 mm s ⁻¹) in the aquarium, sea water was supplied to the tank through 2
132	mm holes drilled in the PVC pipe deployed at one side of the tank, and drained from the
133	other side of the tank. When the fish was passively transported by flow or gravity, body
134	posture was nearly parallel to the direction of the fish movement, suggesting that the
135	relative flow direction was nearly parallel to the fish body. Individual fish were
136	introduced into the aquarium and acclimatized for at least 5 min. The fish behaviours
137	were then recorded for 10 minutes from the side of the tank using a video camera. One
138	fish was recorded at a time. After the recording, the fish were anaesthetized using
139	MS-222, and were fixed in 10 % formalin-seawater solution.
140	
141	

Video data were first classified into three behavioural categories: active swimming by tail beating (swimming), passive transport by flow or gravity (passive transport) and the others (e.g. turning, resting, hovering). Next, ten frames in which the fish were oriented perpendicular to the camera were extracted for both the swimming and the passive transport categories. In order to avoid multiple samplings from a short

147	time-series data, intervals of the consecutive frames were set over 10 seconds. Then, the
148	angles of spines in relation to the anteroposterior axis were measured using ImageJ
149	1.44p (National Institutes of Health; rsb.info.nih.gov/ij).
150	
151	
152	In order to test whether there was any difference in spine postures depending
153	on the behaviour, the angles of spines were compared between the swimming and
154	passive transport behaviours. Since the postures of the spines were measured multiple
155	times in each fish, general linear mixed model (LMM) (Grafen & Hails, 2002), in which
156	each fish was regarded as a random factor, was used to compare the differences. LMM
157	was conducted using R 3.0.1 (The R Foundation for Statistical Computing;
158	www.r-project.org) with the R library 'nlme'.
159	
160	
161	In order to conduct the CFD analysis to estimate the hydrodynamic drag acting
162	on the larva, three-dimensional morphological information is needed. Therefore, the 3D
163	shape of the larva with elongated spines was reconstructed using the 3D editor Blender
164	2.68 (The Blender Foundation; www.blender.org). Photographs of one larva with

elongated spines $[L_T, 8.10 \text{ mm}; (\text{dorsal spine length}) (L_T)^{-1}, 0.45; (pelvic spine length)$ 165 $(L_{\rm T})^{-1}$, 0.42] taken from the side and top were used to measure the shape of the larva. 166 The body was divided into 16 parts by the cross-section in the transverse plane, and the 16716 points were dotted to the outline of each cross-section by assuming an elliptical 168 transverse shape (Mchenry & Lauder, 2006). Since the structures of the dorsal and 169 pelvic spines were complex, the spine was modelled as a cylinder with a circular 170171cross-section. This kind of simplified morphological model allows the calculation of 172relative drag forces between different postures rather than the absolute drag forces 173acting on fish (Przybilla et al., 2010). The mean angles of the spines measured by the aquarium experiment were used to determine the postures of the spines in each 174behavioural mode (28.84° and 20.35° for dorsal and pelvic spines during the passive 175transport, and 2.59° and 0.32° for dorsal and pelvic spines during the swimming; Fig. 1761772). 178179

180 The CFD (Gerris; (Popinet, 2003) used in the analysis is a partial differential 181 equations solver, that provided estimates of the relative rates of drag induced by the 182 extension and retraction of the dorsal and pelvic spines during passive and active

183	transport. The Reynolds (Re) number used in the solver was set to the Re of the
184	experiment, based on the length of the larva and the vertical speed during the passive
185	transport by gravity (13.9 mm s ⁻¹), which was c. 214. Since only the drag forces
186	experienced by the model were of interest, the domain of the solver was set to a 1x1 box
187	and the drag forces were recorded every 0.1 time steps. The equation for the drag force
188	$(F_{\rm d})$ was expressed as $F_{\rm d} = 0.5 C_{\rm d} \rho S U^2$, where $C_{\rm d}$ denotes the drag coefficient, ρ denotes
189	the water density, S denotes the body surface area and U denotes the flow velocity. As ρ ,
190	S and U were constant throughout the analysis, C_d was used as an index for drag. Effects
191	of the spine posture (extended or retracted) and the body orientation in relation to the
192	flow (facing upstream or downstream) on C_d were tested using a two-way analysis of
193	variance (ANOVA) (Fig. 2). The two-way ANOVA was conducted using R 3.0.1 with
194	the R library 'lm'.

