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Abstract: Many studies have reported a relationship between climate factors and malaria. However, 
results were inconsistent across the areas. We examined associations between climate factors and 
malaria in two geographically different areas: lowland (lakeside area) and highland in Western 
Kenya. Associations between climate factors (rainfall, land surface temperature (LST), and lake 
water level (LWL)) and monthly malaria cases from 2000 to 2013 in six hospitals (two in lowland 
and four in highland) were analyzed using time-series regression analysis with a distributed lag 
nonlinear model (DLNM) and multivariate meta-analysis. We found positive rainfall–malaria 
overall associations in lowland with a peak at 120 mm of monthly rainfall with a relative risk (RR) 
of 7.32 (95% CI: 2.74, 19.56) (reference 0 mm), whereas similar associations were not found in 
highland. Positive associations were observed at lags of 2 to 4 months at rainfall around 100–200 
mm in both lowland and highland. The RRs at 150 mm rainfall were 1.42 (95% CI: 1.18, 1.71) in 
lowland and 1.20 (95% CI: 1.07, 1.33) in highland (at a lag of 3 months). LST and LWL did not show 
significant association with malaria. The results suggest that geographical characteristics can 
influence climate–malaria relationships. 

Keywords: time-series analysis; distributed lag nonlinear model (DLNM), lagged effect; 
heterogeneity 

 

1. Introduction 

Malaria is a life-threatening febrile disease caused by Plasmodium parasites transmitted by 
vector mosquitoes [1]. In 2017, about 219 million cases occurred globally and 435,000 died of malaria, 
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and nearly half of the world’s population is at risk of malaria [1]. A total of 92% of malaria cases and 
93% of malaria deaths occurred in the WHO Africa region [1].  

Malaria has been endemic in Western Kenya but spatially heterogeneous between lowland and 
highland areas [2,3]. The malaria incidence has been consistently high in lowland areas [2], whereas 
there has been long-term fluctuation of malaria incidence in highland areas. Until the 19th century, 
there was no significant health burden by malaria in highland [2]. However, the first malaria 
epidemic occurred after the First World War in 1918–1919 [2]. After that, the Western Kenyan 
highlands experienced malaria epidemics infrequently from the 1920s to the 1950s and malaria-free 
periods from the 1960s to the early 1980s. However, malaria reemerged in this region in the 1980s, 
and epidemics have been often reported since that time [2,4,5]. 

Geographical differences between the lowland and highland areas could play a major role in the 
spatial heterogeneity in malaria incidence. The lowland area in Western Kenya is adjacent to Lake 
Victoria. The climate in this area is relatively hot and dry and tends to develop many swamps during 
a rainy season [6]. By contrast, the highland areas with an altitude of more than 1500 m above sea 
level are located on the eastern side of the lowland area with moderate climates (daily mean 
temperatures of below 20 °C) that support farmland and forest [2,4]. 

Many studies have been conducted to evaluate relationships between climate factors and 
malaria transmission in Africa and other regions [3,7–22]. The reported associations were not 
consistent across the areas, which may suggest that geographical characteristics or other local factors 
influenced climate–malaria relationships [10,23,24]. For example, a study in China showed positive 
and negative rainfall–malaria associations depending on locations, although the causes of the 
heterogeneity were not discussed [10]. In a study in Ethiopia, the lag pattern of rainfall–malaria 
association exhibited slight heterogeneity. Rainfall had positive association in both hot districts with 
a lower altitude and cold districts with a higher altitude. However, the effect of rainfall declined after 
considering longer lags in the hot district, which could be explained by the drying up of breeding 
sites due to higher temperatures [23]. 

Recent studies conducted in lowland area in Western Kenya have reported associations among 
temperature, rainfall, and malaria [3,13]. Sewe et al. reported positive associations between rainfall 
and malaria in locations near Lake Victoria. Several studies have also examined relationships of 
climate factors such as rainfall, temperature, and global climate variabilities (e.g., Indian Ocean 
Dipole) with malaria in the highlands [25–28]. However, to our best knowledge, no study has 
systematically quantified the role of climate factors on malaria incidence across multiple locations 
characterized by different geographical features including both lowland and highland areas. 

In this study, we aimed to examine associations between climate factors and malaria in two 
different malaria endemic areas, the lowlands and highlands of Western Kenya, using a distributed 
lag nonlinear model (DLNM) to examine delayed effects and nonlinear relationships [29]. We 
attempted to clarify how the influence of climate factors differs between mountainous and forested 
areas, like the highlands, and swampy areas, like the lowland areas along Lake Victoria. These 
relationships might provide insights into how geographical characteristics or local factors influence 
climate–malaria relationships. 

