
Plankton Benthos Res 10(1): 1–10, 2015

Potential contribution of microalgal intracellular 
phosphorus to phosphorus distribution in tidal flat 
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Abstract: Phosphorus (P) supplies from the sediment are important when evaluating the impacts of nutrient dy-
namics on the ecosystem. Many studies have reported P dynamics based on gradients of pore water (PW)-phosphate 
(PO4

3－) concentrations at the sediment–water interface and iron-related abiotic reactions in response to redox condi-
tions. However, the aim of the present study is to evaluate the contributions of intracellular (IC)-P and marine organ-
ism-mediated reactions to P-dynamics under variable environmental conditions. The focus of this study is the inter-
tidal mudflat habitat of the innermost part of Ariake Bay, Kyushu, Japan, during winter. The vertical distribution of 
several forms of P fraction [i.e. PW- and IC-dissolved inorganic/organic-P (DIP/DOP), and particulate inorganic/or-
ganic-P (PIP/POP)], the number of microalgae and bacteria, and chlorophyll a concentrations in the sediment were 
measured. The results obtained revealed that the IC-P pool, especially IC-DOP, accounted for 76% of the total dis-
solved P in the surface sediment layer, mainly associated with the microphytobenthos. Additionally, phytoplankton, 
which comprised more than 60% of the surface microalgae in tidal-flat sediments, are considered to carry river-de-
rived-P to the intertidal flats via inner bay-specific physical movements and disturbances. Incubation experiments on 
mud sediment under oxic/anoxic conditions suggest that dissolved P fluxes between the IC pool and PW occur ac-
tively in response to redox conditions, according to the balance between microalgal uptake and bacterial degradation. 
These results indicate that evaluation of the IC-P pool is indispensable to understanding P cycling in intertidal mud-
flats, and that microalgae could play important roles not only as food sources, but also as P reservoirs and sources of 
PO4

3－.
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Introduction

The high productivity of benthic microalgae in intertidal 
flats supports the biomass of a variety of benthic organ-
isms, such as filter feeders, polychaetes, and mudskippers, 
and therefore functions to convey fixed nutrients to higher 
trophic level of organisms as organic matter (Ichimi et al. 
2008a, Yoshino et al. 2012). Although nitrogen (N), phos-
phorus (P), and silicates (Si) are indispensable elements for 

planktonic and benthic algal growth, P fluxes from the 
sediment are very important, especially in intertidal flat 
areas, which are regularly subjected to an influx of N-rich 
river water (Yamamoto et al. 1998, Hayami et al. 2009, Ko-
riyama et al. 2009). Generally, the biological oxidation of 
organic-P to phosphate (PO4

3－) in pore water (PW), and its 
subsequent diffusion, is a dominant process releasing PO4

3－ 

 to overlying water under oxic conditions. Additionally, the 
abiotic reaction of PO4

3－ isolation from its iron-bound form 
is reported to be important under anoxic conditions 
(Boström et al. 1988, Rozan et al. 2002, Koriyama et al. 
2009).

In addition to the P fraction (i.e. PW-PO4
3－ and the iron-

bound form), recent studies have shown the potential con-
tribution of the intracellular (IC) nutrient pool to nutrient 
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dynamics, mediated by a variety of organisms in marine 
sediments. For example, the high concentration of IC-
nitrate (NO3

－) in sulfur bacteria and Foraminifera is used 
as a substrate for respiration (i.e. denitrification) in anoxic 
environments, suggesting an important role in global N cy-
cling (Sayama 2001, Risgaard-Petersen et al. 2006).

The IC-NO3
－ and PO4

3－ pools in the microphytobenthos 
of intertidal flats vary seasonally and potentially influence 
both microphytobenthic primary production and sedi-
ment–water fluxes (García-Robledo et al. 2010). Further-
more, polyphosphate accumulation in cells has been ob-
served in marine phytoplankton (Diaz et al. 2008) and in 
sulfide-oxidizing bacteria in coastal upwelling regions 
(Goldhammer et al. 2010). However, polyphosphate-accu-
mulating organisms (PAOs) in wastewater plants store P in 
the form of polyphosphate under oxic conditions, and re-
lease PO4

3－ to the extracellular environment under anoxic 
conditions (e.g. Streichan et al. 1990).