196

197 The behavioural observation in the tank revealed that the larvae extended the dorsal and pelvic spines during the passive transport and retracted during swimming; 198the angles of the dorsal and pelvic spines in relation to the anteroposterior axis were 199larger during the passive transport (28.84 \pm 14.27 $^{\rm o}$ and 20.35 \pm 15.05 $^{\rm o}$) than those 200

during the swimming (2.59 \pm 5.55 ° and 0.32 \pm 6.49 °) (LMM, $F_{1,189}$ = 404.49, 156.56, 201202both P < 0.01, respectively) (Fig. 2). The CFD analysis indicated that the relative hydrodynamic drag acting on the larvae was c. 1.25 times higher when the spines were 203extended than when the spines were retracted (Fig. 3; two-way ANOVA, $F_{1,157}$ = 2041165.21, P<0.01). In addition, the drag force was smaller when the fish was facing 205206upstream, compared to that when the fish was facing downstream (Fig. 3; two-way 207 ANOVA, $F_{1,157} = 9.52$, P<0.01). These results suggest that grouper larvae have an 208ability to change the hydrodynamic drag depending on the behavioural context.

209

210

211Since the serranid larvae started to inflate the swim bladder from the onset of 212the development of the elongated spines (Colin et al., 1996; Hirata et al., 2009), the larvae would likely be able to control the hydrostatic force (i.e. buoyancy) to float in the 213water column. However, the swim bladder is not useful when the fish quickly changes 214their vertical distribution (Jones, 1952). Field observation on the serranid larvae 215216revealed that the fish actively change the position in the water column and horizontal 217distribution (Leis & Carson-Ewart, 1999; Leis et al., 2009). In addition, the larviculture experiment on the seven-band grouper *Epinephelus septemfasciatus* (Thunberg, 1793) 218

219	revealed that the survival rate became higher when the flow speed had been increased
220	during the period when the fish had elongated spines (Soyano et al., 2008). This was
221	considered to be reflection of its ecology; the ontogenetic change of spine lengths and
222	swimming capability were associated with its inshore migration (Soyano et al., 2008).
223	Considering these facts, it is possible that the fish uses elongated spines for controlling
224	the hydrodynamic drag, together with the control of hydrostatic force by the swim
225	bladder, for efficient locomotion in the water column. Further research measuring the
226	postures of the spines during the vertical and horizontal movements in the field or in a
227	large tank is necessary to verify this hypothesis.

229

There are also reports that the larvae use spines for predator avoidance; the late stage serranid larvae *P. leopardus* extended spines when the predator approached the larvae (Leis & Carson-Ewart, 1999). Considering that adaptive functions of elongated spines of other plankton species include drag control (Takahashi & Be, 1984) and predator avoidance (Morgan, 1989), it is possible that the elongated spines of grouper larvae have both adaptive functions.

236

238	E. ongus has a bipartite life cycle (pelagic eggs and larvae with benthic
239	juveniles and adults), which is similar to other groupers and most reef fishes (Simpson
240	et al., 2013). Although ecological information such as age and growth (Craig, 2007),
241	microhabitat association (Nanami et al., 2013b), and reproductive ecology (Ohta &
242	Ebisawa, 2009; Nanami et al., 2013a; Nanami et al., 2014) of juveniles and adults have
243	been accumulated, no study had been conducted on the larval ecology of this species.
244	This study revealed that E. ongus larvae have an ability to control hydrodynamic drag
245	by changing the posture of their elongated spines, which would then likely affect
246	dispersal trajectory. Further research using a hydrodynamic model that incorporates
247	behavioural parameters, including spine postures, is clearly needed for explicitly
248	quantifying the larval dispersal process of this species.
249	
250	
251	Acknowledgements
252	
253	
254	We acknowledge A. Nanami at the Research Center for Subtropical Fisheries, Seikai

