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Abstract

Stem cell transplantation for stroke treatment has been a promising therapy in small and large animal 
models, and many clinical trials are ongoing to establish this strategy in a clinical setting. However, the 
mechanism underlying functional recovery after stem cell transplantation has not been fully established 
and there is still a need to determine the ideal subset of stem cells for such therapy. We herein reviewed 
the recent evidences showing the underlying mechanism of functional recovery after cell transplanta-
tion, focusing on endogenous brain repair. First, angiogenesis/neovascularization is promoted by trophic 
factors including vascular endothelial growth factor secreted from stem cells, and stem cells migrated 
to the lesion along with the vessels. Second, axonal sprouting, dendritic branching, and synaptogenesis 
were enhanced altogether in the both ipsilateral and contralateral hemisphere remapping the pyramidal 
tract across the board. Finally, endogenous neurogenesis was also enhanced although little is known how 
much these neurogenesis contribute to the functional recovery. Taken together, it is clear that stem cell 
transplantation provides functional recovery via endogenous repair enhancement from multiple ways. 
This is important to maximize the effect of stem cell therapy after stroke, although it is still undetermined 
which repair mechanism is mostly contributed. 
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Introduction

Stroke is the fourth leading cause of death and the 
most common cause of complex disability in Japan. 
The annual age-standardized mortality rate of stroke 
is decreasing steadily, but its morbidity is still a 
serious issue and the resultant symptoms can have 
a negative effect on quality of life.

recently, cell transplantation has emerged as a 
promising treatment option for cerebral infarction 
in various types of animal models.1–10) Despite many 
rodent studies showing that cell transplantation 
can improve recovery from stroke, the variables 
responsible for the success of these therapies are 
largely unknown. researchers have used numerous 
cell types transplanted into different locations at 
various time points after stroke, and have employed 
multiple behavioral tests to assess the transplant 
efficacy.4,10) any or all of these parameters may be 
critical for the outcome of functional recovery. 
No study has examined these different parameters 
systematically, and thus the optimal conditions 

for cell transplant therapy following stroke are 
unknown.11–13) The potential of transplanted cells 
to promote functional recovery is significantly 
influenced by the ischemic microenvironment. This 
bi-directional communication between the graft and 
host introduces challenges for successful transplant 
therapy of stroke. it is advocated that transplanted 
stem cells facilitate long-term functional recovery by 
migrating to the ischemic zone to enhance endog-
enous repair mechanisms by secretion of trophic 
factors.3,7) Focusing on the trophic factors provides 
a mechanistic understanding of how transplanted 
stems cells augment endogenous repair processes. 
importantly, it is not fully established that the trans-
planted cells enhance recovery by differentiation 
into neurons and integration into the host brain.14) 
in this review, we summarize the underling endog-
enous repair mechanisms, focusing on the endothe-
lium, neurons, astrocytes, and oligodendrocytes, 
and provide parameters to optimize the success of 
stem cell transplantation (Fig. 1). This approach is 
essential for further mechanistic investigation of the 
bi-directional communication that occurs between 
the host and transplanted cells.received august 1, 2014; accepted September 4, 2014
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factors associated with cell migration and homing 
to lesions (Fig. 2),16,17) but the interaction between 
transplanted cells and existing blood vessels has 
not been fully evaluated.

an increase in vascularization in the peri-infarct 
area after stroke is associated with neurological 
recovery.18,19) restoration of the blood flow after 
ischemia is thus important for the health and repair 
of brain tissue. New blood vessels are observed in 
the peri-infarct area as early as 3 days after stroke 
and continue to increase for at least 21 days.20) 
Transplantation of cells when the vasculature is 
functional would certainly benefit graft survival. 
However, if the function of the graft is to enhance 
neovascularization by production of angiogenic 
factors, then early delivery might be advantageous 
because changes in the expression of genes involved 
in angiogenesis occur. Studies reporting cell-enhanced 
vascularization after stroke have transplanted cells 
at 1–7 days post-stroke.7,21,22) Furthermore, sub-acute 
transplantation has been found to enhance neovas-
cularization in which stem cell-induced vascular 
endothelial growth factor (VegF) has a critical role 
as well as an anti-inflammatory effect.7) Moreover, 
these vascular events correspond with two patterns of 
functional recovery: an early mode of recovery, which 
is independent of neovascularization, and delayed 
recovery that is stem cell-secreted VegF dependent 
and coincides with increased vascularization.7)

The blood–brain barrier is also an important compo-
nent of the neurovascular unit, and its breakdown 
as well as edema formation both play key roles in 
the development of neurological dysfunction in 
cerebral ischemia. Tight junction proteins such as 

Fig. 1 Schematic showing the effects of transplanted 
stem cells on endogenous neurons, astrocytes, and 
endothelium, which are the major components of the 
neurovascular unit. BBB: blood–brain barrier.

Fig. 2 Targeted migration of stem cells to the ischemic lesion dependent on stromal derived factor-1 (SDF-1). 
Stem cells derived from SDF-1 knockout (A) and wild-type (B) mice. Asterisk indicates stem cells and double 
asterisks indicate the stroke explants in vitro. 

