2	Development of monoclonal antibodies against Plasmodium falciparum thioredoxin
3	peroxidase 1 and its possible application for malaria diagnosis
4	
5	Authors: Hassan Hakimi ^{1, 2)} , Yasuyuki Goto ³⁾ , Keisuke Suganuma ¹⁾ , Jose Ma. M.
6	Angeles ¹⁾ , Satoru Kawai ⁴⁾ , Noboru Inoue ¹⁾ and Shin-ichiro Kawazu ¹⁾ *
7	¹⁾ National Research Center for Protozoan Diseases, Obihiro University of Agriculture
8	and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
9	²⁾ Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki
10	University, Nagasaki 852-8523, Japan
11	³⁾ Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
12	113-8657, Japan
13	⁴⁾ Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu,
14	Tochigi 321-0293, Japan
15	
16	*Corresponding author
17	Dr. Shin-ichiro Kawazu, D.V.M., Ph.D.

18 National Research Center for Protozoan Diseases, Obihiro University of Agriculture and

- 19 Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
- 20 E-mail: skawazu@obihiro.ac.jp, Tel.: +81-155-495846, Fax: +81-155-495643

21 Abstract

Rapid diagnostic tests (RDTs) have been considered as an ideal alternative for light 2223microscopy to detect malaria parasites especially in remote areas. The development and 24improvement of RDTs is an area of intensive research in the last decade. To date, few parasite proteins have been targeted in RDTs which are known to have certain 2526deficiencies and made the researchers to look for other promising candidates to address this problem. *Plasmodium falciparum* thioredoxin peroxidase 1 (PfTPx-1) is abundantly 27expressed in the cytoplasm of the parasite and well conserved across Plasmodium 2829species making this antigen a promising target for malaria diagnosis. Several monoclonal antibodies (mAbs) were produced against PfTPx-1. The binding affinities 30 of mAbs were measured. Several immunochromatographic tests (ICTs) were developed 31using different combination of mAbs. All mAbs showed promising affinities to be used 32for diagnosis. The sensitivities of ICTs were evaluated using recombinant PfTPx-1 33 34whose results lead us to the preparation of 4 different ICTs. These tests showed positive reaction with P. falciparum in vitro culture supernatant indicating the release of PfTPx-1 35during schizont rupture. Altogether, these findings suggest that PfTPx-1 is a promising 36 37biomarker to diagnose P. falciparum infection. However, the diagnostic performance of this antigen should be further validated using clinical samples. 38

- 39 Keywords: Plasmodium falciparum; malaria diagnosis; rapid diagnostic test;
- 40 thioredoxin peroxidase 1

41 **1. Background**

Despite being preventable and treatable, malaria still remains as a major public health concern in the world with 1,238,000 global deaths in 2010 [1]. Emergence of drug resistance in the malaria parasite, insecticide resistance among the mosquito vectors and the unavailability of an efficient vaccine against malaria are important obstacles for controlling this parasitic disease.

Although parasite/parasite antigen-based diagnosis is increasing, most suspected 47cases in endemic areas are treated based on presumptive diagnosis [2]. Prompt and 4849accurate diagnosis and treatment of the patients with appropriate antimalarial is an essential component of malaria control and elimination strategies. Therefore, since early 502010, WHO has recommended prompt parasitological confirmation by microscopy or 51rapid diagnostic test (RDT) for all suspected malaria patients before starting the 52treatment [2]. Malaria RDTs were introduced in early 1990s and recently, they have 5354greatly enhanced the quality of malaria diagnosis in endemic areas [3]. These RDTs which are lateral flow immune-chromatographic tests (ICT), detect parasite antigens by 55specific monoclonal antibodies (mAbs). Commercial RDTs target one of three antigens 5657namely histidine rich protein 2 (HRP-2), plasmodial lactate dehydrogenase (pLDH) and aldolase. Despite high sensitivity and specificity for *Plasmodium falciparum* infections, 58

59 commercial RDTs have known deficiencies such as variable detection thresholds 60 especially in low transmission areas [4, 5]. There is a need, therefore, to improve current 61 diagnostic techniques and to develop RDTs targeting additional antigens to address the 62 current deficiencies as well as new challenges in malaria control.