In marine environments, especially in the thin surface 
layers of muddy intertidal flats, similar redox conditions 
may occur in response to tidal oscillations because surface 
sediments are exposed to the air at low tide. However, at 
flood and ebb tide, increased physical disturbance expands 
the depth of the oxic layer, and during high tide, resus-
pended fine sediments reduce light penetration, reducing 
photosynthetic activity and allowing the rate of respiratory 
decomposition to predominate (Koh et al. 2006, Sayama 
2007). However, the proportion of each P fraction [i.e. 
PW-P, IC-P, particulate organic P (POP), and particulate 
inorganic P (PIP)] in total P at the sediment–water inter-
face and PAOs-like dynamics in response to redox condi-
tions remain to be studied in the intertidal mudflats that 
broadly occupy innermost bays.

Therefore, the present study aims to investigate (1) the 
size of the IC-P pool compared with other P fractions, and 

(2) the contribution of biological processes, through the 
IC-P pool, to P-dynamics in the intertidal mudflats of the 
innermost region of Ariake Bay, where redox conditions 
dramatically change due to tidal movements and the for-
mation of hypoxic water (Hamada et al. 2008, Tokunaga et 
al. 2009). Both oxidized and reduced layers can exist in 
surface mudflat sediments, especially in winter (see Dis-
cussion), so the focus of this study is on winter mecha-
nisms.

Materials and Methods

Study site

Ariake Bay is a semi-closed bay located on the western 
shore of Kyushu, Japan (Fig. 1). Due to a predominant anti-
clockwise current at the surface, especially during spring 
tides, fine silt from the Chikugo River is carried to its 
western side (Yamamoto et al. 2006, Hamada & Kyozuka 
2006). Therefore a well-developed intertidal zone exists 
around the Chikugo River mouth and in the northwest area 
of the bay (e.g. Nanaura mudflat), enhanced by the very 
high tidal difference in Ariake Bay, which reaches a maxi-
mum of 5.5 m. The integrated monthly daylight during 
winter (Dec.–Feb.), averaged over 1986–2010, is about 
122.7 h, two-thirds of the summer value (Japan Meteoro-
logical Agency). The mean and lowest air temperatures 
during winter between 1981–2010 are 5.8°C and －6.9°C, 
respectively.

Samples and chemical analyses

Sediment core samples for nutrients and for Chlorophyll 
a (Chl a) analyses were collected from the Nanaura mud-
flat using acrylic tubes of 88- and 55-mm diameter, respec-
tively, during the aerial exposure period during low tides 

Fig. 1. Sediment sampling sites in the innermost part of the Ariake Bay. Arrows indicate predominant residual currents at 
spring tides (from Hamada & Kyozuka 2006).
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in February 2010 and 2011. Sediment samples from the 
surface to a depth of 10 mm were carefully collected with 
a small plastic spoon at intervals of 2 mm, while the sam-
ples below 10 mm were sliced at 5–10 mm intervals as fol-
lows: 15, 20, 30, 40 and 50 mm. Outer portions of the 
sliced sediment disks were discarded because the sediment 
attached to the inner wall of the tube is generally subject to 
vertical contamination. Triplicate sediment samples were 
separately processed in 2011; whereas in 2010, each layer 
of triplicate core sediments was mixed, and the results of a 
single analysis were considered to represent a mean value.

Sediment Chl a was extracted with N,N-dimethylfor-
mamide at －20°C in the dark and analyzed using a spec-
tral photometer (U-1100, Hitachi Ltd., Tokyo, Japan), fol-
lowing the method described by Porra et al. (1989). A por-
tion of the sediment samples collected in 2010 was fixed by 
neutral formalin, and then microalgal cells alive at fixation 
(those with well formed chloroplasts) were identified and 
counted by Oceanic Planning Co. Ltd. (Okinawa, Japan).

