1	Temporal characteristics of groundwater chemistry affected by the 2016 Kumamoto
2	earthquake using self-organizing maps
3	
4	Kei Nakagawa*, Zhi-Qiang Yu, Ronny Berndtsson, Takahiro Hosono
5	
6	Kei Nakagawa (⊠)
7	Institute of Integrated Science and Technology, Nagasaki University,
8	e-mail: kei-naka@nagasaki-u.ac.jp
9	Tel.: +81 95 819 2763; fax: +81 95 819 2763
10	* corresponding author
11	
12	Zhi-Qiang Yu
13	Graduate School of Fisheries and Environmental Sciences, Nagasaki University,
14	1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
15	
16	Ronny Berndtsson
17	Division of Water Resources Engineering & Center for Middle Eastern Studies, Lund University,
18	Box 118, SE-221 00 Lund, Sweden

20 Takahiro Hosono

21 Department of Earth and Environmental Science, Kumamoto University,

- 22 2-39-1 Kurokami, Kumamoto 860-8555, Japan
- 23

```
24 Abstract
```

25Possibilities to perform pre- and post-seismic groundwater chemical comparisons on regional 26 groundwater flow systems are rare due to lack of data and observations. The Kumamoto earthquake 27provides an unusual opportunity to improve the knowledge on earthquake hydrology and earthquake 28 effects on hydrochemistry of groundwater due to a wealth of pre- and post-quake observations. We 29 analyzed 12 physiochemical parameters (SiO₂, (NO₃⁻+NO₂⁻)-N, Fe_{total}, Mn_{total}, pH, F⁻, Cl⁻, SO₄²⁻, Na⁺, K^+ , Ca^{2+} , and Mg^{2+}) using self-organizing maps (SOM) combined with hydrological and geological 30 31 characteristics to improve the understanding of changes in groundwater chemistry after a major 32 earthquake. The results indicate that the earthquake induced hydrological and environmental change 33 via fault forming (Suizenji fault systems), liquefaction, rock fracturing, and ground shaking. These 34 geological processes created rock fresh reactive surfaces, rock loosening, and enhancement of 35 hydraulic conductivity. In turn, this lead to secondary processes in groundwater chemistry by 36 advection, dilution, and chemical reaction. The most obvious indicator of hydrological and

37	environmental change was from the increased dissolved silica content stemming from fracturing and
38	Si-O bond cleavage in silicate rocks. Besides this, decreasing concentration of common ions (Cl ⁻ , F ⁻ ,
39	Na^+ , K^+ , Ca^{2+}) was found due to dilution from mountain-side water release. Increase in
40	$(NO_3^++NO_2^-)-N$, SO_4^{-2-} , and Mg^{2+} concentration occurred locally due to soil leaching of contaminants
41	or agricultural fertilizers through surface ruptures in recharge areas. Increase of SO_4^{2-} content also
42	originated from leaching of marine clay in coastal areas and possibly sporadic deep crustal fluid
43	upwelling. Increase in $(NO_3^++NO_2^-)-N$ and Cl^- content occurred from sewage water pipe breaks in
44	the Suizenji fault formation in urban areas. Decrease of pH occurred in a few wells due to mixing of
45	river water and different types of aquifer groundwater. Increase of Fe_{total} and Mn_{total} concentration
46	possibly originated from leaching of marine clay by liquefaction in coastal areas. However, in most
47	cases the water chemistry changes were subtle, thus not resulting in any groundwater quality
48	deterioration of water supplies.
49	
50	Keywords: Kumamoto earthquake; Self-organizing maps; Groundwater geochemistry; Earthquake
51	hydrology

1. Introduction

54 On 16 April 2016, a 7.0 Mw earthquake struck the Kumamoto area on Kyushu Island (southern

55	Japan), resulting in severe damage to infrastructure, buildings in the epicenter area, and more than
56	200 fatalities. A series of mainly three \geq 5.5 Mw foreshocks and four >5.0 Mw aftershocks
57	accompanied the main-shock within a week, forming the Kumamoto earthquake sequence. Its focal
58	mechanism was a strike-slip movement of the active Hinagu-Futagawa faults and the largest inland
59	earthquake on Kyushu Island since implementation of observations in 1885. It was a shallow
60	earthquake with a focal depth of about 11 km (Japan Meteorological Agency, 2016; Lin, 2017;
61	Hosono et al., 2018).
62	Crustal earthquakes induce large tectonic and crustal deformation such as surface ruptures,
63	liquefaction, and mountain landslides in affected regions. Simultaneously, these geological structure
64	deformations and ground shaking usually trigger hydrological and environmental phenomena. Such
65	phenomena involve eruption of mud volcanoes, increased streamflow discharge, formation of new
66	springs, depletion of existing springs, liquefaction, groundwater temperature variation, anomalous
67	fluctuations in groundwater levels, and water chemical composition changes (Tsunogai and Wakita,
68	1996; Claesson et al., 2004; Cox et al., 2012; Shi et al., 2015; Wang and Manga, 2010, 2015; Rosen
69	et al., 2018). Some of the first observations including well-documented earthquake precursors such
70	as radon anomalies in deep groundwater were done at the Tashkent earthquake in 1966. Radon
71	concentration, in several deep wells (depth of 1200~2400 m) in the affected areas, gradually
72	increased and reached a maximum concentration at the precede of the earthquake (Ulomov and

73	Mavashev, 1971). Since then, groundwater chemistry variation prior to the earthquake has been
74	suggested as an indicator for seismic prediction. In order to find scientific methods for earthquake
75	forecasting, continuous monitoring of anomalous hydrological and hydro-geochemical response is
76	necessary. Such studies include long-term monitoring of groundwater concentration change, water
77	level variation characteristics, and frequent water sampling for hydro-geochemical analysis in
78	sensitive seismic areas (Igarashi et al., 1995; Chia et al., 2001; Claesson et al., 2004; Koizumi et al.,
79	2004; Skelton et al., 2014). Many studies have been devoted to pre-seismic and co-seismic
80	hydrological phenomena such as groundwater physicochemical variables (e.g., dissolved ions, inert
81	gas, isotope content, trace elements, EC, and pH) and anomalous water level variation to elucidate
82	mechanical principles of occurring hydro-geochemical phenomena to further explore the possibility
83	of earthquake precursors. The results of these efforts can be summarized as follows; 1) aquifer
84	rupturing induces mixing of different aquifer groundwater in aquifer material strain and/or fracture
85	zones, 2) ground and bedrock shaking causes rock loosening that facilitates release of partly stagnant
86	fluids, 3) rock fractures give rise to increase of fresh rock reactive surfaces, and 4)
87	earthquake-induced geological tectonic deformations release deep geothermal fluids into
88	groundwater or springs (Thomas, 1988; Tsunogai and Wakita, 1996; Hartmann and Levy, 2005;
89	Barberio et al., 2017; Paudel et al., 2018; Rosen et al., 2018).

