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After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant

accident, cancer risk from low-dose radiation exposure has been deeply concern-

ing. The linear no-threshold model is applied for the purpose of radiation protec-

tion, but it is a model based on the concept that ionizing radiation induces

stochastic oncogenic alterations in the target cells. As the elucidation of the

mechanism of radiation-induced carcinogenesis is indispensable to justify the

concept, studies aimed at the determination of molecular changes associated

with thyroid cancers among children who suffered effects from the Chernobyl

nuclear accident will be overviewed. We intend to discuss whether any radiation

signatures are associated with radiation-induced childhood thyroid cancers.

I t is generally recognized that radiation exposure takes part
in cancer development in the human body. For example,

increased risks in cancer mortality ⁄ incidence have been well
described among atomic bomb survivors in Hiroshima and
Nagasaki.(1) After the accident in the Chernobyl nuclear power
plant (CNPP) in 1986, large amounts of radioactive materials
were released into the environment, which caused excessive
numbers of thyroid cancers among children living in contami-
nated areas neighboring the CNPP.(2,3) Clear dose-dependent
induction of childhood thyroid cancers has proven that
radiation exposure is the primary cause of thyroid cancer
induction.(4–6) Thus, the Chernobyl childhood thyroid cancers
have provided unequalled examples to unveil the molecular
mechanisms of radiation-induced carcinogenesis.
After the Tokyo Electric Power Company Fukushima Daii-

chi nuclear power plant accident in 2011, people in Fukushima
prefecture and across Japan expressed widespread concerns
about health effects due to the release of radioactive materi-
als.(7,8) Although the radiation doses to the public were not
appreciably high, the worry is about the late effects of
radiation, such as cancer induction.(9–11) A part of this anxiety,
so-called radiation phobia, is ascribable to numerous uncertain-
ties in our knowledge of the health effects from low-dose
radiation exposure. As we have insufficient scientific evidence
to depict the effects of low-dose exposure to radiation, current

radiation protection policy has adopted the hypothesis called
the linear no-threshold (LNT) model. It assumes that even a
very low dose of radiation brings about non-zero risk of cancer
induction. Although the LNT model has been evaluated for
many years, there is still uncertainty about the linear relation-
ship of low-dose exposure, such as to doses below
100 mSv.(11) One of the reasons for this uncertainty is insuffi-
cient mechanistic evidence available from epidemiological
studies, so that the applicability of the LNT model to low-dose
radiation exposure has not been fully evaluated. Moreover, the
LNT model has been challenged by recent experimental obser-
vations, including non-targeted effects, which cast some doubts
on the linearity of the dose–effect relationship, especially in
the low-dose range.
An even more complicated issue is the applicability of the

LNT model to life-long exposure to low-dose radiation at a
low-dose rate. Although the dose and dose-rate effectiveness
factor is used in current radiation protection guidelines, the lin-
ear concept is based on the assumption that stochastic radia-
tion-induced oncogenic mutations persist in the target stem
cells in tissues ⁄organs. However, recent advances in stem cell
biology have suggested that the integrity of stem cells is pro-
tected by multiple mechanisms, such as efficient DNA repair,
stem cell competition, and tissue turnover. Thus, there is an
urgent need to reconcile the recent observations that challenge
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the persistence of stochastic oncogenic events in tissues and
organs.(12) Moreover, through these findings, we have recog-
nized the immediate need of extensive reconsideration of the
theoretical basis of radiation-induced carcinogenesis in order
to ascertain whether recent scientific observations sufficiently
support the current carcinogenesis model, in which radiation-
induced oncogenic mutations are involved in cancer develop-
ment.

Childhood Thyroid Cancer after the Chernobyl Accident

After the accident at the CNPP on April 26, 1986, large
amounts of radioactive materials were released, which lead to
radiation exposure in the residents of affected areas.(2,3) Partic-
ularly, the fallout of radioactive iodine caused notable internal
exposures in children through ingestion of contaminated milk
and foodstuffs, which resulted in significant numbers of child-
hood thyroid cancer – one the of main health effects of the
accident.(13,14) Four to 5 years after the accident, excessive
cases of childhood thyroid cancers started to be reported. The
increases in thyroid cancer were particularly profound among
children aged between 0 and 4 years, whereas no such increase
was observed in adults. Between 1991 and 2005, 5127 cases
of thyroid cancer were reported among children under the age
of 14 years in 1986, while 6848 cases were diagnosed in indi-
viduals exposed at when aged under 18 years.(3) Amongst chil-
dren born after 1986, the incidence rate of thyroid cancer
significantly declined almost to the background level, indicat-
ing that the considerable increase in thyroid cancers in child-
hood was due to the internal exposure to radioactive
iodine.(6,15–18)