Angiogenesis and Neovascularization

it is well known that blood vessels and nerve fibers 
course throughout the body in an orderly pattern, 
often alongside one another.15) interestingly, trans-
planted stem cells migrate towards infarct lesions 
along existing vessels. Chemoattractants such as 
stromal cell-derived factor-1 and monocyte chem-
oattractant protein 1 are reported to be critical 
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occludin, claudin 5, and Zo-1 form the initial barrier 
at the endothelial cells between the blood and brain 
cells. Transplanted stem cells up-regulate expression 
of these tight junction proteins and contribute to 
blood barrier integrity by reducing leakage.7) The 
functional role has not been fully established for 
neovessels. However, in addition to tissue perfu-
sion, it has been revealed that neovessels express 
trophic factors that remodel damaged tissues in 
the brain after ischemia, form new synapses, and 
attract endogenous neuroblasts originating in the 
subventricular zone.23)

inflammation also plays an important role in 
ischemic stroke and other forms of ischemic brain 
injury. experimentally and clinically, the brain 
responds to ischemic injury with an acute and 
prolonged inflammatory process characterized by 
rapid activation of resident microglia, production 
of proinflammatory mediators, and infiltration of 
various types of inflammatory cells into the ischemic 
brain tissue. These cellular events collaboratively 
contribute to secondary brain injury. Transplanted 
cells have an anti-inflammatory effect even after 
2–3 weeks post-stroke, and interestingly, this effect 
is associated with the development of neovessels 
(Fig. 3).7)

Axonal Sprouting and Dendritic 
Branching

Following ischemia, enhanced axonal sprouting is 
found in the vicinity of the lesion, which extends 
from the intact cortex towards the deafferented cortical 
area.24,25) Stem cell-grafted rats demonstrate increased 
corticocortical, corticostriatal, corticothalamic, and 
corticospinal axonal rewiring from the contralesional 
side with transcallosal and corticospinal axonal 
sprouting correlating with functional recovery.3,26) 

Functional imaging has also shown similar remap-
ping of the brain after stroke, indicating recruitment 
of both ipsi- and contralesional brain areas at least 
in the first few weeks.27,28)

 Chronic changes in dendritic structural plasticity 
after stroke have been reported with increased 
contralesional layer V dendritic branching peaking 
at 18 days post-stroke, while ipsilesional layer iii 
branching decreases at 9 weeks post-stroke.29,30) 
our data show that stem cells enhance dendritic 
branching, length, and arborization at 3 weeks 
post-stroke in layer V cortical neurons in both the 
ipsi- and contralesional cortex.3) In vitro and in 
vivo studies have demonstrated that VegF, throm-
bospondin 1 and 2, and slit acting as mediators are 
partially responsible for stem cell-induced effects 
on dendritic sprouting, axonal plasticity, and axonal 
transport.3,31) another in vitro study showed that 
transplanted cells promote axonal outgrowth and the 
resistance of neurons against damage from oxygen-
glucose deprivation by paracrine effects mediated 
through the Pi3K/aKT signaling pathway.32) The 
endogenous Sonic hedgehog pathway has also been 
reported to mediate brain plasticity via tissue plas-
minogen activator for functional recovery of stroke 
following stem cell treatment.33) Thus, it has been 
postulated that transplanted stem cells aid recovery 
after stroke through secretion of factors that enhance 
brain repair and plasticity. 

Synaptogenesis

The ultimate change in brain plasticity is manifested 
at the synaptic level. Synapses are structurally and 
functionally diverse, and changes can occur at 
multiple levels from the relative number of excita-
tory and inhibitory synapses in different cortical 
layers to the subunit composition of a synaptic 

Fig. 3 Immunostaining of Iba-1 (microglia/monocytes) clearly showing that transplanted stem cells inhibit migra-
tion of Iba-1-positive cells in the peri-infarct area. A: sham-operated animal, B: stem cell-transplanted animal. 
Asterisk indicates the ischemic core. The number of Iba-1-positive cells negatively correlated with the blood 
vessel density ratio (BVD), suggesting an interaction between neovascularization and the inflammatory response.
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from endogenous neural stem/progenitor cells and 
decreasing inflammation in the injured area.23) it 
is also reported that graft-evoked neurogenesis 
is different depending on the graft location and 
stroke type.44) Nevertheless, it is still unclear how 
much stroke-induced or transplanted cell-induced 
neurogenesis contributes to the recovery in addi-
tion to endogenous angiogenesis, axonal sprouting, 
dendritic branching, and synaptogenesis. astro-
genesis and oligodendrogenesis have been also 
reported to be activated after stroke to promote 
brain remodeling and control cerebral blood flow 
and efficient neuronal signaling.35,45–47)

Translation of Stem Cell Therapy into 
the Clinic

Based on the evidence from animal studies, cell 
transplantation therapy is promising and some 
clinical trials are now ongoing to establish this 
strategy in clinical settings.48) However, there are 
many variables that may affect the efficacy of cell 
transplantation, including donor cells (cell type, 
safety, and auto vs. allogeneic), recipients (patient 
age, stroke subtype, and location), treatment strategy 
(acute, subacute, or chronic, delivery route, and cell 
dose),45) and validation (functional assessment and 
imaging).1) Therefore, it is important to establish 
standardized clinical protocols and database regis-
tries in advance of early proof-of-concept studies. 
in the united States, the Stem Cell Therapies as 
an emerging Paradigm in Stroke (STePS) meeting 
was organized to bring together clinical and basic 
researchers with industry and regulatory repre-
sentatives to assess the critical issues in the field 
and create a framework to guide future investiga-
tions, and the statements have been updated.11–13)  
a similar meeting committee has been organized by 
professional research facilities in Japan to prepare 
guidelines for cell therapy of stroke.
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