Groundwater studies in the Kumamoto area are made using multiple techniques and

91	methods. Water supply for residents in the Kumamoto area is mainly from groundwater resources.
92	Thus, high-resolution monitoring wells are used for ensuring safe water quality and quantity.
93	Research in the area before the earthquake, has included a comprehensive regional hydrogeological
94	and hydro-geochemical survey that has accumulated a wealth of hydrogeological background
95	information and groundwater data (Hosono et al., 2013; Hosono et al., 2014; Kagabu et al., 2017).
96	Most of the geochemical elements in the groundwater have been shown to be relatively stable during
97	five years before the Kumamoto earthquake. Some groundwater constituents, however, such as
98	nitrate and fluoride, have had an increasing trend due to anthropogenic activities (Hosono et al.,
99	2013; Hossain et al., 2016a).
100	Reference studies are of vital significance for further insight into earthquake-related
101	hydrological processes. Sano et al. (2016) studied links between co-seismic deep groundwater
102	helium anomalies and earthquake-related geophysical tension changes in the earthquake area. They
103	suggested that helium emission may be caused by rock fracturing in the seismic fault zone. Helium
104	content was positively correlated with fault distance. By applying lab experiments to show the

association between helium degassing and rock fracturing under compressive tension, the authors 105 106 proposed that helium anomaly change in the seismic fault area may be a new approach for earthquake prediction (Sano et al., 2016). Hosono et al. (2018) interpreted earthquake-induced 107108 geological structural deformation using two kinds of hydrological phenomena in the active Aso

109	volcanic system. By numerical calculation and hydro-geochemical data analysis, they evaluated
110	enhanced hydrothermal solute fluxes and mechanisms for new spring formations. Nakagawa et al.
111	(2019) analyzed transient spatiotemporal variation in groundwater level characteristics in the study
112	area using self-organizing maps (SOM). By a comparative analysis of water level change features for
113	foreshock and main-shock, the authors concluded that spatial variation in groundwater levels is
114	likely to be affected by local geophysical aquifer characteristics, earthquake magnitude, and
115	hypocenter distance. Meanwhile, most of the unconfined aquifer wells (shallow wells with a depth of
116	about 0~50 m) quickly recovered to initial water levels after several hours to a few days after the
117	earthquake due to hydrostatic head. Most confined aquifer wells (deep wells at about 60~200 m) in
118	the study area, however, need weeks to several months to recover to normal levels after an
119	earthquake. Observation of these processes is crucial for a better understanding of earthquake effects
120	associated with hydrological phenomena as well as for possible earthquake-prediction indicator use.
121	Nakagawa et al. (2019) applied statistical methods to analyze groundwater level change affected by
122	the earthquake. By analysis of the spatiotemporal distribution of groundwater level change after
123	earthquake, an emergency water resources management practice was proposed (Nakagawa et al.,
124	2019). However, this practice was suggested by only considering groundwater level changes (water
125	quantity changes). Changes in water quality after earthquakes were not considered. Thus, in the
126	present study, we explore observed groundwater chemical changes and try to link them to

127 earthquake-induced hydro-geochemical processes. Systematic studies of post-earthquake hydro-geochemical groundwater conditions are still very rare. The great magnitude of the 128 129 Kumamoto earthquake together with a unique hydro-geochemical pre- and aftershock data collection 130 provide an unusual opportunity to improve our knowledge on seismic effects on hydro-geochemistry. In this spirit, self-organizing maps (SOM) were applied to explore the complex spatiotemporal 131 132 interactions of earthquake-induced hydro-geochemical changes in groundwater. The SOM helps to 133 interpret similarity in complex spatiotemporal variation patterns not easily distinguished by 134 traditional statistics. Similarly, the SOM together with cluster analysis are efficient in distinguishing 135 between different groups of geochemical elements that can be systematically compared to different 136 earthquake induced processes. According to this, concentration change ratios before and after the earthquake for 12 physicochemical variables were analyzed. The results are discussed in terms of 137 138 changes in geophysical aquifer characteristics due to the earthquake. Finally, the robustness of the 139 SOM analyses is discussed.

140

141 **2. Study area**

The Kumamoto groundwater aquifer is recharged from the Shirakawa and Midorikawa River Basins
(Fig. 1). The two basins cover an area of 945 km². The aquifer is surrounded by the Aso Mountain
(1592 MASL) in the east, the Ariake Sea and Kinpo Mountain (665 MASL) in the west, the

145	Midorikawa River in the south, and the Shirakawa River in the north. The groundwater is mainly
146	recharged from the Aso Mountain area and three major highlands (Ueki, Kikuchi, and Takayubaru
147	highland areas) together with surface water from the two rivers (Taniguichi et al., 2019).
148	Subsequently, groundwater discharges from the lowlands into the Ariake Sea (Hosono et al., 2013;
149	Hossain et al., 2016a). The geological features contain four main parts; 1) bedrock of Paleozoic
150	metamorphic rock, Mesozoic granitic rock, and marine sediments, 2) pre-Aso volcanic rock from the
151	Tertiary-Quaternary period, 3) Quaternary Aso volcanic rock, and 4) marine lacustrine deposits.
152	Paleozoic and Mesozoic rock is the base bedrock with no outcrops in the study area. The pre-Aso
153	volcanic rock is composed of lava and tuff breccia, constituting the Kinpo and Tatsuta mountains.
154	Mount Aso volcanic rock is constituted by four main eruptions (Aso-1 (270 ka), Aso-2 (140 ka),
155	Aso-3 (120 ka), and Aso-4 (89 ka)), constituting pyroclastic deposits as well as lava flows. A
156	geological background map is shown in Fig. 2. Aso volcanic rock has great spatial extension in the
157	study area and constitutes an important two-layer structured aquifer. The uppermost Aso-4 and
158	partial alluvial deposits form a near-surface unconfined aquifer. The Aso-1, Aso-2, and Aso-3 have
159	developed into a confined aquifer. The former aquifer thickness is uneven, from a few meters to 50
160	m depth, while the latter aquifer thickness ranges from 60-200 m below soil surface. Discontinuous
161	alluvial deposits and marine sediments form an aquiclude between the unconfined and confined
162	aquifers (Hosono et al., 2013; Hosono et al., 2014; Kagabu et al., 2017). In addition, a thick marine