The most prevalent types of thyroid carcinomas are papillary
thyroid carcinomas (PTC) and follicular thyroid carcinomas;
the former is quite common in children and adults.(19) Almost
all of the childhood thyroid carcinomas, including the earliest
cases, were PTCs, in which the risk of cancer-related death is
small.(20,21) While some increase in follicular thyroid carcino-
mas was observed over time, approximately 95% or more of
the cases were PTC in most years. In earlier cases, nearly all
PTCs were of the solid subtype, which was the unique charac-
teristic observed after the Chernobyl accident.(21) Subse-
quently, the proportion shifted to the classic subtype, which is
less aggressive and metastatic, and is the common subtype in
sporadic childhood PTC.(19–21)

Iodine deficiency is a critical factor affecting the incidence
of childhood thyroid cancer, as it promotes the intake of
radioactive iodine and increases the size of the thyroid gland,
and internal exposure to radiation from 131I is apparently a
well-established risk factor for thyroid cancer.(15–20,22,23) A
large case–control study of Belarusian and Russian children
showed a strong dose-dependent induction of thyroid carcino-
mas, and the risk seems to increase linearly with the dose.(15)

Recent analysis of thyroid cancer prevalence in the Belaru-
sian and the Ukrainian cohorts also estimated a linear
dose–response relationship.(4,6) Thus, it is quite evident that
radiation exposure is the causal factor associated with child-
hood thyroid cancer.
Another type of childhood cancer related to radiation expo-

sure is childhood leukemia, which is well described in A-bomb
survivors.(1) Unexpectedly, there was no increase in childhood
leukemia after the Chernobyl accident, indicating that, in con-
trast to the internal exposure to radioactive iodine, external
radiation exposure had negligible effects in terms of cancer
induction. It has been reported that the risk of childhood leuke-

mia in A-bomb survivors showed a linear–quadratic dose–
response,(24) whereas the incidence of childhood thyroid cancer
increased linearly with the dose. Although the difference has
not yet been fully elucidated, the dose–response relationship of
childhood thyroid carcinoma resembles that of other solid can-
cers observed in A-bomb survivors.(1)

As spontaneous childhood thyroid cancer in the areas sur-
rounding the CNPP was quite rare, in general, most cases diag-
nosed after the Chernobyl accident could be attributable to
radiation exposure. Therefore, these cases were expected to
provide unique opportunities to demonstrate the existence of
stochastic radiation signatures associated with malignant con-
version of thyroid follicular cells.

Oncogenic Rearrangements in Childhood Thyroid Cancer
after the Chernobyl Accident

After the Chernobyl accident, the highest risk for radiation-
induced thyroid cancer was observed among children exposed
at the age of 0–4 years. Early childhood thyroid cancer cases
showed significantly higher prevalence of rearrangements
between the rearranged during transfection (RET) gene and the
PTC3 gene (RET/PTC3 rearrangement).(25–27) The RET/PTC1
as well as RET/PTC2 rearrangements were also reported.(27) It
is well established that RET ⁄PTC1 gene rearrangement is the
most prevailing genetic alteration in childhood PTCs after the
Chernobyl accident overall.(19,20,28,29)

Fusions of the RET proto-oncogene with several partner
genes, which have been collectively designated the PTC genes,
have been described (Table 1).(30) The RET gene encodes a
transmembrane receptor tyrosine kinase. The binding of the
ligands stimulates receptor dimerization, the critical step for
activation of tyrosine kinase activity.(31,32) The fusion partner
proteins are commonly expressed in thyroid follicular cells and
possess coiled-coil domains that enable homodimerization of
the fusion RET ⁄PTC proteins (Fig. 1). As a result, RET ⁄PTC
proteins constitutively activate the MAPK pathway without
any ligand binding (Fig. 2).(28,33–36)

Other types of rearrangements identified in childhood thyroid
cancer related to the Chernobyl accident include juxtaposition
of the A kinase anchor protein 9 (AKAP9) gene and v-raf viral
oncogene homolog B1 (BRAF), designated AKAP9-
BRAF,(37,38) rearrangement between translocated protein region
(TPR) and the neurotrophic tyrosine kinase receptor type 1
(NTRK1) gene (TPR–NTRK1),(38) rearrangement between the
ETS variant 6 (ETV6) gene and the NTRK3 gene (ETV6–
NTRK3),(38,39) rearrangement between the acylglycerol kinase
(AGK) gene and the BRAF gene (AGK–BRAF),(38) rearrange-
ment between the cAMP-responsive element binding protein
3-like 2 (CREB3L2) gene and the peroxisome proliferator-
activated receptor c (PPARc) gene (CREB3L2–PPARc),(38)

and rearrangement between the paired box 8 (PAX8) gene and
the PPARc gene (Pax8–PPARc) (Table 1).(38,40)

