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Abstract: Background: Time series analysis is suitable for investigations of relatively direct and short-term
effects of exposures on outcomes. In environmental epidemiology studies, this method has been one of the
standard approaches to assess impacts of environmental factors on acute non-infectious diseases (e.g.
cardiovascular deaths), with conventionally generalized linear or additive models (GLM and GAM). However, the
same analysis practices are often observed with infectious diseases despite of the substantial differences from non-
infectious diseases that may result in analytical challenges. Methods: Following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines, systematic review was conducted to elucidate important issues
in assessing the associations between environmental factors and infectious diseases using time series analysis with
GLM and GAM. Published studies on the associations between weather factors and malaria, cholera, dengue, and
influenza were targeted. Findings: Our review raised issues regarding the estimation of susceptible population and
exposure lag times, the adequacy of seasonal adjustments, the presence of strong autocorrelations, and the lack of
a smaller observation time unit of outcomes (i.e. daily data). These concerns may be attributable to features
specific to infectious diseases, such as transmission among individuals and complicated causal mechanisms.
Conclusion: The consequence of not taking adequate measures to address these issues is distortion of the
appropriate risk quantifications of exposures factors. Future studies should pay careful attention to details and
examine alternative models or methods that improve studies using time series regression analysis for

environmental determinants of infectious diseases.
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INTRODUCTION

Time series regression analysis is one of the most
common methods practiced in environmental epidemiolo-
gy studies. Time series analysis usually follows one popu-
lation or community throughout the study period and
requires health outcome (dependent) and exposure (inde-
pendent) variables measured repeatedly over time and at
the fixed interval (e.g. on daily or weekly basis). In the
analysis, impacts of exposures on outcomes are evaluated
by comparing the changes over time in the rates of out-
come occurrences and the corresponding level of expo-
sures. Because within-one-community comparison does
not require the denominator data unless the targeted popu-
lation changes over time [1], the advantages of the analysis

is that individual level confounders and uncertainty of the
covered area for study are not considered as problems. In-
stead, time-varying covariates are considered important
confounding factors.

Time series analysis is typically suitable for investiga-
tions on relatively direct and short-term effects of expo-
sures. In environmental epidemiology studies, it has long
been applied to assess the impacts of air pollution and me-
teorological variability on acute non-infectious diseases
that are routinely collected in database, that is, deaths, hos-
pital admissions or visits [2]. Conventionally, generalized
linear models (GLMs) and generalized additive models
(GAMs) are the standard models for the analyses [1-3].

Though time series analysis in environmental epi-
demiology studies has been widely used for non-infectious
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diseases, it is also being used for infectious diseases in the
same manner. Infectious diseases are substantially different
from acute non-infectious diseases (e.g. cardiovascular
deaths, cardiac arrests, asthma attacks) in the nature of
causal mechanisms and the population at risk. More pre-
cisely, the distinct difference from non-infectious diseases
is that the incidence of infectious disease often dependent
on transmissions among individuals, the presence of inter-
mediators (e.g. vectors), and temporary or permanent im-
munity protection. These differences might consequently
result in statistical challenges when applying infectious
diseases to the conventional time series method, yet no
study to date has summarized the potential considerations.
The present article is a review of the literature for studies
in which associations between infectious disease and envi-
ronmental factors are evaluated with GLMs and GAMs,
aiming to characterize the potential methodological chal-
lenges involved in the analyses. Other time-series methods
developed from econometrics [4] and forecasting such as
autoregressive integrated moving average (ARIMA) are
not considered here because of the different modeling
structure and required model components. The literature
review was conducted following the guidelines of Prefer-
red Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) [5].

Time series regression model

Here we first introduce a brief overview of the time
series regression model. An outcome of interest is usually
a count of disease occurrence. The outcome counts and
measured exposure factors of interest should be in order of
time and at the fixed interval in dataset. The most common
regression model is Poisson regression model, also known
as GLM with Poisson distribution, which can be expressed
as follows:

Y~Poisson(|,)
log(u,) =Go+ Ox, + 2, m,z,, + f0).

where Y is the disease count at the time ¢, , is the inter-
cept, f(¢) denotes the smoothing function of time to remove
the effects of seasonality and long term trend, x, represents
the exposure factors, and 2z, denotes other time-
varying covariates [6]. Adjustments of seasonal variation
and long term trend in a model characterize the traditional
time series method and are required to differentiate their
effects from the short-term associations between exposures
factors and outcome of interest. For the seasonal variation
adjustments, alternatively, the time stratifications and trig-
onometric terms (Fourier) are widely used. Further details
about time series regression models are described else-
where [6].
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METHOD