Sediment samples used for bacterial cell counts were 
fixed in glutaraldehyde at a final concentration of 2% (v/v). 
Samples were subjected to ultrasonication for 5 s five times 
and then centrifuged at 1600×g for 30 s. Bacterial cells in 
the supernatant were collected on a 0.2-μm pore size black 
Nuclepore filter (K020N047A, ADVANTEC, Tokyo, Japan), 
staining with 4′,6′-diamidino-2-phenylindole (DAPI) and 
counted using epifluorescence microscopy. Since microal-
gal cell contents are released by freezing, IC-P was defined 
as the P fraction, increase after the freeze–thaw process, as 
previously described by Sayama (2001). The IC-P fraction 
was subdivided into IC-PO4

3－ and IC-DOP fractions (see 
below).

To determine each form of the P fraction in the sediment 
including PW, sediment samples were centrifuged at 
700×g for 10 min. The supernatants were filtered with 0.2-
μm pore size cellulose acetate filters (25CS020AN, AD-
VANTEC) and frozen at －20°C until analysis for PW-PO4

3－ 

and PW-Total Dissolved P (TDP). For IC-P analysis, the re-
maining sediment was suspended in 3－10 mL of Milli-Q 
water, vortexed thoroughly, frozen at －20°C, and then 
thawed and immediately centrifuged. A portion of the su-
pernatants was removed, filtered and frozen (as above) for 
IC-PO4

3－ and IC-TDP analysis. The remaining sediment 
was dried in an oven at 70°C to estimate dry weight.

The PO4
3－ concentration in both supernatants for PW-

PO4
3－ and IC-P analysis were determined by the standard 

Molybdenum blue method (Koroleff 1983) using an auto-
analyzer (AACS 4, BLTEC, Osaka, Japan). The total 
amount of IC-PO4

3－ was calculated from the following 
equation:

IC-PO4
3－ (mol-P dry-g－1) 

＝  {[PO4
3－ (SU)]×(added MilliQ (ml)＋resid PW (ml)) 

－[PO4
3－ (PW)]×resid PW (ml)}/sediment dry weight

where [PO4
3－ (PW)] is the PO4

3－ concentration in PW;  

[PO4
3－ (SU)] is the PO4

3－ concentration in supernatant after 
thawing of frozen samples; resid PW (ml) is the residual PW 
calculated as the difference between the wet sediment 
weight after centrifuging and the dry weight.

For analysis of total particulate P (TPP), dried sediment 
samples were combusted at 550°C and TPP was extracted 
as PO4

3－ using 1N-HCl at room temperature for 24 h. PIP 
was defined as the fraction extracted as PO4

3－ from the in-
tact dried sediment with 1N-HCl at room temperature for 
24 h. The PO4

3－ concentration was determined using an au-
toanalyzer as described above, with standard samples pro-
cessed in the same manner for calibration. POP was calcu-
lated as the difference between TPP and PIP.

Dissolved organic P (DOP) concentrations in the PW 
and IC pool were determined as the difference between 
PO4

3－ and TDP in each fraction. TDP was processed ac-
cording to the persulfate oxidation method (Ridal & 
Moore 1990). Briefly, the PW or extracted fraction after 
the freeze–thaw process was autoclaved at 125°C for 4 h 
with the addition of potassium persulfate to convert TDP 
to PO4

3－. Excess free chlorine was removed by the addition 
of ascorbic acid (following Hansen and Koroleff 1999) and 
then PO4

3－ was measured colorimetrically using an autoan-
alyzer as described above.

Incubation design

To evaluate P-dynamics under oxic/anoxic conditions, 
duplicate sediment samples collected from the surface of 
Nanaura mudflat in April 2011 (Fig. 1) were incubated 
under oxic/anoxic cycles at 12-h intervals, controlled with 
air or N2 gas bubbling, respectively. Sediment (100 g) was 
resuspended in 1 L of filtered seawater containing final 
concentrations of 100 μM PO4

3－ and glucose 500 mgC L－1 
and placed in continuous darkness at 20°C. At the end of 
each oxic/anoxic interval, samples for PW-PO4

3－, POP, and 
PIP analyses were collected, processed, and analyzed as 
described above.