The RET/PTC1 and RET/PTC3 rearrangements are created
through the paracentric (intrachromosomal) inversion within
chromosome 10, where the RET, CCDC6, and NCOA4 genes
are assigned (Fig. 1).(34–36) Other RET/PTC rearrangements
arise from interchromosomal translocations. Theoretically, at
least two independent DNA double-strand breaks are necessary
to produce a rearrangement. Therefore, these observations have
logically brought about the hypothesis that radiation exposure
from internal 131I causes DNA double-strand breaks, resulting
in oncogenic genome rearrangements after illegitimate
recombination.(28) Notable association between radiation
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exposure and the induction of oncogenic rearrangement was
demonstrated in experimental studies, in which radiation-
induced RET/PTC rearrangements were confirmed in X-irradi-
ated primary thyroid tissues transplanted into SCID mice.(41)

However, one should be cautious about the conclusion,
because the experiments used high-dose radiation exposure
over 50 Gy. More recently, the generation of RET/PTC rear-
rangements have been identified in thyroid epithelial cells
receiving much lower doses, although the frequency was quite
low and dose-dependent induction was not clear.(42)

Although in vitro experiments seem to substantiate the
hypothesis, in vivo studies have drawn a different picture.
After the earlier studies, several independent groups have eval-
uated the prevalence of RET/PTC rearrangements in childhood
thyroid cancer after the Chernobyl accident and compared the
results with the frequency of RET/PTC rearrangements in

sporadic childhood PTCs. The compiled data indicated that
RET/PTC rearrangements were detectable to a comparable
extent in both childhood thyroid cancers after the Chernobyl
accident and sporadic childhood thyroid cancers.(43–45)

Extensive studies showed that the frequency of thyroid can-
cer with RET/PTC rearrangements decreases with age in spo-
radic cases, whereas those with the BRAF mutation becomes
greater.(19) It is well established that these two genetic changes
are mutually exclusive. Individuals born before the accident
are now aged 28 years or older, and a recent report has sug-
gested that the frequency of thyroid cancer harboring the
BRAF mutation has tended to grow in the affected group,
while RET/PTC rearrangements are still detectable.(46) This is
another epidemiological observation indicating that molecular
changes in thyroid cancer after the Chernobyl accident mirror
those occurring spontaneously.

Table 1. Oncogenic rearrangements in childhood thyroid cancers related to the Chernobyl accident

Oncogenes Rearrangement partners Chromosome locations Type of rearrangements

RET rearrangements

RET 10q11.2

RET/PTC1 CCDC6 (also H4) 10q21 Paracentric inversion

RET/PTC2 PRKAR1A 17q24.2 Interchromosomal translocation

RET/PTC3 NCOA4 (also Ele1) 10q11.2 Paracentric inversion

RET/PTC4 NCOA4 (also Ele1) 10q11.2 Paracentric inversion

RET/PTC5 GOLGA5 (also RFG5) 14q32.12 Interchromosomal translocation

RET/PTC6 TRIM24 7q32-q34 Interchromosomal translocation

RET/PTC7 TRIM33 (also RFG7) 1p13.1 Interchromosomal translocation

RET/PTC8 KTN1 14q22.1 Interchromosomal translocation

RET/PTC9 RFG9 (also MBD1) 18q21 Interchromosomal translocation

BRAF rearrangements

BRAF 7q34

AKAP9/BRAF AKAP9 7q21-q22 Paracentric inversion

AGK/BRAF AGK 7q34 Paracentric inversion

NTRK rearrangements

NTRK1 1q21-q22

NTRK3 15q25

TPR/NTRK1 TPR 1q25 Paracentric inversion

ETV6/NTRK3 ETV6 12p13 Interchromosomal translocation

PPARc rearrangements

PPARc 3q25

PAX8/PPARc PAX8 2q13 Interchromosomal translocation

CREB3L2/PPARc CREB3L2 7q34 Interchromosomal translocation

Fig. 1. Schematic representation of RET ⁄ PTC1 rearrangements. A
paracentric inversion of chromosome 10 gives rise to a fusion gene
between the tyrosine kinase domain of the RET gene and the amino
terminal region of the CCDC6 gene. The fusion protein is constitu-
tively activated through the dimer formation mediated by the coiled-
coil domain of the CCDC6 protein.