Literature search strategy

Our aim was to summarize the characteristics of anal-
yses of studies using GLMs or GAMs to assess associa-
tions between infectious diseases and environmental
factors. We conducted systematic reviews on published ar-
ticles in the online electronic database of PubMed (http://
www.ncbi.nlm.nih.gov/pubmed). Since the exposure fac-
tors of our interest were particularly climate or weather, we
limited our review to the climate-sensitive infectious disea-
ses for targeted diseases in this study, that is, malaria, chol-
era, dengue, and influenza. In the search on PubMed, the
following key designated terms were included: “weather”
OR “climate” OR “temperature” OR “rainfall” OR “pre-
cipitation” OR “humidity” AND the name of each disease
(“malaria”, “dengue”, “cholera” and “influenza”). For fur-
ther specific identifications, studies were restricted to jour-
nal articles written in English and targeting human health
outcomes through the additional filter functions of “article
types”, “language” and “species” on PubMed. Publications
dated from January 1st, 1995 to November 5th, 2013, iden-
tified as of December 4th, 2013, were included in the
search.

Selection of articles

A total of 2,598 reports was found through the desig-
nated search on the online database. Since a large number
of articles was identified, precise measures were taken for
screening and eligibility assessments (Fig. 1). After the du-
plicates were removed, two authors screened the titles of
the studies to determine whether the studies looked at asso-
ciations between infectious diseases and weather or cli-
mate factors. The articles selected by either one of two
authors in the title screening process were then re-
assembled, and the following procedure of eligibility se-
lections was conducted in two steps by one author. First,
the abstract and method sections were examined to deter-
mine whether GLMs or GAMs were used as analysis
methods, and studies apparently using irrelevant methods
were discarded. In the second step, the full text of the rest
of the studies was reviewed to confirm that the purpose
and analysis method of each study were suitable for our lit-
erature review.

Review schemes for study designs and analytical
methods

In order to pursue the strategic reviews of analytic
methodology, we have set certain schemes to investigate.
The 13 schemes are as follows; author and publication
year; study period; study location; age and group of targe-
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Fig. 1.

ted population; outcome of interests; exposure factors; stat-
istical models; time unit of data; confounder controls
(season, trend, and others); variation in the susceptible
population; autocorrelation; lag estimate of exposure fac-
tors; overdispersion.

RESULTS

Of the 2,598 reports initially identified by our desig-
nated electronic search on PubMed, 33 articles were selec-
ted for our review at the end of the eligibility evaluation.
These 33 articles consist of 9 malaria [7-15], 13 dengue
[16-28], 9 cholera [29-37], and 2 influenza [38, 39] stud-
ies (Table 1). Table 2 shows the locations in which the re-
viewed studies were conducted. The study locations are
mostly low- and middle-income countries in tropics, as our
targeted diseases, except for influenza, are most prevalent
in the areas [40].

The counts for outcome diseases of interest used in
the studies were mostly in the time unit of weeks and
months (29 studies). Daily and yearly counts were not as
common, being only 5 and 1 studies respectively (Table 3).

As specified in the review criteria, the regression
models were GLM and GAM with different distribution
models, i.e. Poisson, quasi-Poisson, and negative binomial
(31 studies). The other two studies integrated mixed mod-
els. Among the studies, 18 used models allowing for over-
dispersion, if any, by inclusion of an overdispersion
parameter or selection of different distribution models (e.g.
quasi-Poisson or negative binomial).

As mentioned above, an adjustment of seasonal varia-
tion and long-term trend is part of the standard approach in

total malaria dengue cholera influenza
Records identified through 2,508 1267 5o = f7e
PubMed
Records after duplicates 2,552 1221 o e 5
removed
60
& No. ofr_ecords exc_]uded by 2,146 1,026 263 121 736
= title screening
L
5 No. ofrecords: screened by s i o 3 i
LZE the titles
No. of records excluded by 308 155 6 34 50
- abstracts & methods
2 No. of articles assessed for
:En eligibility by abstracts & 98 40 22 19 17
= methods
No. of full—t.ext articles P 31 9 10 15
excluded with reasons
No. of full-text articles
assessed for eligibility & 33 9 13 9 2
included for review

PRISMA diagram flow of systematic review.