Peroxiredoxin (Prx) is a ubiquitous family of antioxidant enzymes with molecular 63 64 size of 20-30 kDa that are present in organisms from all kingdoms [6]. In different parasites, it is shown that Prxs may be potentially valuable candidates for drugs and 65vaccines targets [reviewed by 7]. In addition, Prxs may have diagnostic value for the 66 67 detection of Leishmania spp., Echinococcus granulosus, Fasciola gigantica, Taenia spp. 68 [reviewed by 7] and Schistosoma japonicum [8, 9]. The cytoplasmic Prxs from P. falciparum, P. vivax and P. knowlesi have been characterized by our group [10, 11, 12]. 69 It was shown that *P. falciparum* thioredoxin peroxidase 1 (PfTPx-1) is constitutively 70and highly expressed through the erythrocytic cycle [13, 14] making it a promising 71candidate as a diagnostic antigen for malaria diagnosis. In this study, we produced 72several mAbs against PfTPx-1 and evaluated their potential to be used in RDTs. 73

74

75 **2. Materials and Methods**

76 2.1. Production and selection of mAbs

77	Recombinant PfTPx-1, P. vivax TPx-1 (PvTPx-1) and P. knowlesi TPx-1
78	(PkTPx-1) proteins were expressed as a fusion protein with N-terminal histidine-tag and
79	purified [11]. mAbs were produced as previously described [15]. Briefly, BALB/c mice
80	were immunized by rPfTPx-1 and hybridomas were developed by fusion of harvested
81	splenocytes to SP2/0 myeloma cells. Single step hypoxanthine-aminopterin-thymidine
82	(HAT) selection using methylcellulose and cloning of hybridoma was performed as
83	previously described with some modifications [16]. Hybridoma cloning medium
84	consisted of GIT medium (Nihon Pharmaceutical Co., Tokyo, Japan) containing 5%
85	fetal bovine serum, 5% BriClone (NICB, Dublin, Ireland), HAT and 1.75%
86	methylcellulose. Following 7-10 days incubation, hybridoma clones were picked and
87	grown in wells of 96 well tissue culture microplates and screened using enzyme linked
88	immunosorbent assay (ELISA) and Western blot. The animal experiments in this study
89	were carried out in compliance with the Obihiro University of Agriculture and
90	Veterinary Medicine Guidelines for Animal Experimentation (25-74).

92 2.2. Purification of mAbs

Isotyping of mAbs was performed using IsoStrip mouse monoclonal antibody
isotyping kit (Roche Diagnostics, Indianapolis, IN). IgG and IgM mAbs from

95	hybridoma culture supernatant were purified using protein G (GenScript, NJ, USA) and
96	protein L (GenScript, NJ, USA), respectively, according to manufacturer's instructions.
97	The purity of the mAbs was evaluated by SDS-PAGE under reducing conditions.
98	
99	2.3. Measurement of binding affinities of mAbs by ELISA
100	The binding affinities of mAbs were determined by measuring the dissociation
101	constant (K _d) as described before [17]. Briefly, constant amounts of mAbs were
102	incubated with various concentrations of rPfTPx-1 until the equilibrium was reached.
103	The mixture of antigen-antibody was then transferred to micro-titer plates previously
104	coated with rPfTPx-1 and the remaining unsaturated mAbs were measured by indirect
105	ELISA. K _d was determined using Klotz plot [17].
106	
107	2.4. Preparation of immunochromatographic tests
108	Fifty μ g/ml of mAb A1 or E4 (Table 1) was added gently to 1 ml of gold
109	nanoparticles (BBI Solutions, Cardiff, UK), then mixed and kept for 10 min at room
110	temperature for the immobilization of antibodies onto the gold nanoparticles' surfaces
111	by physical adsorption. After immobilization, 10 μl of 5% (w/v) polyethylene glycol
112	(PEG) and 100 μl of 10% (w/v) bovine serum albumin (BSA) solution were added to