163	clay from marine silt and sand bed of Shimabara Bay formation covers the unconfined aquifer in the
164	coastal area (Hossain et al., 2016b). In tectonic terms, Kyushu Island is located on a subduction zone
165	of tectonic plates, where the Philippine Sea plate is subducting below the Eurasian plate toward
166	northwest. The average rate of plate convergence is about 7 cm per year (Seno et al., 1993). At the
167	same time, the active Hinagu-Futagawa seismogenic fault zone is located on the western extension
168	of the Median Tectonic Line throughout the Kumamoto area. Paleoseismic studies indicate that
169	morphogenic crustal earthquakes (≥7 Mw) occur periodically in the active Hinagu-Futagawa fault
170	zone. The periodic interval is about once a millennium (Chen et al., 2017; Lin et al., 2018). The
171	recurrent crustal earthquakes, may induce major hydrological phenomena with a similar periodic
172	occurrence. Examples of these may be new spring formations and depletion of previously existing
173	springs near causative faults (Hosono et al., 2018).
174	The regional climate is subtropical humid. Average annual temperature and rainfall are
175	approximately 16.9 °C and 1986 mm, respectively. About 40% of the annual precipitation stem from
176	the summer monsoon during June and July (Japan Meteorological Agency, 2018).
177	
178	3. Materials and methods
179	3.1 Self-organizing maps (SOM)

180 SOM is a kind of artificial neural network, which was originally developed by Kohonen (1982;

181	2001). SOM is a powerful and effective tool for complex data analyses such as classification, data
182	mining, estimation, and prediction with unsupervised training. Consequently, SOM has been used in
183	many disciplines (e.g., meteorology, hydrology, ecology, and groundwater) (e.g., Nishiyama et al.,
184	2007; Kalteh et al., 2008; Bedoya et al., 2009; Nguyen et al., 2015; Nakagawa et al., 2017). Its main
185	advantage is that it can project high-dimensional, complex target data into a low-dimensional array
186	(usually two-dimensional), regular visualized map on the basis of data similarity characteristics (Jin
187	et al., 2011; Nguyen et al., 2015). Using SOM, informative reference vectors are obtained via
188	iterative updates under three main successive procedures, which is competition with nodes, selection
189	of a winner node, and updating of the reference vectors (Choi et al., 2014; Yu et al., 2018). However,
190	selection of proper initialization and data processing methods is extremely important before applying
191	SOM. According to SOM properties, a larger map size enables obtaining a higher resolution pattern
192	recognition. The optimum number of SOM nodes is decided by heuristic rule based on,
193	$m = 5\sqrt{n} \tag{1}$
194	where m stands for the number of SOM map nodes and n is the number of input data. The number of
195	vertical and horizontal columns is based on the square root of the ratio between the two largest
196	eigenvalues of transformed data. The eigenvalues are acquired from principal component analysis
197	(Hilario and Ivan, 2004; Hentati et al., 2010; Nguyen et al., 2014).

Following the above general methodology, the SOM structure was determined.

199	Subsequently, the reference vector was obtained. The k-means algorithms are frequently applied for
200	efficient clustering of SOM reference vectors (Jin et al., 2011). Davies-Bouldin Index (DBI) can be
201	used to determine the optimal cluster number based on k-means algorithms. The calculation is in
202	accordance with "similarity within a cluster" and "dissimilarity between cluster". After this, a
203	fine-tuning cluster analysis was implemented by using Ward's method (Güler et al., 2002). The
204	smallest DBI corresponds to an optimal number of clusters (Nguyen et al., 2015). More details on
205	SOM can be found in Kohonen (1982; 2001), Vesanto et al. (2000), and Nakagawa et al. (2017). The
206	above calculation steps were carried out applying a modified version of SOM Toolbox 2.0 (Vesanto
207	et al., 2000).

. . .

1 701

• . 1

1. 1.0

208

100

209 **3.2 Sampling and chemical analysis**

.1

c

Groundwater chemical data were obtained from two different administrative departments in Kumamoto (Kumamoto City and Kumamoto City Waterworks and Sewerage Bureau). The two departments sample groundwater from 35 and 132 wells, respectively. Kumamoto City carries out water sampling in June and October and Kumamoto City Waterworks and Sewerage Bureau performs water sampling in April, August, and November. Due to different measuring purposes and agendas of the two departments, observed variables and sampling dates are different between the two departments. Groundwater wells and chemical constituents were chosen so as to cover a 217 representative area of the groundwater aquifer and a maximum number of joint chemical 218constituents. After an initial analysis of available data, we found that most of the observed 219physiochemical parameters such as heavy metals and organic substances are continuously below the 220 detection limit. Thus, 12 physiochemical parameters were selected as input vector for the SOM 221 analysis due to observations by both departments and occurrence of regular non-zero values. These variables are dissolved silica (SiO₂), nitrate nitrogen ((NO₃⁻+NO₂⁻)-N), dissolved total iron (Fe_{total}), 222 dissolved total manganese (Mn_{total}), pH, Fluoride (F⁻), chloride (Cl⁻), sulfate (SO₄²⁻), sodium (Na⁺), 223 potassium (K^+), calcium (Ca^{2+}), magnesium (Mg^{2+}). These observations come from 67 groundwater 224 225 wells (Fig. 1; Aster Global DEM V2 from earth data of NASA (http://gdex.cr.usgs.gov/gdex/)). Well 226 characteristics (well depth, screen depth, and aquifer type) are summarized in Table 1. Other well 227 information (size, water level, and hydrogeological parameters) is described in the supporting 228 information of Hosono et al. (2019). Similar to Hosono and Masaki (2020), we estimated long-term 229 normal concentration for 2016 (pre-earthquake) by linear regression and data from 2011 to 2015. A 230 concentration ratio was calculated by dividing concentration just after the earthquake by estimated 231 concentration using 5-year data before the earthquake: measured concentration in 2016 concentration ratio = $\frac{1}{\text{estimated concentration in 2016 based on 5-year data before earthquake}}$ 232 (2) 233 The concentration ratio was used as input to the SOM calculations to evaluate the 234 earthquake-induced effects on the groundwater chemistry. If ion concentration was zero, the

235	concentration ratio of the sample was set to zero. Reference vectors from the SOM analysis were
236	divided into groups by use of cluster analysis with k-means and Ward's algorithms. Radar charts for
237	each cluster were used to analyze the extent of the earthquake on the 12 investigated groundwater
238	chemicals. A general criterion that was used to analyze effects of the earthquake is the ± 2 times of
239	standard deviation plus the estimated concentration. This criterion defined the upper limit and lower
240	limit of groundwater chemistry fluctuation caused by the earthquake. If concentration fluctuated
241	within the range of this threshold, it is interpreted as normal variation. The opposite case is
242	interpreted as an earthquake-induced change (Claesson et al., 2004; Skelton et al., 2014; Hosono and
243	Masaki, 2020).