255	National Fisheries Research Institute, Fisheries Research Agency, for his help in
256	collecting wild white-streaked grouper for broodstock. We thank T. Takagi at the
257	Faculty of Agriculture, Kinki University, R. Kawabe and S. Furukawa at the Institute for
258	East China Sea Research, Nagasaki University for their advice on the preliminary
259	experiment. We are also grateful to E. Forsgren and two anonymous reviewers for their
260	valuable comments. This research was supported by a Grant-in-Aid for Scientific
261	Research (B) to K. S. (grant no. 23380113) from the Japan Society for the Promotion of
262	Science.
263	
264	
265	References
266	
267	
268	
269	
270	
271	
272	Almany, G. R., Berumen, M. L., Thorrold, S. R., Planes, S. & Jones, G. P. (2007). Local
273	replenishment of coral reef fish populations in a marine reserve. Science 316 , 742-744.
274	Claisse, J. T., Clark, T. B., Schumacher, B. D., McTee, S. A., Bushnell, M. E., Callan, C. K.,
275	Laidley, C. W. & Parrish, J. D. (2011). Conventional tagging and acoustic telemetry of a
276	small surgeonfish, Zebrasoma flavescens, in a structurally complex coral reef environment.
277	Environmental Biology of Fishes 91, 185-201.
278	Colin, P. L., Koenig, C. C. & Laroche, W. A. (1996). Development from eggs to juvenile of the
279	red grouper (Epinephelus morio) (Pisces: Serranidae) in the laboratory. In Biology, fisheries

- 280 and culture of tropical groupers and snappers (Arreguin-Sanchez, F., Munro, J. L., Balgos, M.
- 281 C. & Pauly, D., eds.), pp. 399-414. Manilla, Phillippines: ICLARM.
- 282 Craig, M. T. (2007). Preliminary observations on the life history of the white-streaked 283 grouper, *Epinephelus ongus*, from Okinawa, Japan. *Ichthyological Research* **54**, 81-84.
- 284 Fisher, R. (2005). Swimming speeds of larval coral reef fishes: Impacts on self-recruitment
- and dispersal. *Marine Ecology Progress Series* **285**, 223-232.
- Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. (2007). Smelling
 home can prevent dispersal of reef fish larvae. *Proceedings of the National Academy of*
- 288 Sciences of the United States of America **104**, 858-863.
- 289 Grafen, A. & Hails, R. (2002). Modern statistics for the life sciences. Oxford: Oxford
 290 University Press.
- 291 Hamner, W. M. & Largier, J. L. (2012). Oceanography of the planktonic stages of aggregation
- 292 spawning reef fishes. In Reef fish spawning aggregations: biology, research and
- 293 management (Sadovy de Mitcheson, Y. & Colin, P. L., eds.), pp. 159-190. B. V.: Springer
 294 Science+Business Media.
- Hirata, Y., Hamasaki, K., Teruya, K. & Mushiake, K. (2009). Ontogenetic changes of body
 density of larvae and juveniles in seven-band grouper *Epinephelus septemfasciatus* and kelp
 grouper *Epinephelus bruneus*. Nippon Suisan Gakkaishi **75**, 652-660.
- 298 Jones, F. R. H. (1952). The swimbladder and the vertical movements of teleostean fishes. II.
- 299 The restriction to rapid and slow movements. *Journal of Experimental Biology* **29**, 94-109.
- Jones, G. P., Planes, S. & Thorrold, S. R. (2005). Coral reef fish larvae settle close to home. *Current Biology* 15, 1314-1318.
- 302 Kawabata, Y., Okuyama, J., Mitamura, H., Asami, K., Yoseda, K. & Arai, N. (2007).
- 303 Post-release movement and diel activity patterns of hatchery-reared and wild black-spot
- 304 tuskfish Choerodon schoenleinii determined by ultrasonic telemetry. Fisheries Science 73,
- $305 \quad 1147 \cdot 1154.$
- 306 Kawabe, K. & Kohno, H. (2009). Morphological development of larval and juvenile blacktip
- 307 grouper, *Epinephelus fasciatus*. *Fisheries Science* **75**, 1239-1251.
- 308 Kusaka, A., Yamaoka, K., Yamada, T., Abe, M. & Kinoshita, I. (2001). Early development of
- 309 dorsal and pelvic fins and their supports in hatchery-reared red-spotted grouper,
- 310 Epinephelus akaara (Perciformes: Serranidae). Ichthyological Research 48, 355-360.
- Lecchini, D., Shima, J., Banaigs, B. & Galzin, R. (2005). Larval sensory abilities and
 mechanisms of habitat selection of a coral reef fish during settlement. *Oecologia* 143,
 326-334.
- Leis, J. M. (1991). The pelagic stage of reef fishes: The larval biology of coral reef fishes. In
- 315 The Eclogy of Fishes on Coral Reefs (Sale, P. F., ed.), pp. 183-230. San Diego, CA: Academic