the typical time-series regression. In our review, 25 of the
33 studies (76%) included terms in models that allow for
seasonality and trends with natural spline functions on
time, trigonometric functions, or month and year indicator
variables. Other than adjustments for cyclic seasonality
and long term trend effects, more than half of the reviewed
studies commonly indicated considerations or attempts to
control autocorrelation (21 studies). Autocorrelation ad-
justments may have been necessary because time series are
generally subjected to high autocorrelation caused by serial
correlations between observations close in time distance.
In those 21 studies, the most popular method for autocorre-
lation controls was to incorporate autoregressive terms in-
cluding lagged outcome values, the logarithm of lagged
outcome values, and lagged model residuals (19 studies).
Other covariates were also included in many studies,
including spatial factors if studies involved different geo-
graphical areas, population number, risk related index, and
holiday indicators. In risk assessments of exposure factors,
time lag effects were considered in the majority of the re-
viewed studies (28 studies). However, we found that the
analyzed lag forms (i.e. single lag, moving average lag, or
distributed lag) and the time length of lag varied by study
regardless of the same targeted disease. While evaluated
lag lengths were, if predetermined, often supported by lit-
erature reviews and biological plausibility, many did not
provide the rationales of assessed lag lengths. In some ex-
ploratory studies, on the other hand, long lag lengths were
investigated to observe the thorough exposure effects over
time. Another finding in our review was, even though in-
fectious diseases generally confer temporary or permanent
immunity, the susceptible or immune population was rare-
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Table 2. Study locations.
. . Number of studies
Region Countries (n=33)
Africa Burundi, Ethiopia, Kenya, Niger, Malawi, Rwanda, Tanzania, Uganda, Zambia 8
East Asia China, Taiwan, Korea 5
Southeast Asia Thailand, Vietnam, Singapore 6
South Asia India, Bangladesh 8
Central/South America  Peru, Puerto Rico, Brazil 5
Oceania Australia 1
Table 3. Summary of modelling characteristics

Number of studies (n = 33)

Unit of outcome data

Daily 3

Weekly (including bi-weekly) 13

Monthly (including bi-monthly) 16

Yearly 1
Regression models

GLM (Poisson, quasi-Poisson, negative binomial) 28

GAM (Poisson, negative binomial) 3

Mixed models 2
Control of seasonality and long term trend

Some adjustments were included in the model 25

No adjustments / not described 8
Autocorrelation

Examined / included parameters to control autocorrelation 21

No specific measures / not described 12
Lag effects of exposure

Lag effects of whether variables were assessed 28

No lag effect assessments 5

ly addressed in study models. No studies computed or inte-
grated the estimated susceptible population, and a few
studies instead included proxies (e.g. vaccination rate) to
account for the target population’s susceptible risk.

Discussion

While time series analysis with GLMs or GAMs is
the established method in environmental epidemiology re-
search, our review brings attention to several potential is-
sues when the same application of the traditional approach
for non-infectious diseases extends to infectious diseases.

First, immune protection, which is one of the unique
features of infectious diseases, can lead to rapid changes in
the underlying population at risk over the course of the
study period, but few studies have addressed the suscepti-
ble or immune population in their models. The information
on immune population can be critical as host immune com-

petence (intrinsic factor) and environmental (extrinsic) fac-
tors are both important contributors to seasonal disease
activity [41]. In particular, the importance of the interplay
of intrinsic and extrinsic factors is illustrated in one chol-
era study in which the developments of outbreaks is unsuc-
cessful, even with the disease’s favorable environmental
conditions when the susceptible population is small [42].
The consequence of not taking into account the susceptible
population in a model is the misquantification of the ef-
fects of environmental exposures. However, since esti-
mates of immune or susceptible individuals within a
population seldom exist in data, it is often necessary to cre-
ate alternative measures to increase the precision of the
analysis. The alternative approaches may include, but are
not limited to, reconstructing estimation of susceptible
population by deterministic models (e.g. susceptible-
infected-recovered models) and proxy indicators such as
vaccination rates.
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Secondly, while adjustments for seasonal variations
and long term trends were common, one third of the re-
viewed articles did not include the adjustment measures in
their models. The reason is unknown, yet one possible rea-
son might be less apparent seasonal variations of disease
activity. For instance, while in temperate climate regions
have epidemics of influenza on a regular basis in winter
time, malaria often presents a less obvious periodic pattern
of seasonality. In general, adjustments for seasonality var-
iation in the traditional time series analysis involve two
important meanings, i.e. elimination of the effects of un-
known time-varying covariates and realization of the re-
gression assumption of independence. Realization of the
independence assumption is a particularly important un-
derlying regression hypothesis for time series analysis, be-
cause observations of a variable that are close in time tend
to be similar and are generally correlated (i.e. autocorrela-
tion) [1]. When seasonality is absent in the outcome data at
a glance, the question may naturally arise whether there is
any necessity to implement seasonal adjustments in a mod-
el. However, given the possibility of serial correlations that
may naturally exist in time series data, the question of
whether to include seasonal adjustments should be careful-
ly examined using statistical validations (e.g. model fitness
and residuals).