2. Methods 

2.1. Study Area 

The study area of lowland and highland in Western Kenya is in the Nyanza and Rift Valley 
provinces with an area of about 195,000 km2 and population of about 15 million in total [30]. Malaria 
is endemic to both areas, although those two areas are geographically contrasting (Figure 1(B)). 
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(A) The map of whole Kenya including the study area. 

 

(B) The map of the study area around the Nyanza province. 

 

Figure 1. The map of the study area. 
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2.2. Case Data 

The number of monthly malaria cases was obtained from hospitalization and consultation 
ledgers of 6 hospitals. The hospitals were classified into two areas by altitude: The lowland below 
1500 m were Nyanza and Kendu Bay, and the highland above 1500 m were Maseno, Kisii, Kericho, 
and Kapsabet (Table 1). Cases were hospitalized cases in Nyanza, Kendu Bay, and Maseno; 
outpatient cases in Kisii, Kericho, and Kapsabet. Different types of data—hospitalized and outpatient 
cases—were collected in this study because each hospital had only one type of data. The period of 
the case data collected for this study was from 10 years to 14 years in 2000–2013 depending on the 
hospitals. 

Table 1. Summary of statistics. 

(A) Monthly number of malaria cases and elevation of each hospital. 

Hospital Elevation Period Total Mean Sd Min Max 
Nyanza 1189 m 2000–2009 36098 305.92  118.03  84  574  

Kendu Bay 1243 m 2000–2009 6007 50.91  30.68  2  124  
Maseno 1576 m 2000–2009 3880 32.88  17.80  2  81  

Kisii 1656 m 2000–2013 244277 1471.55  528.54  407  3554  
Kericho 1983 m 2001–2013 166761 1068.98  498.08  420  4969  

Kapsabet 1997 m 2001–2010 157866 1315.55  691.20  387  3231  
Hospitalized cases in Nyanza, Kendu Bay and Maseno: outpatients in Kisii, Kericho and Kapsabet. 

(B) Monthly cumulative rainfall (mm). 

Hospital Mean Sd Min Max 
Nyanza 119.21  78.77  0.60  403.28  

Kendu Bay 127.01  81.90  1.29  445.25  
Maseno 146.92  87.19  3.15  404.44  

Kisii 136.25  82.40  7.05  485.60  
Kericho 89.11  61.73  0.76  371.03  

Kapsabet 82.31  61.83  1.13  315.25  

(C) Monthly mean land surface temperature (LST) (°C). 

Hospital Mean Sd Min Max 
Nyanza 30.95  4.55  22.46  44.07  

Kendu Bay 31.46  5.20  20.70  47.08  
Maseno 28.21  4.41  20.25  41.75  

Kisii 24.66  3.81  18.02  36.74  
Kericho 23.37  4.08  9.43  37.01  

Kapsabet 26.14  3.56  12.23  36.36  

(D) Monthly mean normalized difference vegetation index (NDVI). 

Hospital Mean Sd Min Max 
Nyanza 0.57  0.07  0.39  0.70  

Kendu Bay 0.55  0.08  0.35  0.67  
Maseno 0.61  0.06  0.39  0.72  

Kisii 0.65  0.06  0.49  0.77  
Kericho 0.70  0.04  0.57  0.79  

Kapsabet 0.67  0.06  0.47  0.77  
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(E) Monthly mean lake water level (LWL) (m). 

Mean Sd Min Max 
−0.42  0.35  −1.33  0.33  

2.3. Environmental Data 

Remotely-sensed daily rainfall data were obtained as Global Satellite Mapping of Precipitation 
(GSMaP) data from the Remote Sensing Technology Center of Japan (RESTEC) and Japan Aerospace 
Exploration Agency (JAXA) [31]. Spatial resolution of the data was a lattice with grid latitudes and 
longitudes of 0.1 degrees, representing approximately 10 km square around the study area. The 
rainfall data included the location of each hospital providing case data. The data were integrated to 
provide monthly cumulative rainfall figures. 

Remotely-sensed daily land surface temperature (LST) and normalized difference vegetation 
index (NDVI) data were obtained from the moderate resolution imaging spectroradiometer (MODIS) 
sensors aboard the National Aeronautics and Space Administration (NASA) satellites [32]. Spatial 
resolutions of the data were 1 km square for LST and 250 m square for NDVI. Data were integrated 
to 8 km radius data around each hospital calculating spatial means in the radius. Daily LST and NDVI 
data were converted to monthly mean data. 