244

245 4. Results and discussion

246 4.1 SOM and clustering analysis

Concentration ratios of the 12 physiochemical variables (SiO₂, (NO₃⁻+NO₂⁻)-N, Fe_{total}, Mn_{total}, pH, F⁻, 247 Cl⁻, SO₄²⁻, Na⁺, K⁺, Ca²⁺, and Mg²⁺) for the 67 sampling locations was used as input to the SOM 248 249 calculations. The number of SOM node reference vectors was calculated to 42, with 7 vertical and 6 250 horizontal columns. SOM maps for the 12 variables after training are shown in Fig. 3. Every map 251represents a component value for the 42 reference vectors, where vectors have been standardized 252 into the range 0-1. Thus, if the node color is red, it means a relatively high concentration ratio, while

a blue color represents relatively low concentration ratio. In general, Fe_{total} , Mn_{total} , Mg^{2+} , and SO_4^{-2-} 253 254displayed relatively blue color maps. These parameters were generally not affected by the 255 earthquake. On the contrary, in the maps for $(NO_3^++NO_2^-)-N$, Cl⁻, Na⁺, and K⁺, red neurons stand out. 256 This means that these chemical parameters were affected by the earthquake. Maps of Fe_{total} and Mn_{total} , Na^+ , K^+ and Cl^- , Mg^{2+} and SO_4^{2-} show great similarity. Accordingly, these groups of 257 258 chemicals seem to have same mechanism of concentration change by the earthquake effect. 259 DBI variation is shown in Fig. 4 and a minimum DBI is obtained for a cluster number 260 equal to 6. Consequently, a hierarchical clustering algorithm according to Ward's method (Güler et 261 al., 2002) was implemented for 6 clusters (Fig. 5). From Fig. 5, it is seen that out of the 6 clusters, 4 262 and 6 are close and thus, they have a high similarity. Likewise, 2 and 5, and 1 and 3 are as well 263 similar. 264 The pattern classification map for the 6 clusters is displayed in Fig. 6. In the figure, well 265numbers have been included. Each cluster manifests specific groundwater chemistry characteristics. 266 For example, cluster 1 is characterized by relatively high concentration ratios for $(NO_3 + NO_2)$ -N, SiO₂, and pH. On the contrary, the concentration ratios for Fe_{total}, F⁻, Cl⁻, SO₄²⁻, Na⁺, K⁺, Ca²⁺, and 267 Mg²⁺ are comparatively low. These features are observed in corresponding locations of each SOM 268 269 component map in Fig. 3.

271 **4.2 Changes in groundwater chemistry**

272 In order to facilitate the interpretation of earthquake-induced effects on groundwater chemistry, radar 273charts are used with information from Table 2. The general chemical characteristics of each cluster 274in the radar charts are shown as first quartile, median, and third quartile. The red unit circle in the 275charts serves as reference for each cluster. Characteristics of groundwater chemistry for the 6 276clusters are shown in Fig. 7. The figure is based on raw input data to the SOM (no standardization) 277to evaluate actual fluctuations of the concentration ratios. Each radar chart as well, includes the total 278 number of wells that have been included. Concentration ratios close to 1 are interpreted as negligible 279effects from the earthquake. For other chemical variables, such as (NO3+NO2)-N, Mntotal, Fetotal, 280 and F, concentration ratios may be close to 0 due to very small concentration in the groundwater 281 sample. 282 Cluster 1 displays relatively high concentration ratio for SiO_2 and $(NO_3 + NO_2)$. The first quartile values are in the range ≥ 1 , but with relatively low concentration ratios for Mn_{total}, F, Cl⁻, 283 Na⁺, K⁺, and Ca²⁺. As well, the third quartile values are ≤ 1 . Thus, median values for pH, SO₄²⁻, Mg²⁺ 284 285 are more or less superimposed onto the unit circle. Median value for Fe_{total} is close to 0.

Cluster 2 displays a similar general pattern as cluster 1. Smaller concentration ratios are at hand for SiO_2 and $(NO_3^++NO_2^-)-N$, as well as relatively small ratios for F. For the third quartile, F is lower than 1. The concentration ratios for Fe_{total} and Mn_{total} are close to 0. Other chemicals (pH, Cl⁻, SO₄²⁻, Na⁺, K⁺, Ca²⁺, and Mg²⁺) are basically overlapping the unit circle. This is interpreted as very small effect of the earthquake on the groundwater chemistry.

291

Cluster 3 is characterized by higher concentration ratios for Fe_{total}, Mn_{total}, F, and SiO₂.

The first quartile values for Fe_{total} , Mn_{total} , and F are larger than 1. The $(NO_3^-+NO_2^-)-N$ is close to 0. PH and Na⁺ are close to the unit circle. However, median values for other parameters (Cl⁻, SO₄²⁻, K⁺, Ca²⁺, and Mg²⁺) are less than the unit circle. The fluctuation of Fe_{total} , Mn_{total} and SO_4^{-2-} are comparatively larger.

296

Clusters 4 and 6 only have 2 and 3 water samples in each cluster, respectively. These wells

297 will be discussed in detail below.

298 Cluster 5 has higher concentration ratio for SiO_2 , $SO_4^{2^-}$, and $(NO_3^-+NO_2^-)$ -N. The first 299 quartile values are larger than 1. The concentration ratios of Cl⁻, pH, Na⁺, K⁺, Ca²⁺, and Mg²⁺ are

300 basically stable onto the unit circle. Other variables like Fe_{total}, Mn_{total}, and F⁻ are close to 0.

All data that have clearly been affected the earthquake are summarized in **Table 2** for each cluster. Cluster 1 includes 12 wells. SiO_2 and $(NO_3^++NO_2^-)-N$ concentration increased in 8 and 3, wells, respectively. Concentrations of F⁻, Cl⁻, Na⁺, K⁺, and Ca²⁺ were low but noticeable in 4, 7, 3, 1, and 3 wells, respectively. pH fluctuated in the range of natural variability. Fe_{total}, Mn_{total}, SO₄²⁻, and Mg²⁺ concentrations were sporadically smaller or larger. These features are generally consistent with the overall tendency of radar charts and SOM maps. These results are likely related to the earthquake

307	induced large-scale surface ruptures (Fig. 8), rock fractures, and ground shaking of the groundwater
308	recharge area of the Aso-mountain chains. At the same time, some of the wells of Cluster 1 are
309	located in an agricultural area. Human agricultural activity leads to large-scale and long-term
310	nitrate transport during pre-earthquake (Hosono et al., 2013; Fujiwara et al., 2016). Results from
311	bond cleavage fracture in silicate rocks are Si-O dissolution into groundwater, and increased soil
312	nitrate transport into groundwater through new pathways and permeability enhancement due to the
313	earthquake. These processes increase the silicate dissolution and constitute a part of the nitrate
314	nitrogen increase. At the same time, the pre-earthquake groundwater flow paths are disturbed, and
315	the water-rock interactions through new fresh rock reactive surfaces influence the ion dissolution
316	$(SO_4^{2-}, Na^+, K^+, Ca^{2+}, and Mg^{2+})$. Mountainside water transport, however, dilutes most of the well
317	water in recharge areas. The process of permeability enhancement due to new soil and rock cracks
318	cause mountainside water dilution affecting the recharge areas and groundwater levels (GWL) and
319	TDS. This is shown by the increasing GWL by several meters for most of the wells, noticeable even
320	one year after the earthquake. Thus, mountainside water will dilute original groundwater and display
321	a decreasing TDS (Hosono et al., 2019; Hosono and Masaki, 2020).
322	Cluster 2 covers 33 wells. Increasing SiO ₂ , (NO ₃ ⁻ +NO ₂ ⁻)-N, Cl ⁻ , SO ₄ ²⁻ , and Mg ²⁺
323	concentrations were found in 13, 10, 8, 6, and 4 wells, respectively. The F ⁻ concentration decreased
324	in 17 wells. Fe _{total} , Mn_{total} , Ca^{2+} concentrations and pH changed in some of the wells. The Na ⁺ and K ⁺