Another concern regarding autocorrelations arises
when the magnitude of strength and the potential underly-
ing cause are considered. In our literature review, inclusion
of autoregressive terms in addition to seasonal adjustments
to control autocorrelation was commonly observed (19
studies), which, for one reason, may imply that the adjust-
ment of seasonality variation alone is not sufficient. In
general, an imperfect control of autocorrelation suggests
omissions of other significant time-varying covariates
from a model [43]. However, given the characteristics of
infectious diseases, a stronger autocorrelation than control-
led seasonality may be induced by the actual correlation in
outcome observations due to disease transmissions among
individuals. In other words, the true dependence among
neighboring observations can be present with infectious
discase data because the number of newly infected individ-
uals depends on the number of previously infected individ-
uals in the population. In fact, some studies [15, 16]
included autoregressive terms (e.g. a lagged outcome or
logarithm of lagged outcome) to account for the dependen-
cy of infectious diseases data. This correlation is also
known as “true contagion” [44], and the resulting violation
of the assumption of independence will cause biases not in
the regression coefficients but in the estimates of standard
errors [43]. Thus, the discussion again returns to the im-
portance of implementing adequate seasonality adjust-

ments with statistical validations and the need for
additional measures if autocorrelation in model residuals
remains. In order to competently address the autocorrela-
tion resulting from true contagion or transmissibility of in-
fectious diseases, it might be worthwhile in the future to
explore what approaches are not only statistically effective
but also biologically compelling from the aspect of disease
mechanisms.

Thirdly, in the process of estimating lag effects of ex-
posure factors, the lag timings evaluated varied by studies
in spite of the same targeted disease. This may be because
the quantitative evidences needed to establish the optimal
lag timings remains elusive with most diseases, although
there might be qualitatively convincing ideas. The difficul-
ty of estimating the optimal lag times may be especially
severe in vector-borne diseases. In these diseases, the
transmission mechanisms become highly complicated due
to the intermediating effects of vectors which influence the
strong disease seasonality [45], but they can also be highly
content-dependent. For instance, the association patterns
and lags of rainfall effects in malaria vary widely by re-
gion and climate conditions (e.g. whether the region is
generally dry or has abundant rain) [46]. More importantly,
however, time lags and association patterns can be more
complicated in infectious diseases than non-infectious dis-
eases because the mechanism of disease manifestation (e.g.
incubation period) and the transmission dynamics of
pathogenic microorganisms (e.g. bacteria, viruses, para-
sites, or fungi) play a critical role in the causal pathway.
Therefore, an understanding of biological mechanisms can
be of great help in estimating lags and association patterns.
If no certain prior knowledge exists or complicated trans-
mission pathways are expected, then strategic exploration
approaches are required to find the optimal estimates.

Lastly, most of our reviewed studies conducted an
analysis using weekly or monthly data (including bi-
weekly and bi-monthly). Unlike non-infectious diseases,
daily count outcomes were much less common. This re-
lates to only certain infectious diseases, but it is worth not-
ing that using the longer time unit of data may sometimes
lead to an underestimation of risk factors when the optimal
time lags of exposure effects and disease incubation peri-
ods are short (e.g. monthly data is used for analysis when
the optimal exposure effects are expected in one week lag).
Wherever possible, selection of the most statistically ro-
bust and biologically plausible time unit of data is desira-
ble for analysis.

Our study has some limitations. The first is that,
among all the diseases potentially linked to weather varia-
bility, only four diseases were selected for the review. As a
result, we may have eliminated studies that could have de-



livered some insightful analytical approaches. In review of
our aim to characterize the methodological trends, howev-
er, our selected diseases were probably sufficient because
they consist of different types of infectious diseases in-
cluding water-borne, vector-borne, and air-borne diseases.
Another limitation is that GLMs and GAMs were the only
targeted models, even though other methods such as autor-
egressive integrated moving average can also fall into the
category of time series regression models. Those other
time-series methods might have provided solutions for the
concerns raised here, but we believe that we have looked at
important issues in common with the above that deserve
careful attention and awareness. In conclusion, the careful
implementation of time series regression analysis is re-
quired in the study of environmental determinants of infec-
tious diseases. Further studies are required to explore
alternative models and to address methods that will im-
prove the time series analysis.
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