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Abstract: This paper describes a compact patch antenna intended for medical body area network.
The antenna is fed using a proximity coupling scheme to support the antenna that radiates in the free
space and on the human body at the 2.45 GHz ISM band. The conductor plane is placed 2 mm or
0.0163λ0 (λ0 is free space wavelength at 2.45 GHz) below the antenna to reduce backward radiation to
the human body. Separation distance must be kept above 2 mm, otherwise, gain of the proposed
antenna decreases when antenna is situated on the human body. The L-shape feed line is introduced
to overcome impedance mismatch caused by the compact structure. The coupling gap between the
proposed antenna and the length of the L-shape feed line are optimized to generate dual resonances
mode for wide impedance bandwidth. Simulation results show that specific absorption rate (SAR) of
the proposed antenna with L-shape feed line is lower than conventional patch antenna with direct
microstrip feed line. The proposed antenna achieves impedance bandwidth of 120 MHz (4.89%) at the
center frequency of 2.45 GHz. The maximum gain in the broadside direction is 6.2 dBi in simulation
and 5.09 dBi in measurement for antenna in the free space. Wide impedance bandwidth and radiation
patterns insensitive to the presence of human body are achieved, which meets the requirement of
IoT-based wearable sensor.
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1. Introduction

As the awareness for preventive healthcare grows, developments of antennas for wireless body
area networks (WBANs) have been increased gradually. Remote monitoring in medical applications
includes wearable devices available in various forms: implanted, body-centric, and textile-based
sensors. Several frequency bands have been allocated for WBAN communication systems, which
include industrial, scientific, and medical (ISM) band (2.4–2.48 GHz), and ultra wideband (UWB,
3.1–10.6 GHz) [1]. Transient characterization of body-centric wireless communications was conducted
on UWB body-worn antennas to detect pulses at various postures of test subject. Preservation of the
shape of the received pulse was demonstrated in [2]. An on-body propagation channel for hearing
aids and its link loss model at 2.45 GHz ISM band was proposed [3]. In recent years, 2.45 GHz band
has been allocated by FCC and ETSI (European Standards Organization) for the medical body area
network (MBAN). The MBAN system is intended for vital physiology parameters monitoring such as
blood pressure, electrocardiogram (ECG), and glucose level [4].

In smart MBAN application, antennas used for off-body communication include interaction
between sensors attached to or implanted in human body to external terminal. A study by Hall et al. [5]
shows that antenna in the vicinity of human body suffers from unstable surface currents due to the
near field coupling with the human body. The body area communication network requires antenna
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to have stable reflection coefficient and radiation pattern, irrespective of its working environment.
Microstrip patch antennas reported in the literatures have a narrowband with high Q-factor, thus the
input impedance of the antennas was susceptible to proximity coupling with the human body, resulting
in poor radiation efficiency.

Various antenna designs have been proposed for MBAN applications such as planar inverted-F
antennas (PIFAs) [6,7], electromagnetic bandgap-backed (EBG) monopole antenna [8], dual-mode
switchable antennas [9,10] and stacked antennas [11–13]. Most of the reported antennas were driven
by coaxial probes affixed orthogonally to the body surface. The protruded SMARF (subminiature
version a radio frequency) connector is not suitable for wearable devices. Radiation pattern diversity
in the dual mode switchable antenna raises a unique power requirement for the antenna to operate in
off-body communication links [9,10]. Low profile printed antennas backed by EBG-reflector consist
of a periodic structure that reduces electromagnetic leakage to the human body, but its operation
bandwidth is limited by the reflection phase characteristic of the periodic EBG-structure [8]. Apart from
the EBG-based reflector, a conductor plate can be used to reduce human body loading effect, but the
separation gap between microstrip patch antenna (MSA) and conductor plane must be larger than
a quarter wavelength, λ0/4 (λ0 is a wavelength in free space). This is due to out-of-phase reflected
signal from conductor plane that cancels out a normally incident plane, which causes impedance
mismatch at the input port of the antenna [14]. So, how could low profile structure (air gap less than
λ0/4) be achieved in MSA backed by a conductor plate, without compromising on antenna height
and performance?