Lake water level (LWL) data were obtained from the United States Department of Agriculture 
(USDA) [33]. The raw data were Lake Victoria height variations every 10 days, which were converted 
to monthly mean data. 

2.4. Statistical Analysis 

We modeled lagged relationships among rainfall, LST, and monthly malaria cases in each 
hospital using a distributed lag nonlinear model in a quasi-Poisson regression framework, controlling 
for long-term trend and seasonally varying factors [29]. We allowed lags of up to 6 months (lags 0–6) 
for rainfall and 3 months (lags 0–3) for LST, which were enough to capture attenuation of the effects 
based on initial analysis incorporating longer lags and biological causality between those exposures 
and malaria, considering time span from the appearance of vector mosquito breeding sites due to 
rainfall or influences on the mosquito life cycle by temperature and rainfall to increase or decrease in 
malaria cases. 

To account for seasonality and long-term trend, we incorporated two natural cubic splines: one 
for the month of year and another for year with degrees of freedom (df) guided by quasi-Akaike’s 
information criterion (QAIC). dfs were selected by this approach for each location. 

The model equation was: 

Log[E(Yt)] = α+ f(Rt) + f(LSTt) + ns(moy,df) + ns(year, df) [1] (1) 

where Yt represents the monthly number of malaria case in month t, αis the intercept, f(Rt) and f(LSTt) 
are the matrices obtained by applying a cross-basis function to rainfall and LST based on DLNM, 
respectively. “ns” is a natural cubic spline; moy is month of year; df denotes degree of freedom; year 
represents integer 2000 to 2013. 

Considering possible involvement of other environmental factors in relationships among 
rainfall, LST, and malaria, we conducted additional subgroup analyses using a model incorporating 
LWL. We allowed lags of up to 6 months (lags 0–6) for LWL based on similar approach to that of the 
other exposures. The model incorporating LWL was applied only in the lowland area because the 
water level of Lake Victoria was unlikely to affect malaria in the highlands. NDVI was omitted from 
the model because NDVI had little effects on malaria and little role in any relationships among 
rainfall, LST, and malaria in the initial analyses. 

The model equation was: 

Log[E(Yt)] = α+ f(Rt) + f(LWLt) + f(LSTt) + ns(moy,df) + ns(year, df) [2] (2) 
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where f(LWLt) is the matrices obtained by applying a cross-basis function to lake water level through 
DLNM, respectively. 

We estimated relative risks (RRs) of malaria for rainfall, LST, and LWL at each lag with reference 
to 0 mm, 22 °C and −1.0 m, respectively. Basically, minimum values of exposures were chosen as 
reference values. As for LST, the minimum value in Nyanza, the hottest location was chosen as the 
reference value because of a large variation of LST among hospitals. We plotted the RRs of malaria 
for rainfall, LST, and LWL over lags of 0 to 6, 0 to 3 and 0 to 6 months, respectively. Then, we 
performed meta-analysis by area: the lowland (Nyanza and Kendu Bay) and the highland (Maseno, 
Kisii, Kericho and Kapsabet) in the model [1] (the main model) [34]. We pooled the hospital-specific 
rainfall–malaria associations by area. We plotted RRs of malaria for rainfall over lags of 0 to 6 months. 
We also estimated pooled lag-specific and predictor-specific rainfall–malaria associations by area. 
We plotted RRs at lags of 0, 3, and 6 months for lag-specific associations, and at 50, 150, and 300 mm 
for rainfall-specific associations. 

As for LST–malaria associations, we estimated pooled associations of all the hospitals 
irrespective of elevation due to lack of a difference between lowland and highland. We plotted RRs 
of malaria for LST over lags up to 3 months. 

For the model [2] (the submodel), we estimated pooled overall rainfall–malaria, LST–malaria, 
and LWL–malaria associations in lowland area only. We plotted RRs of malaria for rainfall, LST, and 
LWL over lags of up to 6, 3 and 6 months, respectively. 

We assessed the sensitivity of our results by changing the df (2 to 4) for the month-of-year spline 
and lags of rainfall (4 to 8) included in the model. 

Analysis was conducted using R version 3.6.0 (R foundation for Statistical Computing, Vienna, 
Austria). 

3. Results 

Time-series plots of malaria cases and exposures in each location are shown in Figures 2 and 
Supplementary Figure S1. In the lowland area, temporal declines in malaria cases were observed 
from 2006 to 2008 in Nyanza, in 2007 in Maseno, and from 2003 to 2007 in Kendu Bay (Figure 2 and 
Supplementary Figure S1). In Nyanza, Kendu Bay, and Maseno, the number of cases was much 
smaller than in the others, because they were data of hospitalized patients. 