- 316 Press.
- Leis, J. M. (2006). Are larvae of demersal fishes plankton or nekton? Advances in Marine
 Biology 51, 57-141.
- 319 Leis, J. M. (2007). Behaviour as input for modelling dispersal of fish larvae: Behaviour,
- 320 biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography.
- 321 Marine Ecology Progress Series 347, 185-193.
- Leis, J. M. & Carson-Ewart, B. M. (1999). *In situ* swimming and settlement behaviour of
 larvae of an Indo-Pacific coral-reef fish, the coral trout *Plectropomus leopardus* (Pisces:
 Serranidae). *Marine Biology* 134, 51-64.
- 325 Leis, J. M., Hay, A. C. & Howarth, G. J. (2009). Ontogeny of *in situ* behaviours relevant to
- dispersal and population connectivity in larvae of coral-reef fishes. *Marine Ecology Progress Series* 379, 163-179.
- 328 Leis, J. M. & McCormick, M. I. (2002). The biology, behavior, and ecology of the pelagic,
- larval stage of coral reef fishes. In *Coral Reef Fishes. Dynamics and diversity in a complex ecosystem* (Sale, P. F., ed.), pp. 171-199. San Diego, CA: Academic Press.
- Mchenry, M. J. & Lauder, G. V. (2006). Ontogeny of form and function: locomotor morphology
 and drag in zebrafish (*Danio rerio*). *Journal of Morphology* 1109, 1099-1109.
- Meyer, C. G., Papastamatiou, Y. P. & Clark, T. B. (2010). Differential movement patterns
 and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. *Marine Biology* 157, 1499-1511.
- Morgan, S. G. (1989). Adaptive significance of spination in estuarine crab zoeae. *Ecology* 70,
 464-482.
- 338 Nanami, A., Kawabata, Y., Sato, T., Yamaguchi, T., Kawabe, R. & Soyano, K. (2014).
- 339 Spawning migration and returning behavior of white-streaked grouper *Epinephelus ongus*
- 340 determined by acoustic telemetry. *Marine Biology* **161**, 669-680.
- 341 Nanami, A., Sato, T., Ohta, I., Akita, Y. & Suzuki, N. (2013a). Preliminary observations of
- spawning behavior of white-streaked grouper (*Epinephelus ongus*) in an Okinawan coral
 reef. *Ichthyological Research* 60, 380-385.
- 344 Nanami, A., Sato, T., Takebe, T., Teruya, K. & Soyano, K. (2013b). Microhabitat association
- 345 in white-streaked grouper *Epinephelus ongus*: Importance of *Acropora* spp. *Marine Biology*
- **160**, 1511-1517.
- 347 Ohta, I. & Ebisawa, A. (2009). Relationship of forming spawning aggregation of the
- 348 white-streaked grouper, *Epinephelus ongus*, with lunar periodicity and water temperature
- 349 in Yaeyama Islands. Annual Report of Okinawa Prefectural Fisheries and Ocean Research
- 350 *Center* **70**, 28-35.
- 351 Paris, C. B., Chérubin, L. M. & Cowen, R. K. (2007). Surfing, spinning, or diving from reef to