Fig. 2. Activation of the MAPK pathway in thyroid cancer. Most of
the rearrangements identified in post-Chernobyl childhood thyroid
cancers impair the physiological function of receptor tyrosine kinase
activity, which results in constitutive activation of the MAPK pathway.
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Thus, accumulating in vivo observations suggest that RET/
PTC rearrangements observed in childhood thyroid cancer after
the Chernobyl accident might not be the result of internal
exposure to radiation from 131I, but rather radiation exposure
might play a non-targeted role in providing a tissue microenvi-
ronment, which eventually selects thyroid follicular cells with
spontaneous RET/PTC rearrangement.

Copy Number Alteration as a Radiation Signature in
Childhood Thyroid Cancer after the Chernobyl Accident

Radiation exposure is an efficient inducer of DNA double-
strand breaks, therefore it is highly expected to cause gains or
losses of DNA;(47) however, this notion was challenged by
array comparative genomic hybridization analysis.(48) A variety
of copy number alterations (CNAs) have been identified in
childhood thyroid cancers after the Chernobyl accident, mostly
gains of DNA, and these were compared with CNAs in
sporadic cases, in which losses were more frequent than
gains.(49–56) Consequently, it turned out to be clear that most
studies have failed to demonstrate specific CNAs associated
with radiation exposure, while one study, using an age- and
ethnicity-matched cohort, described a unique gain of chromo-
some 7q11, which was absent in all unexposed cases.(57) A
few genes are assigned to this chromosome band, although the
overexpression of such gene products seems not to be the
driver in childhood thyroid cancers. Thus, some copy number
signatures might be associated with radiation-induced child-
hood thyroid cancers, however, their involvement in childhood
thyroid carcinogenesis remains to be determined.

Gene Expression Signature

Previous studies have shown the differences in gene expression
profiles between PTCs and normal thyroid tissues.(58–63) The
strategy has been used to identify gene expression signatures
that distinguish radiation-induced childhood thyroid cancers
from sporadic cases. Several studies have been carried out and
some of them reported gene expression changes unique to radi-
ation-induced childhood PTCs, whereas others have failed to
identify the signatures.(64–66) Importantly, the identified genes
were very different between the studies, with few recurrent
genes. More recently, gene expression profiles were compared
in normal contralateral thyroid tissues obtained from exposed
and unexposed children after the Chernobyl accident.(67) The
study identified a gene expression signature, whose gene prod-
ucts are related to overall cell proliferation.
It should be taken into account that gene expression profiles

could be affected by possible confounding factors such as age,
ethnicity, and pathological features of the tumors, and these
might have caused large discrepancies between the studies.(68)

At present, it seems unlikely that common gene expression sig-
natures could be associated with radiation-induced childhood
thyroid cancers. As suggested by previous reports, the signa-
tures might be dispensable for childhood thyroid carcinogene-
sis but rather they might reflect the results of radiation
exposure.

Radiation Signatures and Possible Mechanisms of
Radiation Carcinogenesis

It is generally accepted that cancer has arisen as a result of accu-
mulation of oncogenic mutations. Mathematical considerations
show that cancers, especially the solid cancers, show age-depen-

dent increases in incidence roughly by the fifth power of age.
This could be the most appropriate explanation why adulthood
cancers make an appearance late in life. In clear contrast to
adulthood cancers, childhood cancers are unique in their rela-
tively short latency, suggesting that much fewer mutations are
required. Some studies have indicated that mutations are
acquired during fetal development,(69,70) but the principle of the
difference in the number of mutations required for adulthood
and childhood cancers remains to be determined.
Considering that childhood thyroid cancers started to mani-

fest 4–5 years after the Chernobyl accident, it would be plausi-
ble to hypothesize that RET ⁄PTC rearrangements were not
directly caused by radiation exposure but might have already
existed in the thyroid tissue. As discussed above, there has
been supporting evidence that the frequency of RET ⁄PTC rear-
rangements was not different between childhood thyroid can-
cers after the Chernobyl accident and sporadic cases. If
radiation exposure is the direct inducer of RET ⁄PTC rearrange-
ments, the frequency should be significantly higher in radia-
tion-related cases.
What, then, would be the role of radiation in thyroid carci-

nogenesis? One clue must be the inter-individual variations in
response to radiation exposure after the Chernobyl accident,
which could disclose the factors associated with the process of
radiation-induced carcinogenesis. However, studies available
so far have not identified genetic determinants that modify
individual predisposition to radiation-induced childhood thy-
roid cancer. In particular, genome-wide association studies
using adult sporadic thyroid cancers and Belarusian cases aged
0–18 years at the time of the accident pointed out that a com-
mon single nucleotide polymorphism marker, rs965513,
located in the FOXE1 vicinity at chromosome 9q22.33 showed
a strong correlation with both sporadic and radiation-related
thyroid cancer.(71) As FOXE1, also known as TTF-2, is a pro-
tein involved in the differentiation of thyroid gland, genetic
predisposition to radiation-related thyroid cancer does not offer
any signs for specific oncogenic alterations but suggests that