In general, high temperature and high amount of rainfall were observed in Nyanza, Kendu Bay, 
and Maseno, whereas mild temperature and lower amount of rainfall were observed in Kericho and 
Kapsabet. Mild temperature and high amount of rainfall were observed in Kisii (Figures 2 and 
Supplementary Figure S1 and Table 1).  
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(A) Nyanza 

 

(B) Kisii 

 

Figure 2. Monthly time-series plots of malaria cases, rainfall, LST, NDVI, and LWL in lowland 
(Nyanza) and highland (Kisii). 

The pooled overall rainfall–malaria associations by area (lowland and highland areas) are shown 
in Figure 3. Positive associations were observed over all the rainfall level in lowland. RR peaked at 
approximately 120 mm per month of rainfall, and the RR was 7.32 (95% CI 2.74, 19.56) 
(Supplementary Table S1). RR decreased at higher rainfall level. No evidence of association with 
rainfall was observed in highland. 
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Figure 3. Pooled overall rainfall–malaria associations by area. 

The pooled lag-specific rainfall–malaria associations by area are shown in Figure 4. Positive 
associations were observed almost up to 300 mm of rainfall at lags 2 to 4 in both lowland and 
highland, although a wider range of the lagged effects was observed from 1 to 5 in lowland. Shapes 
of RR curves for each lag were similar to the RR curve of pooled overall rainfall–malaria associations. 
In general, RR peaked at lag 3 and rainfall of 150 mm. The RR was 1.42 (95% CI 1.18, 1.71) in lowland 
(Supplementary Table S2). RRs did not decrease at higher rainfall level in highland opposed to 
lowland (Figure 4). The RR at lag 3 and rainfall of 150 mm was 1.20 (95% CI 1.07, 1.33) in highland 
(Supplementary Table S2), whereas negative associations were observed at lag 6 in highland. 

 
Figure 4. Pooled lag-specific rainfall–malaria associations by area. 

The pooled predictor-specific rainfall–malaria associations by area are shown in Figure 5. In 
lowlands, the significant positive associations were observed over lags 1 to 5 around 150 mm of 
rainfall. In highland, positive associations were observed at lags 2 to 4 around 150 mm of rainfall. 

 
Figure 5. Pooled predictor-specific rainfall–malaria associations by area. 
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The estimated association between rainfall and malaria, and the lagged pattern at each location 
are shown in Supplementary Figure S2.  

LST–malaria associations were not significant both in pooled overall analysis and pooled 
predictor-specific analysis (Figure S3A). The RR tended to decrease at longer lags at higher LST, 
although not significantly (Figure S3B). 

The associations among rainfall, LST, LWL, and malaria by applying the LWL adjusted model 
(Model 2) in the lowland area only are shown in Supplementary Figures S4–S6. 

After being adjusted for LWL, lag patterns of pooled rainfall–malaria and LST–malaria 
relationships did not change so much. 

Pooled LWL–malaria associations were not significant.  
In sensitivity analyses for rainfall–malaria associations, pooled overall, lag-specific, and 

predictor-specific associations by area did not change substantially when changing df for month of 
year between 2 and 4 and changing df for rainfall lag in the model between 4 and 8 (Supplementary 
Table S3).  

4. Discussion 

In this study, we investigated nonlinear and lagged relationships between climate factors 
(rainfall, LST, and lake water level) and malaria in Western Kenya, including locations in the lowland 
area around Lake Victoria and the East African highlands. 

We found positive associations between rainfall and malaria in lowland, while we did not find 
similar associations in highland. 

In lowland, pooled overall rainfall–malaria associations were positive over all the rainfall level. 
The relative risk (RR) increased as monthly rainfall increased up to 120 mm and gradually decreased 
thereafter. The positive associations and shapes of RR curves were preserved in lag-specific 
associations at lags 1 to 5. As for the pooled predictor-specific rainfall–malaria associations, positive 
associations were observed over lags 0 to 5. RR curve was a gentle inverse U shape which peaked at 
lag 3. The positive association could be explained by the roles of rainfall that creates swamps which 
can become vector mosquito breeding sites [35]. Lags might reflect time span from increase in rainfall 
to increase in malaria cases through mosquito larva development, biting activities, and incubation 
period in human body. Attenuation of the positive association at higher rainfall level might be 
explained by flush-out of breeding sites by flooding because many swamps are thought to exist along 
the lake coast [35,36]. Similar findings have been shown in a previous study near this location [3,7] 
and in China [9]. 