In this work, a novel L-shape proximity feeding scheme is proposed to obtain a low-profile antenna
backed by a conductor plate. Wideband frequency response is achieved through dual resonances
mode from L-shape feed line and the antenna. The length and coupling gap of the L-shape feed line
are optimized to overcome the impedance mismatch caused by the small separation gap between
the antenna and conductor plate. Antenna performances are evaluated in the aspect of reflection
coefficient, radiation pattern, specific absorption rate in the free space, and on the human body.

2. Antenna Design

Figure 1a–c shows the direct-fed microstrip patch antenna (D-fed Rect-MSA), the proximity-fed
rectangular MSA (P-fed Rect-MSA), and the proximity-fed I-shape MSA (P-fed I-shape MSA). First of
all, the same patch size is used for D-fed Rect-MSA and P-fed Rect-MSA as shown in Figure 1a,b.
Next, the length la of P-fed Rect-MSA is reduced to I-shape (Figure 1c) to decrease patch size.
Last, impedance matching of the input port of P-fed Rect-MSA is achieved by using L-shape feed line.
In the experimental results, the proposed P-fed I-shape MSA in Figure 1c is compared with the D-fed
Rect-MSA in Figure 1a for antenna performance in the free space and on human body. Design and
analysis of D-fed Rect-MSA, P-fed Rect-MSA and P-fed I-shape MSA are performed using FDTD-based
full wave electromagnetic simulation software Remcom XFdtd.

Electronics 2020, 9, 21 2 of 15 

 

environment. Microstrip patch antennas reported in the literatures have a narrowband with high Q-
factor, thus the input impedance of the antennas was susceptible to proximity coupling with the 
human body, resulting in poor radiation efficiency. 

Various antenna designs have been proposed for MBAN applications such as planar inverted-F 
antennas (PIFAs) [6,7], electromagnetic bandgap-backed (EBG) monopole antenna [8], dual-mode 
switchable antennas [9,10] and stacked antennas [11–13]. Most of the reported antennas were driven 
by coaxial probes affixed orthogonally to the body surface. The protruded SMARF (subminiature 
version a radio frequency) connector is not suitable for wearable devices. Radiation pattern diversity 
in the dual mode switchable antenna raises a unique power requirement for the antenna to operate 
in off-body communication links [9,10]. Low profile printed antennas backed by EBG-reflector consist 
of a periodic structure that reduces electromagnetic leakage to the human body, but its operation 
bandwidth is limited by the reflection phase characteristic of the periodic EBG-structure [8]. Apart 
from the EBG-based reflector, a conductor plate can be used to reduce human body loading effect, 
but the separation gap between microstrip patch antenna (MSA) and conductor plane must be larger 
than a quarter wavelength, λ0/4 (λ0 is a wavelength in free space). This is due to out-of-phase reflected 
signal from conductor plane that cancels out a normally incident plane, which causes impedance 
mismatch at the input port of the antenna [14]. So, how could low profile structure (air gap less than 
λ0/4) be achieved in MSA backed by a conductor plate, without compromising on antenna height and 
performance? 

In this work, a novel L-shape proximity feeding scheme is proposed to obtain a low-profile 
antenna backed by a conductor plate. Wideband frequency response is achieved through dual 
resonances mode from L-shape feed line and the antenna. The length and coupling gap of the L-shape 
feed line are optimized to overcome the impedance mismatch caused by the small separation gap 
between the antenna and conductor plate. Antenna performances are evaluated in the aspect of 
reflection coefficient, radiation pattern, specific absorption rate in the free space, and on the human 
body. 