325 were relatively unaffected in all 33 wells. As above, a likely reason is mineral dissolution of fresh 326 rock reactive surfaces, water-rock interactions, and agricultural fertilizers seeping into groundwater 327 via permeability enhancement and new rupture pathways in agricultural areas. These changes can explain a part of the increasing SiO₂, (NO₃⁺+NO₂⁻)-N, and SO₄²⁻ concentration. In addition, wells in 328 329 cluster 2 are located in urban areas (Fig. 8). The earthquake formed a new Suizenji fault system, and 330 broke sewer pipes resulting in sewage water leakage to the groundwater. This is a probable cause for increase in nitrate and chloride concentrations (Hosono et al., 2019). Sporadic increase in SO₄²⁻ and 331 332 Cl concentrations probably originates from deep crustal fluid upwelling during formation of new 333 fault areas. This phenomenon is indicated by anomalous change of other trace elements such as 334 boron, because deep hydrothermal fluids enrich sulfate, chloride, and boron elements to the 335 groundwater (Hosono et al., 2018).

Cluster 3 includes 6 wells. An increase in Fe_{total}, Mn_{total} , SiO_2 , and F was noted for 4, 2, 2, and 1 well, respectively. In particular, a sharp decrease of Cl⁻ and Na⁺ occurred in 2 and 1 well, respectively. pH, $SO_4^{2^-}$, and K⁺ changed in specific wells. Ca^{2+} , Mg^{2+} , and $(NO_3^-+NO_2^-)-N$ (original concentration is 0) were not influenced by the earthquake. Usually stable ratios of Cl⁻ and Na⁺ changed significantly in one specific well (T20) close to the coast. The main reason for this is triggering of liquefaction in the coastal area. This leads to lower concentration due to groundwater upwelling and water mixing in the original aquifer. This well likely also to be affected by aquifer

343	breaching through liquefaction. At the same time, the strata of unwashed marine clay sediments are
344	broken by the earthquake and new fracture ruptures are leached by new groundwater flow. The
345	Ariake clay is enriched by Fe and Mn oxides/hydroxides causing this process to give rise to
346	increasing concentrations of Fe_{total} and Mn_{total} . This is noted by a groundwater chemistry change that
347	continues over several months. In addition, the degree of water chemistry change is different for
348	similar locations (T20 and T21) (Fig. 8). The reason for this likely different well depths (100 and 15
349	m, respectively). This results in a different mixture ratio for fluids at the different well depths.
350	Cluster 4 includes two wells. Water samples from T35 display increased Fe_{total} and Mg^{2+}
351	concentrations. pH was clearly less than the lower limit (estimated concentration -2σ). Other
352	chemical variables were less influenced by the earthquake. With many new fault surfaces along the
353	riverside area, surface water was mixed with groundwater, thus causing a water quality change. This
354	phenomenon is also shown by the variation of river water level and total dissolved carbon.
355	Observation of river water levels near the T35 well, showed a decline after the main earthquake.
356	This is due to that the new Suizenji fault system triggered massive flow of surface water to the
357	groundwater (Hosono et al., 2019). In addition, the total dissolved carbon of groundwater at T35
358	increased from less than 0.1 to 0.3 mg/L as compared to before the earthquake. The origin of total
359	dissolved carbon is surface soil material that was transported through the new ruptures deep into the
360	groundwater (Hosono and Masaki, 2020).

361	Cluster 5 includes 11 wells. SiO_2 , SO_4^{2-} , and Mg^{2+} tended to exceed the upper limit in 9, 4,
362	and 2 wells, respectively. Cl ⁻ concentration was small in 3 of 11 wells. $(NO_3^-+NO_2^-)-N$ and Ca^{2+}
363	indicate small influence in some wells. Other parameters (Fe _{total} , Mn _{total} , pH, F, Na ⁺ , and K ⁺) were in
364	the range of natural variability. At most of the sampling locations in the recharge area, the main
365	causes of groundwater chemistry change are rock fracture dissolution, mountainside water dilution,
366	and possible sources of SO_4^{2-} and Mg^{2+} from agricultural fertilizer infiltration.
367	Finally, Cluster 6 includes 3 wells. Increased ratios for SO_4^{2-} occurred in all 3 wells.
368	Besides, T52 displayed a small increase in concentration for F and Mg^{2+} . Other variables were
369	basically unchanged. There are massive volumes of unwashed marine clay sediments distributed in
370	the stagnant groundwater area of the coastal zone, earthquake-induced liquefaction leached and/or
371	released stagnant groundwater through these newly formed fractures. The result is a possible release
372	of SO_4^{2-} of marine origin into the groundwater.
373	In order to explore water chemistry characteristics before the earthquake, we calculated
374	estimated concentrations for 2015 using five year's data (from 2010 to 2014 year). Then, the
375	concentration ratios between actual and estimated 2015 concentration were calculated and fed into
376	the SOM for analysis. The cluster results indicate that the 67 wells can be classified into six clusters
377	(Fig. 9), just as in the previous analysis. The results should accordingly reflect close to normal
378	conditions (without effects of the earthquake). We regard the outcome as a description of almost

379 natural conditions and this is very different from the spatiotemporal characteristics after the 380 earthquake as compared to the above. Thus, the earthquake indicates a radical change in 381 spatiotemporal water quality characteristics. 382 A comparison of the corresponding radar chart maps (Fig. 7 compared to radar chart maps 383 for almost normal condition as above (Fig. 10)) shows that each of the six clusters have changed after the earthquake. The most important properties are that concentrations for SiO₂, Fe_{total}, Mn_{total}, 384 pH, Cl⁻, SO₄²⁻, Na⁺, K⁺, Ca²⁺, and Mg²⁺ are all relatively stable in groundwater before the earthquake. 385 They basically fluctuate in the range of $\pm 2\sigma$ of the estimated concentrations. Sporadic water samples 386 387 exceed this general variation. In recent years, the concentration of (NO3+NO2)-N and F has 388 gradually increased due to environmental factors and some well water exceeded $\pm 2\sigma$ variation even 389 before the earthquake. The general methodology adopted in this paper can be said to be efficient in 390 comparing almost normal to major effects of an earthquake.