113	block the non-coated gold nanoparticles' surfaces. After the immobilization and
114	blocking procedures, gold nanoparticle-conjugated mAb was separated by
115	centrifugation. The gold nanoparticle-conjugated mAb was pulse-sonicated for a few
116	seconds and was washed with 1 ml of PBS containing 0.05% (w/v) PEG and 0.5% (w/v)
117	BSA. After mixing, gold nanoparticle-conjugated mAb was collected by the same
118	process as described above. After pulse sonication, the gold nanoparticle-conjugated
119	mAb solution was diluted with the dilution buffer containing 20 mM Tris-HCl (pH: 8.2),
120	0.05% PEG and 3.5% sucrose to OD_{520} =6. The colloidal gold-conjugated mAb was
121	dried on a glass fiber and used as conjugate pad. 0.5 mg/ml of goat anti-mouse IgG
122	(ThermoFisher Scientific, IL, USA) and 1 mg/ml of mAb A1, E4 or D5 (Table 1) were
123	immobilized on the control and test line, respectively. The running buffer for ICTs was
124	100 mM Na borate (pH: 8), 1% triton X-100, 1% lactose, 1% casein [18].

125

2.5. Western blot 126

The in vitro culture supernatant P. falciparum 3D7 strain was centrifuged to 127remove cell debris and then concentrated with saturated ammonium sulfate. The culture 128supernatant proteins were electrophoretically separated using SDS-PAGE and 129transferred onto nitrocellulose membrane. Uninfected human erythrocyte lysate was 130

131	used to check the cross reaction of anti-PfTPx-1 antibodies with human peroxiredoxins.
132	The membrane was blocked by 5% skim milk and further incubated with mAb and
133	anti-rPfTPx-1 polyclonal antibody. Bound antibodies were detected using an anti-mouse
134	IgG horseradish peroxidase linked whole antibody (GE Healthcare, Buckinghamshire,
135	UK).
136	
137	3. Results
138	3.1 . Production and screening of mAbs
139	In this study, 11 different mAbs were produced against PfTPx-1 by screening the

140 hybridoma clones with ELISA and Western blot. Isotyping showed that 5 mAbs are IgG

141 and 6 mAbs are IgM with kappa light chains (Table 1). Since TPx-1 is a well conserved

142 enzyme in *Plasmodium* spp., we decided to clarify the cross reactivity of established

143 mAbs with the orthologous molecule of PfTPx-1 in *P. vivax* (PvTPx-1) and *P. knowlesi*

144 (PkTPx-1). Western blot analysis was conducted using recombinant PvTPx-1

145 (rPvTPx-1) and rPkTPx-1 proteins. As a result, all 6 IgM mAbs bind to rPvTPx-1 and

146 rPkTPx-1 while IgG mAbs did not, indicating the different targeting epitopes (data not

147 shown).

149 3.2 . Binding affinities of mAbs

In order to evaluate the potential of mAbs to be used for diagnosis, the binding affinities of mAbs were determined by measuring the dissociation constant (K_d) using regression analysis and Klotz plot (Supplementary Fig. S1) [17]. As it could be seen in table 1, K_d of all mAbs was around 1 or less than 1 nM indicating high affinity for all mAbs which is comparable with commercially used mAbs for malaria RDTs as well as previous studies [19, 20].