2. Antenna Design 

Figure 1a–c shows the direct-fed microstrip patch antenna (D-fed Rect-MSA), the proximity-fed 
rectangular MSA (P-fed Rect-MSA), and the proximity-fed I-shape MSA (P-fed I-shape MSA). First 
of all, the same patch size is used for D-fed Rect-MSA and P-fed Rect-MSA as shown in Figure 1a,b. 
Next, the length la of P-fed Rect-MSA is reduced to I-shape (Figure 1c) to decrease patch size. Last, 
impedance matching of the input port of P-fed Rect-MSA is achieved by using L-shape feed line. In 
the experimental results, the proposed P-fed I-shape MSA in Figure 1c is compared with the D-fed 
Rect-MSA in Figure 1a for antenna performance in the free space and on human body. Design and 
analysis of D-fed Rect-MSA, P-fed Rect-MSA and P-fed I-shape MSA are performed using FDTD-
based full wave electromagnetic simulation software Remcom XFdtd. 

   
(a) (b) (c) 

Figure 1. Geometry of the direct-fed (D-fed) antenna and the proximity-fed (P-fed) antennas. (a) D-
fed Rect-MSA; (b) P-fed Rect-MSA; (c) proposed P-fed I-shape MSA. 

Figure 1. Geometry of the direct-fed (D-fed) antenna and the proximity-fed (P-fed) antennas. (a) D-fed
Rect-MSA; (b) P-fed Rect-MSA; (c) proposed P-fed I-shape MSA.
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2.1. Antenna Design and L-Shape Feeding Scheme

The patch antenna of D-fed Rect-MSA and P-fed Rect-MSA is set to 0.253λ0 × 0.253λ0 at 2.45 GHz
(wp = wa and lp = la, refer to Figure 1a,b) for comparison purpose. Next, the patch antenna of the
proposed P-fed Rect-MSA, which exhibits broad impedance bandwidth, is reduced to become I-shape
as shown in Figure 1c. After the size of the antenna is reduced, a drastic increase of the resistance
and reactance of the input port of the antenna at 2.45 GHz are observed. Therefore, L-shape feeding
scheme is proposed and used to match impedance between P-fed I-shape MSA and feed line. The D-fed
Rect-MSA and P-fed I-shape MSA (proposed) are fabricated on 3.2 mm substrate with dielectric
constant εr = 3.3, and tan δ = 0.003 for comparison purpose. The resonance frequency from L-shape
feed line is estimated, as follows:

fL-shape =
1

2π
√(

L f Cg
) (1)

Lf is the total inductance from lf1 and lf2 of the L-shape feed line; Cg is the capacitance associated with
the coupling gap g shown in Figure 1b,c. The effect of the coupling gap on resonance frequency in
Equation (1) will be discussed in simulation results.

The design procedure starts by setting antenna resonance frequency to 2.45 GHz. In Figure 1b,c,
the L-shape feed line is proposed and placed in the vicinity of P-fed Rect-MSA to generate two
resonance frequencies in order to obtain wide impedance bandwidth. Next, the patch size of P-fed
Rect-MSA is reduced to become P-fed I-shape MSA, which is suitable for wearable sensors. To reduce
the human body loading effect on the antenna performance, a conductor plate is placed on the bottom
of the antenna. The separation gap between the conductor plate and antenna is kept small to realize
low profile structure. However, the low profile structure leads to a poor reflection coefficient in the
proposed P-fed I-shape MSA backed by the conductor plate. To improve the reflection coefficient,
key parameters such as coupling length lf1 and coupling gap g of L-shape proximity feeding scheme
are studied to reduce high impedance at the input port.

2.2. Parameter Analysis to Achieve Wideband Response

At the beginning of the antenna design, an identical patch antenna that resonates at 2.45 GHz
is chosen for D-fed Rect-MSA and P-fed Rect-MSA. The antennas are then fed by difference feeding
techniques for comparison purpose. Figure 2 shows simulated reflection coefficients for D-fed Rect-MSA
and P-fed Rect-MSA in the free space. By using the proximity feeding scheme presented in this work,
the simulated impedance bandwidth of P-fed Rect-MSA is 1.8 times wider than the one in D-fed
Rect-MSA, owning to the dual resonances mode generated by the L-shape feed line and the patch
antenna. To obtain a wide impedance bandwidth, the physical length lf1 of the L-shape feed line of
P-fed Rect-MSA is optimized to generate lower resonant mode from L-shape feed line at 2.4 GHz.