Visualization of polyphosphate accumulation

To characterize P compounds in the IC pool of benthic 
organisms, surface sediment samples were collected from 
Nanaura tidal flat in February 2012, fixed in glutaralde-
hyde (final concentration 2% v/v), and stained with DAPI. 
With a high concentration of DAPI, blue and yellow fluo-
rescence under UV were used as indicators of DNA and 
polyphosphate, respectively (Tijssen et al. 1982). Some 
benthic microalgae (e.g. Gyrosigma sp.) and phytoplankton 
(e.g. Skeletonema sp. and Thalassiosira sp.), often found in 
Nanaura mudflat, were selected and subjected to fluores-
cence microscopic observation (BX51, Olympus, Tokyo, 
Japan) using a DAPI filer set (excitation 330–385 nm; 
emission ＞420 nm).
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Results and Discussion

Contribution of benthic and planktonic microalgae to 
winter POP dynamics

The total number of microalgae in sediment decreased 
with depth (Fig. 2a), from 7.8×105 cells wet-g－1 at the sur-
face to 2.1×104 cells wet-g－1 at depths of 4–5 cm. The ver-
tical profile of Chl a also showed that Chl a decreased with 
depth, from 38.0 to 8.4 μg wet-g－1. Although a similar de-
creasing trend was observed for the vertical profile of Chl 
a in the following year, bacterial cell abundance was al-
most constant, irrespective of depth (Fig. 2b). The sedi-
ment POP concentration decreased with depth and showed 
a similar trend to Chl a (i.e. 3.4±0.1 μmol-P wet-g－1 in the 
top 2 mm to 2.2±0.2 μmol-P wet-g－1 at depths of 4–5 cm), 
whereas the PIP concentration increased with depth 
(Fig. 3). These results suggest that the high concentration 
of POP in surface sediments could be attributable to mi-
croalgae and/or associated bacteria. Analysis of microalgal 
composition in the sediment showed that more than 60% of 
all microalgae were composed of four major planktonic 
species: Cyclotella striata, Skeletonema costatum, Thalas-
siosira spp., and Thalassionema nitzschioides (Fig. 4). 
Huettel and Rusch (2000) reported that, in permeable 
sandy sediment with small mounds and ripples, water cur-
rents carry phytoplankton to the subsurface layer. In the 
Nanaura mudflat, however, planktonic microalgae seemed 

to have migrated into the subsurface layer as a result of 
physical disturbance (i.e. resuspension and deposition). 
Further, Koh et al. (2006) reported that microalgae and 
suspended particulate matter are transported by flood-ebb 
tides, especially during spring tides. Since these microal-
gae still had healthy chloroplasts, physical disturbance and 
horizontal transportation may occur frequently.

Park et al. (2012) reported that more than half the micro-
algae in the Nanaura mudflat in summer were benthic. 
However, benthic microalgae (e.g. Navicula spp. and 
Nitzschia spp.) were minor species in the present winter 
study. Although river water inputs and associated nutrient 
fluxes are smaller in winter than in summer (Ishitani et al. 
2012), blooms of major planktonic microalgae (e.g. Skele-
tonema spp.) occur in Ariake Bay even during winter 
(Matsubara et al. 2011). In the innermost areas of Ariake 
Bay, the surface residual current flows anticlockwise and 
carries particulate matter, including river-derived fine sed-
iment and phytoplankton. This occurs most often during 
spring tides, with current speeds weakening at neap tide to 
deposit transported particulate matter onto the sediment in 
northwestern areas of the bay (Hamada & Kyozuka 2006, 
Yanagi & Shimomura 2006, Yamamoto et al. 2006). Phy-
toplankton, the growth of which depends on nutrients sup-
plied by the Chikugo River, is used as a food source by fish 
larvae in the innermost areas of Ariake Bay (Suzuki et al. 
2007). Moreover, the results in this study indicate that 
planktonic microalgae may be key agents absorbing nutri-