156

157 3.3 . The evaluation of ICTs targeting PfTPx-1

Using different combination of produced mAbs as colloidal gold-conjugated 158and/or test line, several ICTs were developed and their sensitivities were evaluated 159using rPfTPx-1. As a result, all IgM mAbs and mAb A4 did not show good sensitivities 160 (data not shown). Four ICTs showed the highest sensitivities (Fig. 1) using mAb A1 or 161 162E4 as colloidal gold-conjugated and mAb A1, E4 or D5 as test line. These ICTs were able to detect 0.2-0.5 ng of rPfTPx-1 and were further evaluated by in vitro culture 163 supernatant. All of them showed positive result when P. falciparum in vitro culture 164 165supernatant was used as sample, indicating the presence of PfTPx-1 in the culture 166 supernatant. In order to confirm this, Western blot analysis was done by transferring the

167	culture supernatant proteins onto nitrocellulose membrane and PfTPx-1 was detected by
168	specific antibodies. As shown in Figure 2, an approximate 22 kDa band corresponding
169	to PfTPx-1 was appeared, confirming the presence of PfTPx-1 in the culture supernatant.
170	Moreover, no reaction was seen with uninfected human erythrocytes lysate.

172 **4. Discussion**

173A prompt and reliable diagnostic system remains to be a challenge for malaria control. Most of malaria death could be prevented if the patients diagnosed and treated 174175promptly and accurately. Since the traditional microscopy is cumbersome and requires experienced technicians, RDTs have been introduced as an ideal alternative for 176177microcopy. The current commercial RDTs for malaria have known pitfalls such as genetic diversity and persistence of HRP-2 which made WHO to evaluate the 178 performance of RDTs [21]. To address this problem, improvement of current RDTs and 179evaluation of new target antigens are necessary. A number of alternative diagnostic 180 targets have been introduced namely dihydrofolate reductase-thymidylate synthase, 181 protein, glutamate-rich protein, 182heme-detoxification heat-shock protein 70. 183hypoxanthine phosphoribosyl transferase and 1-Cys peroxiredoxin [15, 19, 22, 23].

184

In this study, we introduced TPx-1 as a new promising candidate for malaria

185	diagnosis. TPx-1 is well conserved across the genus <i>Plasmodium</i> , with 83% amino acid
186	sequence identity among P. falciparum, P. vivax and P. knowlesi (supplementary Fig.
187	S2) and PfTPx-1 shares 45 % amino acid identity with human orthologue, Prx1. TPx-1
188	is constitutively expressed in asexual erythrocytic stages and gametocytes of
189	Plasmodium suggesting a housekeeping role for this enzyme [14, 24]. PfTPx-1 is a
190	cytoplasmic peroxiredoxin [13], which reduces and detoxifies hydrogen peroxides
191	through the action of the redox-active cysteine [25]. Moreover, during the trophozoite
192	stage, PfTPx-1 is one of the most abundantly expressed proteins in the parasite
193	cytoplasm, accounts for 0.25 to 0.5% of the total cellular protein [13].

Eleven mAbs were produced against PfTPx-1 by immunizing mice with 194195recombinant protein and subsequent hybridoma production. All mAbs showed high affinities (K_d of around 1nM) to be used for diagnostic purposes (Table 1). All IgM 196 mAbs bind to rPfTPx-1, rPvTPx-1 and rPkTPx-1 while IgG mAbs reacted only with 197 rPfTPx-1. This indicates that all IgM mAbs possibly target a common epitope in 198 PfTPx-1, PvTPx-1 and PkTPx-1, while, IgG mAbs possibly target PfTPx-1-specific 199 epitopes making these mAbs specific for *P. falciparum* and could be used for diagnosing 200201this human malaria parasite.