After the length la of P-fed Rect-MSA in Figure 1b is reduced from 31 mm (0.253λ0) to 27 mm
(0.221λ0), the upper resonant frequency is shifted from 2.45 GHz to 2.72 GHz as illustrated in Figure 3a.
Following the length reduction (la) of P-fed Rect-MSA, the upper and lower resonant frequencies fall
apart (dashed black line in Figure 3a). Figure 3b also demonstrates shift in upper resonance frequency
and drastic increase of Ohmic resistance at 2.45 GHz ISM band after the length la of rectangular P-fed
Rect-MSA is reduced (from 31 mm to 27 mm). To overcome the impedance mismatch between the
antenna and the L-shape feed line at 2.45 GHz, the center body of P-fed Rect-MSA is truncated to
become P-fed I-shape MSA. As a result, the upper resonant frequency is shifted back to 2.45 GHz ISM
band and the two resonant frequencies become close to each other again (solid red line showed in
Figure 3a). By increasing the length ls of truncated section in P-fed I-shape MSA, Ohmic resistance at
the input port is matched to 50 Ω at 2.45 GHz ISM band, as depicted in blue and red lines of Figure 3b.
The dual resonances mode with good reflection coefficient is achieved when ls is increased to 5.6 mm.
Then, the center frequency of P-fed I-shape MSA is adjusted to 2.45 GHz by truncating upper-left and
lower-right corners (lc = 2.4 mm) of the P-fed I-shape MSA.
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Figure 4 shows optimization of the coupling gap g between the I-shape patch and the L-shape feed
line of P-fed I-shape MSA in order to improve reflection coefficient. A wide impedance bandwidth
is realized by adjusting the coupling gap g of the L-shape feed line to reduce inductive reactance at
the input port of the proposed antenna. After the coupling gap g is reduced from 0.8 mm to 0.2 mm,
inductive reactance is reduced to half of its initial value at 2.45 GHz ISM band as depicted in Figure 4b.
As a result, wide impedance bandwidth with reflection coefficient less than 10 dB criterion from 2.36
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to 2.48 GHz is obtained in the free space (dashed black line in Figure 4a). From parametric analysis
in Figures 2–4, the process of obtaining wideband characteristic through L-shape proximity feeding
scheme can be summarized, as follows: (1) length ls of truncated section of P-fed I-shape MSA is
increased to bring upper and lower resonance frequencies to be close to each other. (2) Coupling gap g
is decreased to reduce inductance of the input impedance, so that wide impedance bandwidth with
reflection coefficient less than 10 dB criterion could be achieved.
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The Smith chart in Figure 5 describes impedance matching of the proposed P-fed I-shape MSA
using the L-shape feed line. After the proposed antenna size is reduced, the input impedance of
the antenna increases drastically, especially resistance at the input port of the antenna at 2.45 GHz
(Figure 3). Next, the coupling gap between the L-shape feed line and the antenna is reduced to 0.5 mm
to make the proposed antenna to become less inductive (Figure 4). Finally, two corners of the proposed
antenna are truncated to move input impedance at 2.45 GHz closer to circle centered at the coordinate
(0, 0) where Z = 50 Ω, as shown by yellow node in the smith chart.
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2.3. Conductor Plate in Low Profile Antenna Affixed to Human Body