Fig. 3. Hypothetical model of radiation-induced thyroid carcinogene-
sis. Ionizing radiation (IR) executes senescence-like cell death in thy-
roid follicular cells, which promotes secretion of various factors
including cytokines, chemokines, and matrix metalloproteinases
(MMPs). Secretory proteins could stimulate inflammatory response
and potentiate disruption of the tissues and the tissue microenviron-
ment caused by radiation exposure. Our hypothetical model presumes
that disruption and repair of the tissues and the tissue microenviron-
ment creates a proliferative condition for thyroid follicular cells con-
taining spontaneous oncogenic rearrangements, by which thyroid
follicular cells could initiate the process towards thyroid cancers. PTC,
papillary thyroid carcinoma; RET, rearranged during transfection.
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anomalous tissue development could be targeted by radiation
exposure.
Possible involvement of tissue disturbance in thyroid carci-

nogenesis has been discussed in the observations, in which
chronic autoimmune thyroiditis, such as Hashimoto’s thyroid-
itis, is sometimes accompanied by cancer.(72) Although the
link is still debated, it seems likely that PTCs may develop
if the cells with oncogenic mutations preexisted in the
region with Hashimoto’s thyroiditis. It should be noted that
proliferative response was observed in Hashimoto’s thyroid-
itis,(73) therefore, the disturbance of tissue homeostasis by
chronic inflammation could create a condition for the cells
harboring spontaneous RET ⁄PTC rearrangement to undergo
cell proliferation.(74)

In fact, some adverse effects of the Chernobyl accident on
thyroid function have been reported in several studies,
although the results are not always consistent due to the lim-
ited sample sizes and a lack of individual dose estimations.
Earlier studies have shown the increased prevalence of thyroid
autoimmune disorders among children exposed to the Cher-
nobyl radioactive fallout 6–8 years after the accident, which
was no more evident 12–14 years after the accident.(75,76)

More recent studies have indicated that subclinical hypothy-
roidism still persisted among the individuals who were youn-
ger than 18 years of age on the day of the accident.(77) These
observations imply that internal exposure to radioactive iodine
may result in not a detrimental but notable disturbance in the
thyroid gland of the affected children.
Recently, it has been recognized that ionizing radiation

induces senescence-like cell death in thyroid follicular cells.(78)

Moreover, senescence-like cell death promotes secretion of
inflammatory cytokines,(79) so that it is tempting to speculate
that radiation-induced tissue disruption could result in inflam-
matory circumstances that promote the initial stage of thyroid
carcinogenesis (Fig. 3). Thus, taking all of this information
into consideration, it is plausible to propose that a role of
radiation in childhood thyroid cancers after the Chernobyl
accident could be an introduction of tissue disturbance by
inducing thyroid follicular cell death as well as introducing the
secretory phenotype of dead cells (Fig. 3).
One should be cautious about this scenario, because many of

the above speculations have to be experimentally proven. Also,

the idea suggests that the stochastic induction of oncogenic
mutations by radiation might not be the primary role of radia-
tion exposure in childhood cancer development, rather, deter-
ministic cell death could be involved. The risk of thyroid
cancer incidence was estimated to increase linearly with radia-
tion dose; however, these findings may cast doubt on the use
of the LNT model, on which current risk estimation relies,
especially at low doses. Thus, with further scientific investiga-
tions, we should reconsider the scientific significance of the
LNT model especially for low-dose and low-dose-rate expo-
sure. As such a condition currently exists in Fukushima prefec-
ture, thorough studies will undoubtedly provide invaluable
insights into this complication.

Conclusions

Internal exposure to radioactive iodine caused childhood papil-
lary thyroid cancer after the Chernobyl accident. Molecular
analyses have shown that RET ⁄PTC rearrangements are the
most prevailing oncogenic alteration in both radiation-induced
and sporadic childhood thyroid cancer. Thyroid follicular cells
might display selective growth, if the cells harbor spontaneous
oncogenic rearrangements and if the tissue and tissue microen-
vironment are perturbed by cell death caused by ionizing radi-
ation. The hypothetical model may cast some doubt on the
current model of stochastic radiation carcinogenesis. Future
studies will define the non-targeted role of radiation exposure,
which should improve our understanding of multistep carcino-
genesis induced by radiation exposure.
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