202

In order to evaluate the combination of two mAbs for detection of PfTPx-1,

203	different ICTs were developed and evaluated using rPfTPx-1 (data not shown). IgG1
204	mAbs showed the highest sensitivities and showed positive results when P. falciparum
205	in vitro culture supernatant was applied on these tests (Fig. 1). The presence of PfTPx-1
206	in culture supernatant was further confirmed by Western blot studies (Fig. 2). Since
207	PfTPx-1 is a cytoplasmic protein and is not associated with the parasite membrane [10],
208	it might be released upon schizont rupture. Furuta et al, (2008) reported that malarial
209	TPx-1 is a ligand protein for Toll-like receptor 4 and induces IgE-mediated protection
210	[26]. They suggested that TPx-1 might be released from the parasite when schizonts are
211	ruptured or infected erythrocytes are destroyed in the spleen [26]. During asexual
212	development of P. falciparum in the RBCs, late stages parasites are retained in the
213	capillary system of various organs which is called sequestration [27]. Since PfTPx-1
214	might be released during schizont rupture into the circulation, targeting PfTPx-1 may
215	improve the detection of sequestered parasites which cannot be seen by microscopy.
216	A key concern regarding to sensitivity of HRP-2-based RDTs is the genetic
217	variation of this antigen (Supplementary Table S2) in different geographical regions [28,
218	29, 30]. Besides the genetic diversity, lack of HRP-2 gene in <i>P. falciparum</i> isolates have
219	been reported from various countries [31, 32, 33], which limits the application of
220	HRP-2-based RDTs in these regions. PfTPx-1 does not show genetic variation

(Supplementary Table S2) which is another promising advantage of this antigen fordiagnostic purposes.

Another major concern with RDTs targeting PfHRP-2 is the persistence of this 223224antigen in the blood for long period after parasite clearance that not only produces false positive results but also decreases the usefulness of this antigen for drug-susceptibility 225testing and patients treatment follow up [reviewed by 34]. Therefore, a positive result of 226227PfHRP-2-based test may indicate a previous infection and should be confirmed using other diagnostics such as microscopy, PCR or RDT targeting other antigens [35]. To 228229further evaluate PfTPx-1 as a diagnostic antigen, it is worthy to determine the half life 230of this antigen in the patient's blood.

231

232 **5.** Conclusions

Here, we introduced and evaluated PfTPx-1 as a promising candidate for malaria diagnosis. The abundance and consistent expression of PfTPx-1 in *P. falciparum* together with having no genetic diversity makes this antigen a promising target for malaria diagnosis. Moreover, TPx-1 is well conserved across *Plasmodium* species and different from human orthologue. Four different ICTs targeting PfTPx-1 were developed and were able to detect this antigen in *P. falciparum in vitro* culture supernatant. The

239	release of PfTPx-1 in the culture supernatant was further confirmed by Western blot
240	studies. Taken together, these findings suggest that TPx-1 is a promising candidate for
241	malaria diagnosis.

243 Abbreviations

244	PfTPx-1: Plasmodium falciparum thioredoxin peroxidase 1; mAb: monoclonal
245	antibody; ICT: Immunochromatographic test; RDT: Rapid diagnostic test; HRP-2:
246	Histidine rich protein 2; pLDH: Plasmodial lactate dehydrogenase; Prx: Peroxiredoxin;
247	PvTPx-1: <i>P. vivax</i> TPx-1; PkTPx-1: <i>P. knowlesi</i> TPx-1; HAT:
248	Hypoxanthine-aminopterin-thymidine; ELISA: Enzyme linked immunosorbent assay;
249	SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis;
250	

251 Acknowledgments

252 This work was supported by a Grant-in-Aid for Scientific Research (23390098) from

```
253 the Japan Society for the Promotion of Sciences.
```

254 **Reference**

- 255 1. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman
- 256 N, Naghavi M, Lozano R, Lopez AD: Global malaria mortality between 1980 and
- 257 2010: a systematic analysis. *Lancet* 2012, 379:413-31.
- World Health Organization: Universal access to malaria diagnostic testing, an
 operational manual, WHO press 2011; Available:
 http://whqlibdoc.who.int/publications/2011/ 9789241502092_eng.pdf. Accessed 5
 Nov 2013.
- Zhao J, Lama M, Korenromp EL, Aylward P, Shargie E, Filler S, Komatsu R, Atun
 R: Adoption of rapid diagnostic tests for the diagnosis of malaria, a preliminary
 analysis of the Global Fund program data, 2005 to 2010. *PLoS ONE* 2012,
 7(8):e43549.
- 4. McMorrow ML, Aidoo M, Kachur SP: Malaria rapid diagnostic tests in elimination
 settings-can they find the last parasite? *Clin Microbiol Infect* 2011, 17: 1624-31.
- 268 5. The malERA Consultative Group on Diagnoses and Diagnostics: A research agenda
- for malaria eradication: diagnoses and diagnostics. *PLoS Med* 2011, 8(1):
 e1000396.
- 271 6. Rhee SG, Chae HZ, Kim K: Peroxiredoxins: a historical overview and peculative

273

preview of novel mechanisms and emerging concepts in cell signaling. *Free Radic Biol Med* 2005, 38: 1543–52.