Figure 6 shows the geometry of P-fed I-shape MSA and simulation setup for antennas affixed
to the human body. The proposed antenna is placed on above 200 × 200 mm2 tissue model which
consists of skin, fat, and muscle, mimicking human tissue. Table 1 shows dielectric properties obtained
from IT’IS Foundation for human tissue model. To reduce backward radiation to the human body,
the conductor plate is proposed and placed below the antenna. D-fed Rect-MSA and P-fed I-shape
MSA, which are placed in the free space and on human body, are simulated in the following conditions:
without the conductor plate, and with the conductor plate. When the 50 × 50 mm2 conductor plate is
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placed 2 mm below the P-fed I-shape MSA, the antenna has a poor reflection coefficient. The impedance
matching technique through the L-shape feed line discussed in Section 2.2 is repeated until the input
impedance of the proposed antenna is approximately 50 Ω at 2.45 GHz. Compared with the D-fed
Rect-MSA, the proposed P-fed I-shape MSA has more key parameters (coupling gap g, and truncated
section of I-shape antenna, ls) to tune for impedance matching.
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Table 1. Multilayer human tissue model [15].

Tissue Relative Permittivity εr Electric Conductivity (S/m) Tissue Thickness (mm)

Skin 38.1 1.43 1 mm
Fat 10.8 0.26 2 mm

Muscle 52.8 1.74 10 mm

Figure 7 shows the effect of separation distance between the proposed P-fed I-shape MSA and
conductor plate on the gain performance of the antenna. The separation distance is varied from 1 mm
to 4 mm, then the gain of antenna in the free space and on human body are observed. Figure 7a shows
the simulated gain of the antenna on the multi-layer tissue model (when the separation distance is
4 mm) is above 6 dBi across 2.45 GHz ISM band, which is higher than the gain of the antenna in the
free space. Low gain in the free space is due to limited size (50 × 50 mm2) of the ground plane and
reflector used. However, the increase of contact area between the human body and reflector enlarges
the conductor plate electrically. A separation distance of 2 mm (Figure 7b) is suitable for this work,
since the gain difference between the antenna in the free space and on the human body is less than
1 dB at 2.45 GHz ISM band. When the separation distance is reduced further to 1 mm, the human
body loading effect reduces the gain of the antenna on the human body (Figure 7c). The gain difference
between the antenna on the human body and antenna in the free space is more than 1 dB. For MBAN
application, it is recommended to keep the gain of the antenna consistent in the free space and on
human tissue. Otherwise, the gain difference corresponds to the working environment, which may
raise the demand of the RF power amplifier with auto gain control (AGC) feature for body area network
communication. Therefore, the separation distance of 2 mm is chosen in this work to obtain stable gain
for the antenna in the free space and on the human body.
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Figure 8 shows the simulated reflection coefficient for the D-fed Rect-MSA and P-fed I-shape MSA
in the free space and on the multi-layer tissue model. The operation bandwidth of the proposed P-fed
I-shape MSA at 2.45 GHz ISM band is wider than the D-fed Rect-MSA, irrespective of the working
environment. The D-fed Rect-MSA suffered a 30 MHz frequency shift after the antenna is moved
from the free space to the human body. It is worth mentioning that the proposed P-fed I-shape MSA
exhibits reflection coefficient less sensitive to human body loading effect. The resonance frequency
of the proposed P-fed I-shape MSA experiences only 10 MHz frequency shift at upper frequency.
It is worth noting that the reactance component of the proposed L-shape feed line is more robust to
the change in the working environment from the free space to the human body, which satisfies the
requirements of MBAN applications.