Fig. 2. Vertical profiles of the total cell number of (a) microalgae and (b) bacteria in the sediment, plotted with chlorophyll a 
concentration. For microalgae, each layer of triplicate core sediments collected in February 2010 was mixed, and the results of 
single analysis were considered to represent an average value. For bacteria, triplicate core sediments collected in February 2011 
were separately processed, and error bars indicate the standard deviation among samples.
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ents around the mouth of the river, including PO4
3－, and 

transporting them to intertidal mudflats, although the ac-
tual contribution of larger benthic algae (e.g. Gyrosigma 
sp.) to nutrient dynamics could be larger than an evaluation 
based on cell numbers.

Contribution of IC fractions to the dissolved-P reser-
voir of surface sediment

PW-PO4
3－ concentrations in surface sediment were low 

(0.4±0.2 μM), but increased up to 11.0±1.6 μM with depth 
(Fig. 5a); while (in the same mudflat) they are known to be 
high in summer (29.4 μM, Tokunaga et al. 2006; 7.1 μM, 
A. Yamaguchi unpubl. data). A similar seasonal trend (i.e. 
high PW-PO4

3－ in summer, while low in winter) has been 
observed in other intertidal flats (Magni & Montani 2006). 
However, the concentration of PW-DOP ranged from 
0.3±0.5 to 2.1±1.2 μM, but no significant vertical differ-
ence was noted. Both IC-PO4

3－ and IC-DOP concentrations 
decreased with depth: from 40.8±20.9 nmol-P wet-g－1 at 
the sediment surface to 3.8±1.6 nmol-P wet-g－1 at depths 
of 4–5 cm for IC-PO4

3－; and from 129.5±41.7 to 10.6±1.9 
nmol-P wet-g－1 for IC-DOP (Fig. 5b). Since the vertical 
profile of IC-P concentrations followed a trend similar to 
that of the Chl a distribution and the POP profile (Figs. 2b 
& 3), IC-P concentrations in the sediment may be derived 
mainly from microalgal communities. Miyata et al. (1986) 
reported that Skeletonema costatum, grown in a chemostat 
system using media with various N:P ratios, preserved a 
high concentration of intracellular phosphorus (25–
75 mM). The high concentration of IC-P in microalgae 

may explain the higher concentration of the P fraction cat-
egorized into IC-P observed in surface sediment in the 
present study (Fig. 5b). García-Robledo et al. (2010) re-
ported a positive relationship between the microalgae of 
intertidal flats and intracellular nutrients in sediment, and 
a potential contribution of intracellular nutrients to pri-
mary production. Koh et al. (2007) reported that the high-
est Chl a concentrations and rates of Chl a increase in sur-
face sediment occur in winter in the Nanaura intertidal 
mudflat. Seasonal fluctuation of primary production by mi-
croalgae in the present study area (Koh et al. 2007) may be 
partly related to the seasonal change in IC-P concentration.

To evaluate the reservoir size of each mobile P fraction, 
vertical profiles of PW-PO4

3－ and DOP concentration (Fig. 
5a) were converted (nmol-P wet-g－1) via multiplying by the 
PW volume, calculated based on water content in the sedi-
ment (i.e. 70%–80%; Fig. 6). IC-DOP was the most pre-
dominant mobile P fraction in the sediment (76% in the top 
2-mm layer) and IC-PO4

3－ showed the second largest frac-
tion; while PW-DOP and PW-PO4

3－ were only minor frac-
tions, especially in surface sediments (Fig. 6). However, at 
depths of 40–50 mm, IC-DOP and IC-PO4

3－ accounted for 
47% and 17% of the P fraction, respectively, while the PW-
DOP and PW-PO4