- 274 7. Gretes MC, Poole LB, Karplus PA: Peroxiredoxins in parasites. *Antioxid Redox*275 *Signal* 2012, 17(4): 608-33.
- 8. Angeles JM, Goto Y, Kirinoki M, Asada M, Leonardo LR, Rivera PT, Villacorte EA,
- 277 Inoue N, Chigusa Y, Kawazu S: Utilization of ELISA using thioredoxin
- 278 peroxidase-1 and tandem repeat proteins for diagnosis of Schistosoma
- *japonicum* infection among water buffaloes. *PLoS Negl Trop Dis* 2012, 6(8):e1800.
- 280 9. Angeles JM, Goto Y, Kirinoki M, Leonardo L, Tongol-Rivera P, Villacorte
- E, Inoue N, Chigusa Y, Kawazu S: Human antibody response to thioredoxin
- 282 peroxidase-1 and tandem repeat proteins as immunodiagnostic antigen candidates
- for Schistosoma japonicum infection. Am J Trop Med Hyg 2011, 85:674-9.
- 10. Kawazu S, Komaki-Yasuda K, Oku H, Kano S: Peroxiredoxins in malaria
 parasites: parasitologic aspects. *Parasitol Int* 2008, 57(1): 1-7.
- 11. Hakimi H, Asada M, Angeles JMM, Inoue N, Kawazu S: Cloning and
 characterization of *Plasmodium vivax* thioredoxin peroxidase-1. *Parasitol Res* 2012,
- 288 111: 525**-**9.
- 289 12. Hakimi H, Asada M, Angeles JMM, Kawai S, Inoue N, Kawazu S: Plasmodium

- 290 *vivax* and *P. knowlesi*: cloning, expression and functional analysis of 1-Cys
 291 peroxiredoxin. *Exp Parasitol* 2013a, 113: 101-5.
- 292 13. Kawazu S, Komaki K, Tsuji N, Kawai S, Ikenoue N, Hatabu T, Ishikawa
- 293 H, Matsumoto Y, Himeno K, Kano S: Molecular characterization of a 2-Cys
- 294 peroxiredoxin from the human malaria parasite *Plasmodium falciparum*. *Mol*
- *Biochem Parasitol* 2001, 116:73-9.
- 296 14. Yano K, Komaki-Yasuda K, Kobayashi T, Takemae H, Kita K, Kano S, Kawazu S:
- Expression of mRNAs and proteins for peroxiredoxins in *Plasmodium falciparum* erythrocytic stage. *Parasitol Int* 2005, 54:35-41.
- 15. Hakimi H, Nguyen TT, Suganuma K, Masuda-Suganuma H, Angeles JM, Inoue N,
- 300 Kawazu S: Development of monoclonal antibodies that target 1-Cys peroxiredoxin
- 301 and differentiate *Plasmodium falciparum* from *P. vivax* and *P. knowlesi. Trop Med*
- 302 *Health* 2013b, 41(2): 55-9.
- 303 16. Davis JM, Pennington JE, Kubler AM, Conscience JF: A simple, single-step
- technique for selecting and cloning hybridomas for the production of monoclonal
- antibodies. *J Immunol Methods* 1982, 50(2):161-71.
- 306 17. Friguet B, Chaffotte AF, Djavadi-Ohaniance L, Goldberg ME: Measurements of
- 307 the true affinity constant in solution of antigen-antibody complexes by

enzyme-linked immunosorbent assay. J Immunol Methods1985, 77:305 -19.