391

392 **5. Conclusions**

In this study, groundwater chemistry was examined after a major earthquake by the use of SOM analysis. The general change of chemical characteristics of the groundwater as shown in the radar chart for each cluster is basically consistent with the results of a quantitative analysis for respective cluster as shown in **Table 2**.

397	Cluster 1 included 12 wells. These are mainly distributed over upstream recharge areas for
398	groundwater. The earthquake increased the concentration of SiO_2 and $(NO_3^++NO_2^-)-N$ and decreased
399	the concentration of F, Cl ⁻ , Na ⁺ , K ⁺ , and Ca ²⁺ . Other parameters were not affected. The mechanisms
400	of earthquake-induced groundwater chemistry change are massive triggering of surface ruptures,
401	rock fractures, and ground shaking. This creates fresh reactive rock surfaces and permeability
402	enhancement through the ruptures and fractures. This process increases dissolved silicates as well as
403	nitrate-nitrogen concentration. In addition, released mountainside water dilutes the contents of F, Cl
404	Na^+ , K^+ , and Ca^{2+} .
405	Cluster 2 contained 33 wells. The earthquake increased the concentration of SiO_2 ,
406	$(NO_3^++NO_2^-)-N$, Cl ⁻ , SO_4^{2-} , and Mg^{2+} . However, F ⁻ concentration decreased. Concentration changes
407	and earthquake mechanisms for groundwater chemistry changes display similarities with Cluster 1.
408	The main difference is that Cluster 2 is located in urban areas. Thus, the earthquake destroyed sewer
409	pipes through the new Suizenji fault system. This meant that sewage water leaked into the
410	groundwater, increasing nitrate and chloride concentrations. The increase in SO_4^{2-} and
411	Mg ²⁺ concentration is likely an effect of agricultural fertilizers seeping into the groundwater through
412	new pathways. Possibly, deep crustal upwelling of fluids may also give rise to increasing SO_4^{2-} and
413	Cl ⁻ concentrations.

414 Cluster 3 included 6 wells. These displayed increasing Fe_{total} , Mn_{total} , and SiO_2 and sharp

415 decrease of CI⁻ and Na⁺ concentration. pH, $SO_4^{2^-}$, and K⁺ were influenced at specific wells. Cluster 3 416 wells are mainly located in coastal areas. The earthquake gives rise to liquefaction and aquifer 417 breaching resulting in a mixing of groundwater from different aquifer systems. In addition, the 418 earthquake leads to new seismic fractures for the strata of unwashed marine clay sediments and 419 leaching of groundwater. These processes are likely to increase Fe_{total} and Mn_{total} concentration.

420 Cluster 4 included 2 wells. Fe_{total} and Mg^{2+} displayed increasing concentration and pH 421 decreased. The two wells are located along a riverside area. Thus, seismic effects are likely to 422 increase surface water transport the groundwater through newly formed faults and ruptures. This has 423 probably caused the observed water chemistry change.

Cluster 5 contained 11 wells. SiO_2 , SO_4^{2-} , and Mg^{2+} concentration increased and Cl⁻ concentration decreased. ($NO_3^{-}+NO_2^{-}$)-N and Ca^{2+} were influenced in some of the wells. Cluster 5 wells are mainly located in recharge areas, and main mechanisms are similar to those of Cluster 1. These mechanisms are constituted by rock fracturing and mountainside water release leading to increasing dissolved silicates and decreasing Cl⁻ concentration. The increasing SO_4^{-2-} and Mg^{2+} concentration may originate from infiltration of agricultural fertilizers.

430 Cluster 6 contained 3 wells. SO_4^{2-} , F⁻, and Mg^{2+} increased. Other chemicals were basically 431 unchanged. Cluster 6 is located in a coastal stagnant area. Possible reasons for observed increase in 432 the above constituent concentrations are earthquake-induced liquefaction and release of marine 433 origin SO_4^{2-} through newly formed fractures and fissures.

434 In general, SOM can distinguish between complex spatiotemporal patterns in an efficient 435 manner. In this case, however, it is obvious that the earthquake had great effects on average 436 hydro-geochemical levels. Even so, SOM can help to interpret similarity in variation patterns not 437 easily distinguished by traditional statistics. Similarly, the SOM together with cluster analysis are efficient in distinguishing between different groups of geochemical elements that can be 438 systematically compared to quantitative water characteristics. SOM is, however, as all methods 439 440 dependent on input data quality. Thus, input data need to be carefully preprocessed and quality 441 checked. SOM results in a regular visual map on the basis of input data similarity. Meanwhile, 442 according to the results of cluster analysis, we can combine with exploring the spatiotemporal characteristics of water chemistry change and local geological and hydrogeological background 443 444 information. According to the above, groundwater chemistry features from the cluster analysis can 445 446 provide a water resources utilization plan for emergency conditions. For example, the

nitrate-nitrogen content of Cluster 1 and 2 indicate increasing concentrations for wells in certain
areas, due to leakage of agricultural fertilizers and sewage water. These wells need to be temporally
discontinued for utilization. Other clusters (3, 4, 5, and 6) indicate wells that can be exploited even
after an earthquake.

452	Acknowledgements This work was supported by JSPS KAKENHI under Grant No.JP17H01861
453	and SUNTORY Kumamoto groundwater research project for financial support.
454	
455	References
456	Barberio, M.D., Barbieri, M., Billi, A., Doglioni, C., Petitta, M., 2017. Hydrogeochemical changes
457	before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Sci. Rep. 7,
458	1-12. https://doi.org/10.1038/s41598-017-11990-8
459	Bedoya, D., Novotny, V., Manolakos, E.S., 2009. Instream and offstream environmental conditions
460	and stream biotic integrity. Importance of scale and site similarities for learning and
461	prediction. Ecol. Modell. 220, 2393–2406.
462	https://doi.org/10.1016/j.ecolmodel.2009.06.017
463	Chen, P., Sado, K., Takahashi, N., Lin, A., Hirata, S., Satsukawa, T., 2017. Millennium Recurrence
464	Interval of Morphogenic Earthquakes on the Seismogenic Fault Zone That Triggered the
465	2016 Mw 7.1 Kumamoto Earthquake, Southwest Japan. Bull. Seismol. Soc. Am. 107,
466	2687-2702. https://doi.org/10.1785/0120170149
467	Chia, Y., Wang, Y.S., Chiu, J.J., Liu, C.W., 2001. Changes of groundwater level due to the 1999
468	Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan. Bull. Seismol. Soc. Am.