Figure 9a shows the influence of the conductor plate’s size on the gain response of the proposed
antenna in the free space. As can be seen, the conductor plate acts as a reflector for P-fed I-shape
at certain frequencies, start from2.45 GHz to 2.5 GHz. The size of the conductor plate determines
front-to-back (F/B) lobe ratio, where the antenna backed by larger conductor plate has higher gain than
the one backed by 50 × 50 mm2 conductor plate (Figure 9a). Since this work focuses on the compact
antenna design, the 50 × 50 mm2 (0.4λ0 × 0.4λ0) conductor plate is selected because it has stable gain at
center frequency (2.45 GHz) for the antenna in the free space and on human body. Figure 9b shows
the contribution of the conductor plate on the gain of P-fed I-shape MSA when it is placed on human
body and simulated as follows: (1) P-fed I-shape MSA with conductor plate; (2) P-fed I-shape MSA
without conductor plate. For the P-fed I-shape MSA without the conductor plate, gain degradation
exceeds 1.5 dB due to human body loading effect, while the gain of the P-fed I-shape MSA backed
by the conductor plate is slightly affected. Additionally, gain variation in P-fed I-shape MSA backed
by the conductor plate when the working environment is changed (from the free space to the human
body) is less than 1 dB from 2.42 GHz to 2.5 GHz.
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Figure 10a shows the radiation efficient of the proposed P-fed I-shape MSA and D-fed Rect-MSA
in the free space. Across the 2.45 GHz ISM band, the proposed P-fed I-shape MSA and D-fed Rect-MSA
have radiation efficiency over 90%. As for the D-fed Rect-MSA, radiation efficiency starts to decrease
when operating frequency is located below or above the center frequency (2.46 GHz). Loss due
to impedance mismatch in the direct microstrip feed line of D-fed Rect-MSA limits beamwidth of
the antenna. Figure 10b shows radiation efficiency of the proposed P-fed I-shape MSA and D-fed
Rect-MSA when the antennas are affixed to the human body. Compared with the D-fed Rect-MSA,
the radiation efficiency of the proposed P-fed I-shape MSA is less affected by human body loading.
Although decrease in radiation efficiency of the P-fed I-shape MSA affixed to human body is observed,
the antenna’s radiation efficiency exceeds 80% from 2.44 GHz to 2.54 GHz.
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Figure 10. Radiation efficient of P-fed I-shape MSA and D-fed Rect-MSA backed by conductor plate.
(a) Antennas in the free space; (b) antennas on the human body.

Figure 11 shows simulated 3D radiation patterns for the P-fed I-shape MSA backed by conductor
plate in the free space and on the human body at 2.45 GHz, in Figure 11a,b respectively. The back
lobe level decreases when the operating environment is changed from the free space to human body.
For the antenna affixed onto the human body, the area of contact between the conductor plate of the
P-fed I-shape MSA increases, thus the conductor plate becomes electrically large to suppress backward
radiation. The gain scale in Figure 11 shows gain of the antenna on the human body remains at 6.2 dBi
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regardless of the operating environment, however, the back lobe level is suppressed when the antenna
is moved from the free space (Figure 11a) to the human body (Figure 11b). Next, the specific absorption
rate is used to calculate average radiated power absorbed by human tissue due to electromagnetic
(EM) leakage from the proposed antenna.Electronics 2020, 9, 21 10 of 15 
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Figure 11. 3D radiation patterns of the P-fed I-shape MSA backed by conductor plate at 2.45 GHz in
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2.4. Specific Absorption Rate (SAR)

Amount of EM energy absorbed by the human body could be measured through specific absorption
rate (SAR). According to FCC regulations [16] and IEEE C95.1 [17], EM energy absorbed by the human
body should not exceed 1.6 W/kg averaged over 1 g of tissue. Figure 12 shows the SAR simulation
setup for the proposed antenna (backed by conductor plate) placed on multi-layer tissue. For SAR
evaluation, an identical simulation environment is used to evaluate SAR for D-fed Rect-MSA and the
proposed P-fed I-shape MSA, i.e., 50 × 50 mm2 conductor plate size is used. It is worthy to mention that
the maximum SAR in the P-fed I-shape MSA is 0.6414 W/kg, which is lower than SAR = 1.524 W/kg
in D-fed Rect-MSA when the incident power density at the antenna surface is 100 mW/cm2 (based
on FCC-regulated maximum power density). Low SAR in the proposed P-fed I-shape MSA is in
agreement with simulation results in Figure 11b, which shows that the back lobe is suppressed when
the P-fed I-shape MSA backed by the conductor plate is moved from the free space to the human body.
Next, the P-fed I-shape MSA and D-fed Rect-MSA are fabricated, measured, and compared to verify
the robustness of the antennas against human body loading effect.
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3. Fabrications