309	18. Piper	RC,	Buchanan	I,	Choi	YH,	Makler	MT:	Opportunities	for	improving
310	pLDF	I-base	d malaria d	iag	nostic	tests.	Malar J	2011,	10:213.		

- 311 19. Kattenberg JH, Versteeg I, Migchelsen SJ, González IJ, Perkins MD, Mens PF,
- 312 Schallig HD: New developments in malaria diagnostics: Monoclonal antibodies
- 313 against *Plasmodium* dihydrofolate reductase-thymidylate synthase, heme
- detoxification protein and glutamate rich protein. *mAbs* 2012, 4:1:120-26.
- 20. Lee GC, Jeon ES, Le DT, Kim TS, Yoo JH, Kim HY, Chong CK: Development and
- evaluation of a rapid diagnostic test for *Plasmodium falciparum*, *P. vivax*, and
- mixed-species malaria antigens. *Am J Trop Med Hyg* 2011, 85(6): 989-93.
- 318 21. WHO-FIND-TDR: Malaria rapid diagnostic test performance: results of WHO
- product testing of malaria RDTs: Round 4, 2012; Available:
 http://www.who.int/malaria/publications/rapid_diagnostic/en/. Accessed 5 Nov
 2013.
- 322 22. Guirgis, BS, Sa e Cunha C, Gomes I, Cavadas M, Silva I, Doria G, Blatch GL,
- Baptista PV, Pereira E, Azzazy HM, Mota MM, Prudencio M, Franco R: Gold
- 324 nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal
- 325 Bioanal Chem 2012, 402: 1019-27.

326	23. Thezenas ML, Huang H, Njie M, Ramaprasad A, Nwakanma DC, Fischer R,
327	Digleria K, Walther M, Conway DJ, Kessler BM, Casals-Pascual C: PfHPRT: a
328	new biomarker candidate of acute Plasmodium falciparum infection. J Proteome
329	Res 2013, 12:1211-22.
330	24. Yano K, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, and Kawazu S: 2-Cys
331	peroxiredoxin TPx-1 is involved in gametocyte development in Plasmodium
332	berghei. Mol Biochem Parasitol 2006, 148: 44-51.
333	25. Wood ZA, Schroder E, Robin Harris J, Poole LB: Structure, mechanism and
334	regulation of peroxiredoxins. Trends Biochem Sci 2003, 28(1): 32-40.
335	26. Furuta T, Imajo-Ohmi S, Fukuda H, Kano S, Miyake K, Watanabe N: Mast
336	cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by
337	malarial peroxiredoxin. Eur J Immunol 2008, 38:1341-50.
338	27. Hatabu T, Kawazu S, Aikawa M, Kano S: Binding of Plasmodium
339	falciparum-infected erythrocytes to the membrane-bound form of
340	Fractalkine/CX3CL1. Proc Natl Acad Sci U S A 2003, 100:15942-46.
341	28. Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, Bell D, Cheng
342	Q: Genetic diversity of <i>Plasmodium falciparum</i> histidine-rich protein 2 (PfHRP2)
343	and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect

344 *Dis* 2005, 192: 870–7.

345	29. Lee N, Baker J, Andrews KT, Gatton ML, Bell D, Cheng Q, McCarthy J: Effect of
346	sequence variation in <i>Plasmodium falciparum</i> histidine-rich protein 2 on binding of
347	specific monoclonal antibodies: implications for rapid diagnostic tests for malaria. J
348	Clin Microbiol 2006, 44:2773-8.
349	30. Kumar N, Singh JP, Pande V, Mishra N, Srivastava B, Kapoor R, Valecha N,
350	Anvikar AR: Genetic variation in histidine rich proteins among Indian Plasmodium
351	falciparum population: possible cause of variable sensitivity malaria of rapid
352	diagnostic tests. Malar J 2012, 11:298.