91, 1062–1068. https://doi.org/10.1785/0120000726

470	Choi, B.Y., Yun, S.T., Kim, K.H., Kim, J.W., Kim, H.M., Koh, Y.K., 2014. Hydrogeochemical
471	interpretation of South Korean groundwater monitoring data using Self-Organizing Maps.
472	J. Geochemical Explor. 137, 73-84. https://doi.org/10.1016/j.gexplo.2013.12.001
473	Claesson, L., Skelton, A., Graham, C., Dietl, C., Mörth, M., Torssander, P., Kockum, I., 2004.
474	Hydrogeochemical changes before and after a major earthquake. Geology 32, 641–644.
475	https://doi.org/10.1130/G20542.1
476	Cox, S., Rutter, H., Sims, A., Manga, M., Weir, J., Ezzy, T., White, P., Horton, T., Scott, D., 2012.
477	Hydrological effects of the M W 7.1 Darfield (Canterbury) earthquake, 4 September 2010,
478	New Zealand. New Zeal. J. Geol. Geophys. 55, 231–247.
479	https://doi.org/10.1080/00288306.2012.680474
480	Fujiwara, S., Yarai, H., Kobayashi, T., Morishita, Y., Nakano, T., Miyahara, B., 2016.
481	Small - displacement linear surface ruptures of the 2016 Kumamoto earthquake sequence
482	detected by ALOS - 2 SAR interferometry. Earth, Planets Sp.
483	https://doi.org/10.1186/s40623-016-0534-x
484	Güler, C., Thyne, G.D., McCray, J.E., Turner, A.K., 2002. Evaluation of graphical and multivariate
485	statistical methods for classification of water chemistry data. Hydrogeol. J. 10, 455–474.

486 https://doi.org/10.1007/s10040-002-0196-6

- 487 Hartmann, J., Levy, J.K., 2005. Hydrogeological and gasgeochemical earthquake precursors A
- 488 review for application. Nat. Hazards 34, 279–304.
- 489 https://doi.org/10.1007/s11069-004-2072-2
- 490 Hentati, A., Kawamura, A., Amaguchi, H., Iseri, Y., 2010. Evaluation of sedimentation vulnerability
- 491 at small hillside reservoirs in the semi-arid region of Tunisia using the Self-Organizing
- 492 Map. Geomorphology 122, 56–64. https://doi.org/10.1016/j.geomorph.2010.05.013
- 493 Hilario, L.G., and Ivan, M.G., 2004. Self-Organizing Map and Clustering for Wastewater Treatment
- 494 Monitoring. Engineering Applications of Artificial Intelligence. 17, 215-225.
- 495 http://dx.doi.org/10.1016/j.engappai.2004.03.004
- 496 Hosono, T., Hartmann, J., Louvat, P., Amann, T., Washington, K.E., West, A.J., Okamura, K.,
- 497 Böttcher, M.E., Gaillardet, J., 2018. Earthquake-induced structural deformations enhance
- 498 long-term solute fluxes from active volcanic systems. Sci. Rep. 8, 14809.
- 499 https://doi.org/10.1038/s41598-018-32735-1
- 500 Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I.T., Shimada, J., 2013. The
- 501 use of δ 15N and δ 18O tracers with an understanding of groundwater flow dynamics for
- 502 evaluating the origins and attenuation mechanisms of nitrate pollution. Water Res. 47,
- 503 2661–2675. https://doi.org/10.1016/j.watres.2013.02.020

504	Hosono, T., Tokunaga, T., Tsushima, A., Shimada, J., 2014. Combined use of $\delta 13C$, $\delta 15N$, and $\delta 34S$
505	tracers to study anaerobic bacterial processes in groundwater flow systems. Water Res. 54,
506	284–296. https://doi.org/10.1016/j.watres.2014.02.005
507	Hosono, T., Yamada, C., Shibata, T., Tawara, Y., Wang, C Y., Manga, M., Rahman, A.T.M.S.,
508	Shimada, J., 2019. Coseismic groundwater drawdown along crustal ruptures during the
509	2016 M $_{\rm w}$ 7.0 Kumamoto earthquake. Water Resour. Res. 2019WR024871.
510	https://doi.org/10.1029/2019WR024871
511	Hosono, T., Masaki, Y., 2020. Post-seismic hydrochemical changes in regional groundwater flow
512	systems in response to the 2016 Mw 7.0 Kumamoto earthquake. J. Hydrol. 580, 124340.
513	https://doi.org/10.1016/j.jhydrol.2019.124340
514	Hossain, S., Hosono, T., Yang, H., Shimada, J., 2016a. Geochemical Processes Controlling Fluoride
515	Enrichment in Groundwater at the Western Part of Kumamoto Area, Japan. Water. Air.
516	Soil Pollut. 227. https://doi.org/10.1007/s11270-016-3089-3
517	Hossain, S., Hosono, T., Ide, K., Matsunaga, M., Shimada, J., 2016b. Redox processes and
518	occurrence of arsenic in a volcanic aquifer system of Kumamoto Area, Japan. Environ. Earth
519	Sci. 75, 1–19. https://doi.org/10.1007/s12665-016-5557-x

520 Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M., Sano, Y.,

522

1995. Ground-water radon anomaly before the Kobe earthquake in Japan. Science. 269, 60–61. https://doi.org/10.1126/science.269.5220.60

- Japan Meteorological Agency, 2016. Report on the Heisei 28 (2016) Kumamoto earthquake (No. 10).
- 524 http://www.jma.go. jp/jma/press/1604/16g/201604161530.html. Accessed 20 Dec 2016.
- Japan Meteorological Agency, 2018. Weather observation data. Japan Meteorological Agency Web.
- 526 http://www.jma.go.jp/jma/index.html. Accessed 16 November 2018
- 527 Jin, Y.H., Kawamura, A., Park, S.C., Nakagawa, N., Amaguchi, H., Olsson, J., 2011. Spatiotemporal
- 528 classification of environmental monitoring data in the Yeongsan River basin, Korea, using
- 529 self-organizing maps. Journal of Environmental Monitoring 13(10), 2886-2894.
- 530 https://doi.org/10.1039/C1EM10132C
- 531 Kagabu, M., Matsunaga, M., Ide, K., Momoshima, N., Shimada, J., 2017. Groundwater age
- 532 determination using85Kr and multiple age tracers (SF6, CFCs, and3H) to elucidate
- 533 regional groundwater flow systems. J. Hydrol. Reg. Stud. 12, 165–180.
- 534 https://doi.org/10.1016/j.ejrh.2017.05.003
- Kalteh, A.M., Hjorth, P., Berndtsson, R., 2008. Review of the self-organizing map (SOM) approach
 in water resources: Analysis, modelling and application. Environ. Model. Softw. 23,
 835–845.
- 538 https://doi.org/10.1016/j.envsoft.2007.10.001