- 352 reef: Effects on population connectivity. *Marine Ecology Progress Series* 347, 285-300.
- 353 Planes, S., Jones, G. P. & Thorrold, S. R. (2009). Larval dispersal connects fish populations
- 354 in a network of marine protected areas. Proceedings of the National Academy of Sciences of
- 355 the United States of America 106, 5693-5697.
- 356 Popinet, S. (2003). Gerris: A tree-based adaptive solver for the incompressible Euler
- approximation and the second s
- 358 Przybilla, A., Kunze, S., Rudert, A., Bleckmann, H. & Brücker, C. (2010). Entraining in
- trout: A behavioural and hydrodynamic analysis. *Journal of Experimental Biology* 213,
 2976-2986.
- 361 Putman, N. F., Verley, P., Shay, T. J. & Lohmann, K. J. (2012). Simulating transoceanic
- 362 migrations of young loggerhead sea turtles: Merging magnetic navigation behavior with an
- 363 ocean circulation model. *Journal of Experimental Biology* **215**, 1863-1870.
- 364 Russo, T., Pulcini, D., Bruner, E. & Cataudella, S. (2009). Shape and size variation: Growth
- and development of the dusky grouper (*Epinephelus marginatus* Lowe, 1834). Journal of
 Morphology 270, 83-96.
- 367 Sale, P. F., Cowen, R. K., Danilowicz, B. S., Jones, G. P., Kritzer, J. P., Lindeman, K. C.,
- Planes, S., Polunin, N. V. C., Russ, G. R., Sadovy, Y. J. & Steneck, R. S. (2005). Critical
 science gaps impede use of no-take fishery reserves. *Trends in Ecology & Evolution* 20,
 74-80.
- Simpson, S. D., Meekan, M., Montgomery, J., McCauley, R. & Jeffs, A. (2005). Homeward
 sound. *Science* 308, 221-221.
- Simpson, S. D., Piercy, J. J. B., King, J. & Codling, E. A. (2013). Modelling larval dispersal
 and behaviour of coral reef fishes. *Ecological Complexity* 16, 68-76.
- 375 Soyano, K., Sakakura, Y. & Hagiwara, A. (2008). Reproduction and larviculture of
- 376 seven-band grouper, Epinephelus septemfasciatus, in Japan. In The aquaculture of groupers
- 377 (Liao, I. C. & Leano, E. M., eds.), pp. 1-27. Keelung, Taiwan: Asian Fisheries Society, World
- 378 Aquaculture Society, the Fisheries Society of Taiwan, and National Taiwan Ocean379 University.
- 380 Sponaugle, S., Paris, C., Walter, K. D., Kourafalou, V. & D'Alessandro, E. (2012). Observed
- and modeled larval settlement of a reef fish to the Florida Keys. *Marine Ecology Progress*
- 382 Series **453**, 201-212.
- Takahashi, K. & Be, A. W. H. (1984). Planktonic foraminifera: factors controlling sinking
 speeds. *Deep Sea Research Part A. Oceanographic Research Papers* 31, 1477-1500.
- 385 Takebe, T., Koyabashi, M., Asami, K., Sato, T., Hirai, N., Okuzawa, K. & Sakakura, Y. (2011).
- 386 Sinking syndrome of larvae of the leopard coral grouper, *Plectropomus leopardus*, and its
- 387 control for large-scale larviculture. *Journal of Fisheries Technology* **3**, 107-114.

Zeller, D. C. (1997). Home range and activity patterns of the coral trout *Plectropomus leopardus* (Serranidae). *Marine Ecology Progress Series* 154, 65-77.

393 Figure captions

394

Figure 1. The spine length and the ratio of the spine length to the total length, in relation to the total length in *Epinephelus ongus*. (a) Dorsal spine length; (b) (Dorsal spine length) (total length)⁻¹; (c) Pelvic spine length; (d) (Pelvic spine length) (total length)⁻¹.

Figure 2. The spine posture (extended or retracted) and body orientation of *Epinephelus ongus* larvae in relation to the flow (facing upstream or downstream) used in the computational fluid dynamics analysis. The mean angles of the spines in relation to the anteroposterior axis, determined by the aquarium experiment, were used to fix the postures of the spines in each behavioural mode (28.84 ° and 20.35 ° for dorsal and pelvic spines during the passive transport, and 2.59 ° and 0.32 ° for dorsal and pelvic spines during the swimming, respectively).

	Upstream	Downstream
Extended (passive transport)		
Retracted (swimming)		

409

Figure 3. Comparisons of the drag coefficient (C_d) of *Epinephelus ongus* larvae determined by the computational fluid dynamics (CFD) analysis; (a) time series of C_d for larvae with spines extended (upper) and retracted (lower); and (b) mean $C_d \pm 95$ % confident intervals for larvae with spines extended (\circ) and retracted (\Box) while facing either downstream (left) or upstream (right).