By contrast, in highland, pooled overall rainfall–malaria associations were not significant over 
all the rainfall level. It might suggest that breeding sites in areas apart from the lake coast would be 
less influenced by rainfall. However, in the pooled lag-specific and predictor-specific rainfall–malaria 
associations, positive associations were observed over lags 2 to 4, although RRs were smaller than 
those in lowland. The RR curve of predictor-specific associations was an inverse U shape which 
peaked at lag 3 like that of lowland. Similar findings were reported in previous studies in the 
highlands. Hashizume et al. reported a positive association between rainfall and malaria at a lag of 
2–3 months in Western Kenya highlands [26]. Chaves et al. showed that positive seasonal association 
between rainfall and malaria decreased with altitude [28]. It might be possible that there were vector 
mosquito breeding sites which can easily be generated and expanded by rainfall also in highland, for 
example, breeding sites around irrigation canals beside farmlands [37]. Attenuations of positive 
associations were not observed in lag-specific associations, which may support that the flush-out 
effect on breeding sites by heavy rainfall was weak in the highland. Negative associations were 
observed at a lag of 6 months in highland. It might be explained by a temporal reduction of 
susceptible population due to increase in cases in previous months. However, a biological or 
ecological mechanism that leads to the results is not clear, which would require further studies. 

As for the LST–malaria relationship, a significant association was not observed. In previous 
studies, relationships between temperature and malaria variated. The LST–malaria relationship 
varied between the areas also in a study near this location [3,38], whereas a positive association 
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between ambient temperature and malaria was reported in several studies in China [10,11,39]. It is 
not clear why a significant LST–malaria association was not found in this study, although 
temperature might influence the larval development and biting activities of mosquitoes, as previous 
studies reported. It could be an issue requiring further studies. 

After adjusting for lake water level, a positive association between rainfall and malaria 
remained, whereas negative associations were observed between LST and malaria at longer lags over 
all LST levels. Lake water level had no significant association with malaria. 

The current study has several limitations. First, malaria cases in the study were diagnosed 
clinically. In malaria endemic areas like this study sites, febrile illnesses are likely to be clinically 
diagnosed as malaria. Thus, cases in this study might include overdiagnosed cases. However, some 
of the cases in the hospitals in highland, Kisii, Kericho, and Kapsabet, were also laboratory-confirmed 
by microscopy in part of the study period. Laboratory-confirmed cases and clinically-diagnosed cases 
had similar patterns of monthly variations, which might support the reliability of the clinically-
diagnosed cases in the study for evaluating rainfall–malaria associations. Second, characteristics of 
disease data were different among the hospitals. While hospitalized cases were used in Nyanza, 
Kendubay, and Maseno, outpatient data were used in Kisii, Kericho, and Kapsabet. This might 
influence the results a little, for example, via difference of time span from onset to hospital admission 
and hospital visit, and via difference of severity between hospitalized and outpatient cases. However, 
it is not likely to affect relationships between climate factors and malaria much in the study. Third, 
the unit of the data in this study was monthly, which might not be able to capture more finely delayed 
relationships. Finally, the current study did not consider influences of interventions. Interventions 
such as distribution of insecticide bed net and indoor spraying can influence malaria trends [40–43]. 
However, influences of any intervention could be partly adjusted because we incorporated the term 
for controlling the long-term trend in the model. 

5. Conclusions 

This study found that, in lowland along the lake coast, rainfall and malaria had a positive 
association which became strong as rainfall increased up to a certain amount of rainfall, then 
attenuated at a higher amount of rainfall. By contrast, in highland, a similar association was not 
observed. 

Our results suggest that geographical characteristics can influence or possibly even determine 
the structure of climate–malaria relationships, which might provide some ideas for understanding 
relationships between environmental factors and the disease. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Monthly 
time series plots of the other hospitals (Kendu Bay, Maseno, Kericho and Kapsabet), Figure S2: Associations 
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and monthly number of malaria cases, Figure S4 Associations between rain and monthly number of malaria 
cases in lowland applying for Model 2 (the submodel), Figure S5: Associations between LST and monthly 
number of malaria cases lowland applying for Model 2 (the submodel), Figure S6: Associations between LWL 
and monthly number of malaria cases in lowland applying for Model 2 (the submodel), Table S1: Table S1: 
Pooled overall rainfall-malaria association by area (lowland & highland), Table S2: Pooled lag-specific rainfall-
malaria association by area (highland & lowland) in the model 1: the main model, Table S3: Pooled overall 
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