3－ fractions increased up to 4% and 32%, 
respectively. The typical Carbon (C):Chl ratio of phyto-
plankton (C/Chl＝15–55, reported by Sathyendranath et al. 
2009) and the mean C:P ratio (106, reported by Redfield 
1958) were temporarily used to confirm the validity of the 
IC-P fraction size estimated in the present study. The re-
sulting potential P quota for the microalgal cells in the top 

Fig. 3. Vertical profiles of particulate organic phosphorus 
(POP) and particulate inorganic phosphorus (PIP) in the sedi-
ment. Samples were collected and processed in the same manner 
as the samples for the bacterial cell number and chlorophyll a 
analyses shown in Fig. 2b.

Fig. 4. Vertical distribution of diatom species and their relative 
abundance in the sediment. The sediment samples were parti-
tioned from the sediment used for cell number counting (Fig. 2a). 
The cells with unhealthy chloroplasts (i.e. empty, shrunken, or 
discolored) were considered dead and eliminated from counts.
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2 mm of sediment ranged from 462 to 1694 nmol-P wet-
g－1. Since the sum of the IC-P fraction in the same surface 
layer (171.5 nmol-P wet-g－1) accounted for about 10% or 
40% of the expected P quota for microalgae, it does not 
contradict the suggestion proposed here that IC-P mainly 
originates from microalgal cells.

Fluorescent staining by DAPI further indicated that mi-
croalgae in intertidal mud flats actually accumulate poly-
phosphate in their cells (Fig. 7). Diaz et al. (2008) reported 

that a fraction of the total P was accumulated as polyphos-
phate in plankton cells (7% under natural conditions and 
20%–40% under P-replete incubation); thus, it is possible 
that polyphosphate is an important form of microalgal IC-
DOP in intertidal mudflats. DOP is easily available to pri-
mary producers and bacteria possessing hydrolase en-
zymes such as alkaline phosphatase (Yamaguchi et al. 
2005, Luo et al. 2009), unlike POP (e.g. detritus) or PIP 
(e.g. apatite). Therefore, IC-DOP may be an important P 
fraction in surface sediments. A high concentration of in-
tracellular P and polyphosphate potentially elevates dis-
solved P concentrations around cells due to exudation, so it 
is possible that P loading in tidal mudflat sediments is re-
duced by the promotion of P sequestration as a form of ap-
atite, which is not easily used by marine organisms (Diaz 
et al. 2008, Goldhammer et al. 2010).

Organism-mediated P fluxes between PW and the IC 
pool under redox conditions

Results of the incubation experiments showed clear re-
sponses to oxic/anoxic cycling. PW-PO4

3－ concentrations 
decreased under oxic conditions and increased under an-
oxic conditions, while POP concentrations showed the op-
posite trend (Fig. 8). PIP should have fluctuated with PW-
PO4

3－ if the major reaction was abiotic (i.e. PO4
3－ absor-

bance as its iron-bound form under oxic conditions and 
isolation under anoxic conditions). However, PIP concen-
trations showed no specific trend in response to oxic/an-
oxic cycling, probably due to incomplete anoxic condi-
tions. Therefore, the fluctuations of POP and PW-PO4

3－ in 
response to mild redox conditions seem to be mainly 
caused by biological activity, resulting from the balance 

Fig. 6. Vertical profiles of intracellular-dissolved organic 
phosphorus (DOP) and -phosphate (PO4

3－) pools, and pore water-
DOP and -PO4

3－ pools in the sediment.

Fig. 5. Vertical profiles of (a) pore water-phosphate (PO4
3－) and dissolved organic phosphorus (DOP), (b) intracellular-PO4

3－, 
and DOP concentrations in the sediment. Samples were collected and processed in the same manner as the samples for the bac-
terial cell number and chlorophyll a analyses shown in Fig. 2b.
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between biological uptake and decomposition or cell lysis. 
Although many studies have reported that microalgae take 
up nutrients even under dark conditions (e.g. Stross & 
Permrick 1974), whether or not activity slows under anoxic 
conditions is uncertain. However, a variety of bacteria can 
accommodate their activities to either oxic or anoxic con-
ditions (He et al. 2010, Brock & Schulz-Vogt 2011). There-
fore, the decomposition of organic P and the release of IC-
PO4

3－ to PW associated with viral cell lysis or sloppy feed-
ing by grazers can occur under both oxic and anoxic condi-
tions. It is therefore assumed here that microalgae and bac-
teria assimilated PO4

3－ from the water column under oxic 
conditions, but that the degradation rate of organic matter 
and cell lysis exceeded the uptake rate under anoxic condi-
tions.