- 353 31. Gamboa D, Ho MF, Bendezu J, Torres K, Chiodini PL, Barnwell JW, Incardona
- 354 S, Perkins M, Bell D, McCarthy J, Cheng Q: A large proportion of *P. falciparum*
- isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for
- malaria rapid diagnostic tests. *PLoS ONE* 2010, 5:e8091.
- 357 32. Houze S, Hubert V, Le Pessec G, Le Bras J, Clain J: Combined deletions of pfhrp2
- and pfhrp3 genes result in *Plasmodium falciparum* malaria false-negative rapid
- diagnostic test. J Clin Microbiol 2011, 49:2694-6.
- 360 33. Kumar N, Pande V, Bhatt RM, Shah NK, Mishra N, Srivastava B, Valecha N,
- 361 Anvikar AR: Genetic deletion of HRP2 and HRP3 in Indian Plasmodium

- *falciparum* population and false negative malaria rapid diagnostic test. *Acta Trop* 2013, 125:119-21.
- 364 34. Mouatcho JC and Dean Goldring JP: Malaria rapid diagnostic tests: challenges and
- 365 prospects. *J Med Microbiol* 2013, 62:1491-505.
- 366 35. Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, Hinrichs
- 367 DJ: Parasite lactate dehydrogenase as an assay for *Plasmodium falciparum* drug
- 368 sensitivity. *Am J Trop Med Hyg* 1993, 48:739-41.

mAb*	Isotype	$K_d(nM)$ #	SD¶
A1	IgG1	1.21	0.08
A4	IgG3	0.61	0.11
E4	IgG1	1.295	0.66
D5	IgG1	1.225	0.80
C6	IgG1	0.615	0.09
F1	IgM	0.96	0.49
B3	IgM	0.67	0.03
C4	IgM	0.975	0.69
A5	IgM	0.89	0.08
D6	IgM	0.79	0.04
F8	IgM	0.78	0.08

369 Table 1. Dissociation constants of monoclonal antibodies determined by ELISA

370 * Monoclonal antibodies tested.

- 371 # The dissociation constants (K_d) are calculated by Klotz plot [18].
- 372 ¶ Standard deviation.

Figure captions

374	Fig. 1. Reactivity of developed immunochromatographic tests with P. falciparum in
375	vitro culture supernatant. Monoclonal antibodies (mAbs) A1 or E4 was used as
376	gold conjugate (underlined). mAbs A1, E4 or D5 was used in test line and goat
377	anti-mouse IgG was used as control line. Lane 1: supernatant of non-infected
378	culture was used as negative control; lane 2: 10 µl of P. falciparum in vitro
379	culture supernatant was used.
380	
381	Fig. 2. Western blot analysis. Western blot analysis of P. falciparum in vitro culture
382	supernatant. Culture supernatant and uninfected human erythrocyte lysate proteins
383	were electrophoretically separated using SDS-PAGE and transferred onto
384	nitrocellulose membrane. M, Marker. Reactivity of mouse anti-PfTPx-1
385	polyclonal and monoclonal antibody A1 with culture supernatant (lane 1 and 3,
386	respectively) and human erythrocyte (lane 2 and 4, respectively).

Supplementary information

- Table S1. Primers for amplification of P. falciparum TPx-1 (PfTPx-1), P. vivax TPx-1

 (PvTPx-1) and P. knowlesi TPx-1 (PkTPx-1). Start and stop codons are underlined

 and restriction sites are italicized.
- Table S2. Total single nucleotide polymorphisms (SNPs) are from 143 P. falciparum

 strains. Source: PlasmoDB database.
- **Fig. S1.** Klotz plot of the binding affinities of mAbs measured by indirect ELISA. mAbs incubated with different concentration of rPfTPx-1 until the equilibrium is reached and the free mAbs are measured by ELISA. A0: OD in the absence of antigen; A: OD in the presence of antigen; a0: antigen concentration (nM).
- **Fig. S2.** Amino acid sequence alignment of PfTPx-1, PvTPx-1 and PkTPx-1. The identical residues among three sequences are boxed.

Hakimi et al. Figure 1

Hakimi et al. Figure 2