The proposed P-fed I-shape MSA and D-fed Rect-MSA were fabricated for comparison purpose.
The antennas were fabricated on polyphenylene ether (PPE) substrate (inset of Figure 13). Styrofoam is
then inserted as a spacer between antennas (substrate thickness ta = 3.2 mm) and conductor plates
(substrate thickness tr = 0.8mm). The total antenna height, including the conductor plate and styrofoam
(st = 2 mm), is 6 mm. The final dimensions of the P-fed I-shape MSA are listed in Table 2. SMA RF
connectors were mounted on the rear side of the antennas to ensure that the conductor plate on the
bottom of the P-fed I-shape MSA and D-fed Rect-MSA is in contact with the human body.
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Table 2. Dimension of the proposed P-fed I-shape MSA of Figure 6 (units in mm).
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4. Experimental Results

The proposed antenna (P-fed I-shape MSA) is compared with D-fed Rect-MSA for the antenna in
the free space and on the human body. Keysight 8719D vector network analyzer (50 MHz to 13.5 GHz)
was used to measure reflection coefficients of the antennas in the free space and on human body.
To investigate the human body loading effect, the proposed antenna was affixed on different parts
of the human body by using adhesive tape. Radiation patterns and antenna gain were measured
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and validated in the anechoic chamber. Horn antenna (Microwave Factory MDH0118) was used as
pre-calibrated standard gain antenna to measure the radiation patterns of the proposed antenna. The
gain of the proposed antenna is measured and calculated by using the gain comparison method.

4.1. Human Body Loading Effect on the Antenna Reflection Coefficient

Figure 13 shows the reflection coefficients of the proposed P-fed I-shape MSA and D-fed Rect-MSA
in the free space and on the human body. As can be seen in the figure, measured reflection coefficients
of the antennas in the free space and on the human body are agreed with simulation ones. Comparison
of Figure 13a with Figure 13b demonstrates that, in the presence of the human body, the L-shape
proximity feeding scheme introduced in this work is more robust to the change of working environment,
compared with direct feeding scheme in D-fed Rect-MSA. In simulation results, lower resonance
frequency of P-fed I-shape MSA disappears when the antenna is affixed onto human tissue model.
Contrarily, the measurement result shows lower resonance frequency and is not affected when the
antenna is affixed to the wrist. The disagreement in the lower resonance frequency between simulation
and measurement happens because the area of the wrist exposed to the electromagnetic wave is smaller
than than in the human tissue model (200 mm × 200 mm) used in the simulation. To further verify
the measured result, extra measurements on the reflection coefficients of the antenna were made on
different parts of human body.

Figure 14 shows the measured reflection coefficient of the P-fed I-shape MSA affixed to various
positions on the human body. It can be observed that measured reflection coefficient is insensitive to
being situated in close proximity to the human body. Reflection coefficient is only slightly affected when
the antenna is moved from wrist to the upper arm and chest. The proposed antenna has impedance
bandwidth (satisfies reflection coefficient less than 10-dB criterion) of 120 MHz at 2.45 GHz ISM band,
which is wider than D-fed Rect-MSA.
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4.2. Radiation Patterns and Measured Gain