Oxygen evolution in photosynthesis can occur only in 
the thin surface layer because light penetration into mud 
sediment with a median particle diameter of 10 μm is esti-
mated to be limited to within 0.3 mm of the surface 
(Ichimi et al. 2008b, Li et al. 2009). In Nanaura intertidal 
mudflat, micro-level vertical profiling of dissolved oxygen 
(DO) concentrations in July and October reveal that the 

mean depth of the oxic layer was limited to 2 or 3 mm 
from the surface (Sayama 2007), probably due to the limi-
tations of photosynthetic activity and physical O2 diffu-
sion. Furthermore, the oxic/anoxic interface of the sedi-
ment often fluctuates due to sediment resuspension and 
sedimentation caused by dynamic tidal cycles (Sayama 
2007). In the present study, however, the vertical profile of 
IC-P concentrations showed that, within 4 mm of the sur-
face, IC-PO4

3－ decreased by 70% and IC-DOP by 50% 
(Fig. 6). Considering this, together with the results of the 
incubation experiments, sedimentation and subsequent mi-
gration into the subsurface layer may subject microalgae 
(which take up nutrients under oxic conditions) to bacterial 
decomposition leading to IC-P release into PW. It is not 
clear whether or not abiotic dynamics (e.g. nutrient absorp-
tion and/or release from iron-bound compounds, and phys-
ical disturbance) contributed to P dynamics in the present 
study, but oxic/anoxic conditions could also promote P up-
take and release by organisms. Further, these processes 
may also exist around the subtidal area where hypoxia 
often occurs in bottom waters during summer (Tokunaga 
et al. 2009).

Fig. 7. Microscopic image of DAPI-stained cells of (a) Gyrosigma sp., (b) Skeltonema sp., and (c) Thalassiosira sp. The phy-
toplankton cells were picked out of the surface sediment at the intertidal mudflat. Bright yellow color indicates polyphosphate.
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In summer, when high temperatures enhance bacterial 
respiratory activity and the total benthic algal productivity 
of surface sediments decreases (Koh et al. 2007), probably 
due to photoinhibition and predation by mudskippers, the 
degradation rate should increase compared to photosyn-
thetic productivity. As a result, the reduced layer reaches 
the surface sediment and PW-PO4

3－ concentrations are 
maintained at a higher level (Koriyama et al. 2009). There-
fore, in summer, the PW-PO4

3－ diffusion flux into overly-
ing water probably becomes the predominant P dynamic at 
the sediment–water interface. However, in winter, when 
bacterial activity is low, the oxidized zone expands by a 
few centimeters from the surface (Koriyama et al. 2009), 
the depth of which is also affected by physical distur-
bances. Therefore, the biological uptake/release of dis-

solved P in response to oxic/anoxic conditions can be im-
portant in P dynamics at the sediment–water interface, es-
pecially in winter. Additionally, because the temperature 
of the surface sediment drops below freezing during expo-
sure at low tide, especially at night in winter, cell disrup-
tion and the subsequent release of cytoplasmic components 
into the PW may play a role in P dynamics at the sedi-
ment–water interface.

Benthic microalgae in the tidal mudflats of Ariake Bay 
are important food sources for filter feeders (Yoshino et al. 
2012). In addition to their important role as sources of 
food, the planktonic and benthic microalgae may also be 
important as P reservoirs and sources of PO4

3－ on the tidal 
flats, where excess N is generally supplied from the river.
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