Figures 15 and 16 shows normalized radiation patterns for the proposed P-fed I-shape MSA at
xz plane (ϕ = 0◦) and yz plane (ϕ = 90◦) at 2.45 GHz. In Figures 15 and 16, all dataset in xz plane
(co-polarized Eϕ) and yz plane (co-polarized Eθ) are divided by the peak gain at their respective planes.
Next, the normalized gain is plotted starting from the maximum value of 0 dB. Figure 15a,b shows,
for the case of antenna in the free space, the measured radiation patterns coincidence with the simulated
ones at broadside scenario along the positive z-axis. Simulated gain is 6.2 dBi and the measured gain is
5.09 dBi at 2.45 GHz along z-axis. Measured radiation patterns in both planes (xz-plane and yz-plane)
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are agreed with the simulations results for the antenna placed in the free space. By considering the
reliability of the simulation results, broadside radiation patterns coincident to the simulation results
are expected for the antenna affixed to the human body.Electronics 2020, 9, 21 13 of 15 
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Figure 16 shows the dominant electric fields in the observation planes (Eϕ in xz plane, Eθ in yz
plane) for the antenna in the free space and on the human body. The proposed P-fed I-shape MSA
has stable antenna gain at broadside, even when the antenna is being situated on the human body.
The radiation pattern of the antenna on the human body is unidirectional, which is similar to radiation
pattern of the antenna in the free space. The Eϕ and Eθ components of the P-fed I-shape MSA in free
space are slightly lower than the one affixed to the human body, due to the high back lobe of the
antenna placed in the free space, which has a limited area of conductor plate (50 × 50 mm2). When the
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proposed antenna is affixed to the human body, the contact area between the conductor plate and the
human body becomes electrically large, therefore the back lobe level is suppressed.

Table 3 shows comparisons of the proposed antenna with other state-of-art antennas for the body
area network. There are distinct differences between unidirectional antennas and omnidirectional
UWB antennas in terms of gain characteristic and impedance bandwidth, therefore antennas with
unidirectional characteristics are selected for comparison. As can be seen in the table, the proposed
antenna has an operation bandwidth almost the same as EBG-backed antenna. Wide impedance
bandwidth is achieved in the work, owing to extra resonance from L-fed feed line. For low profile
antennas discussed, the size of conductor plate in the proposed work is slightly smaller than
a metasurface that consists of periodic structure [7,8]. Gain difference between the proposed antenna
in the free space and on the human body is less than 1 dB across 2.45 GHz ISM band. Air gap of 2 mm
(0.016λ0) in the proposed antenna is smaller than air gap in EBG-backed antennas in [7,8]. Regardless
of the operating environment, gain of the proposed antenna has a stable radiation pattern which makes
its suitable to be deployed on the human body and remote terminals.

Table 3. Performance comparison with other state-of-art wearable antennas.

Ref. Size (mm3)
w × l × h *1 Size Comparison f 0 (GHz) Radiation Pattern BW (MHz) Max. Gain *2 (dBi)

[7] 83 × 83 × 7 321.5% 2.45 Unidirectional 130 4.5
[8] 68 × 38 × 6.6 113.7% 2.45 Unidirectional 119.6 6.88
[9] π(24)2

× 3.2 38.6% 2.45 Unidirectional 25 3.83
This work 50 × 50 × 6 100% 2.45 Unidirectional 120 5.09

*1 Total height of antenna includes antenna thickness, air gap and EBG (electromagnetic bandgap) plate or conductor
plate. *2 Measured peak gain for antenna in the free space.

5. Conclusions

A compact microstrip patch antenna backed by a conductor plane has been presented.
The conductor plate functions as reflector, and is placed below the antenna to suppress EM radiation
to the human body. The proposed antenna with the L-shape proximity feeding scheme generates
a dual-resonances mode for a wide impedance bandwidth. Additionally, the proposed feeding scheme
offers more parameters for impedance matching in order to realize low profile antenna. A prototype
was designed, fabricated, and compared with the conventional direct-fed patch antenna. Measured
reflection coefficient and radiation characteristics of the proposed antenna agree well with the simulation
results, which shows wide impedance bandwidth at 2.45 GHz ISM band for antenna working in the
free space and on the human body. The calculated SAR value below FCC limitation demonstrates that
the proposed antenna is suitable for smart MBAN applications. For future works on the body-centric
antenna, study on the reflection phase corresponds to the separation distance between the antenna and
conductor plate is required to find achievable maximum gain. Additionally, fabrication of a phantom
mimicking the characteristic of human tissue is required for radiation pattern measurement of the
body-centric antenna affixed to the human body.
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