539	Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological									
540	Cybernetics 43(1): 59-69. https://doi.org/10.1007/BF00337288									
541	Kohonen, T., 2001. Self-organizing maps, third ed. Springer, Berlin.									
542	Koizumi, N., Kitagawa, Y., Matsumoto, N., Takahashi, M., Sato, T., Kamigaichi, O., Nakamura, K.,									
543	2004. Preseismic groundwater level changes induced by crustal deformations related to									
544	earthquake swarms off the east coast of Izu Peninsula, Japan. Geophys. Res. Lett. 31, 1–5.									
545	https://doi.org/10.1029/2004GL019557									
546	Lin, A., 2017. Structural features and seismotectonic implications of coseismic surface ruptures									
547	produced by the 2016 Mw7.1 Kumamoto earthquake. J. Seismol. 21, 1079–1100.									
548	https://doi.org/10.1007/s10950-017-9653-5									
549	Lin, A., Chen, P., Sado, K., 2018. Recurrent large earthquakes related with an active fault-volcano									
550	system, southwest Japan. Sci. Rep. 8, 1–10. https://doi.org/10.1038/s41598-018-32140-8									
551	Manga, M., Wang, C.Y., 2015. Earthquake Hydrology, Treatise on Geophysics: Second Edition.									
552	Elsevier B.V. https://doi.org/10.1016/B978-0-444-53802-4.00082-8									
553	Nakagawa, K., Amano, H., Kawamura, A., Berndtsson, R., 2017. Classification of groundwater									
554	chemistry in Shimabara, using self-organizing maps. Hydrology Research 48(3), 840-850.									
555	https://doi.org/10.2166/nh.2016.072									

556	Nakagawa, K., Yu, Z.Q., Berndtsson, R., Kagabu, M., 2019. Analysis of earthquake-induced								
557	groundwater level change using self-organizing maps. Environ. Earth Sci. 78, 455.								
558	https://doi.org/10.1007/s12665-019-8473-z								
559	Nguyen, T.T., Kawamura, A., Tong, T.N., Nakagawa, N., Amaguchi, H., Gilbuena, R., 2014. Spatial								
560	classification of groundwater monitoring data in the Red River Delta, Vietnam using								
561	self-organizing maps. Annual Journal of Hydraulic Engineering, JSCE 70(4),								
562	I_241-I_246.								
563	Nguyen, T.T., Kawamura, A., Tong, T.N., Nakagawa, N., Amaguchi, H., Gilbuena, R., 2015.								
564	Clustering spatio-seasonal hydrogeochemical data using self-organizing maps for								
565	groundwater quality assessment in the Red River Delta, Vietnam. J. Hydrol. 522,								
566	661–673.								
567	https://doi.org/10.1016/j.jhydrol.2015.01.023								
568	Nishiyama, K., Endo, S., Jinno, K., Bertacchi Uvo, C., Olsson, J., Berndtsson, R., 2007.								
569	Identification of typical synoptic patterns causing heavy rainfall in the rainy season in								
570	Japan by a Self-Organizing Map. Atmos. Res. 83, 185–200.								
571	https://doi.org/10.1016/j.atmosres.2005.10.015								

572	Taniguchi, M., Burnett, K.M., Shimada, J., Hosono, T., Wada, C.A., Ide, K., 2019. Recovery of Lost
573	Nexus Synergy via Payment for Environmental Services in Kumamoto, Japan. Front.
574	Environ. Sci. 7, 1–8. https://doi.org/10.3389/fenvs.2019.00028
575	Paudel, S.R., Banjara, S.P., Wagle, A., Freund, F.T., 2018. Earthquake chemical precursors in
576	groundwater: a review. J. Seismol. 22, 1293–1314.
577	https://doi.org/10.1007/s10950-018-9739-8
578	Rosen, M.R., Binda, G., Archer, C., Pozzi, A., Michetti, A.M., Noble, P.J., 2018. Mechanisms of
579	Earthquake-Induced Chemical and Fluid Transport to Carbonate Groundwater Springs
580	After Earthquakes. Water Resour. Res. 54, 5225–5244.
581	https://doi.org/10.1029/2017WR022097
582	Sano, Y., Takahata, N., Kagoshima, T., Shibata, T., Onoue, T., Zhao, D., 2016. Groundwater helium
583	anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan.
584	Sci. Rep. 6, 1–7. https://doi.org/10.1038/srep37939
585	Seno, T., Stein, S., Gripp, A.E., 1993. A model for the motion of the Philippine Sea Plate consistent
586	with NUVEL-1 and geological data. J. Geophys. Res. 98, 941–948.
587	https://doi.org/10.1029/93JB00782

588 Shi, Z., Wang, G., Manga, M., Wang, C.Y., 2015. Mechanism of co-seismic water level change

following four great earthquakes - insights from co-seismic responses throughout the

- 590 Chinese mainland. Earth Planet. Sci. Lett. 430, 66–74.
- 591 https://doi.org/10.1016/j.epsl.2015.08.012
- 592 Skelton, A., Andrén, M., Kristmannsdóttir, H., Stockmann, G., Mörth, C.M., Sveinbjörnsdóttir, Á.,
- 593 Jónsson, S., Sturkell, E., Gudrúnardóttir, H.R., Hjartarson, H., Siegmund, H., Kockum, I.,
- 594 2014. Changes in groundwater chemistry before two consecutive earthquakes in Iceland.

595 Nat. Geosci. 7, 752–756. https://doi.org/10.1038/NGEO2250

- 596 Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas. J., 2000. SOM Toolbox for Matlab 5,
- 597 Helsinki University of Technology Report A57.
- 598 Thomas, D., 1988. Geochemical precursors to seismic activity. Pure Appl. Geophys. 126, 241–266.
- 599 https://doi.org/10.1007/BF00878998
- Tsunogai, U., Wakita, H., 1996. Anomalous Changes in Groundwater Chemistry. Possible Precursors
- of the 1995 Hyogo-ken Nanbu Earthquake, Japan. J. Phys. Earth 44, 381–390.
- 602 https://doi.org/10.4294/jpe1952.44.381
- Ulomov, V.I., Mavashev, B.Z., 1971. Forerunners of the Tashkent earthquake. Izvestia Akadamiya
- 604Nauk Uzbekistan SSR, PP, 188-200.
- Wang, C.Y., Manga, M., 2010. Hydrologic Responses to Earthquakes and a General Metric. Front.
- 606 Geofluids 206–216. https://doi.org/10.1002/9781444394900.ch14

607	Yu, Z.Q., Ama	ino, H., Nakagawa, K., Berndtsson, R., 2018. Hydrogeochemical evolution of
608	grour	ndwater in a Quaternary sediment and Cretaceous sandstone unconfined aquifer in
609	North	nwestern China. Environ. Earth Sci. 77, 629.
610	https	://doi.org/10.1007/s12665-018-7816-5
611		
612		
613		
614		
615		
616		
617		
618		
619		
620	Figure & Table	e Captions
621	Figure 1	Study area with location of sampled wells (three highlands are the recharge areas
622	of groundwater	, existing a mass of Ariake clay sediments at coastal area is groundwater stagnant
623	area).	
624	Figure 2	Geological map of Kumamoto area (Ariake clay sediments are mainly

~ ~ =

625 distributed at the dotted line (5 MASL) range of coastal regions).

626	Figure 3	SOM component planes for 12 physicochemical variables.					
627	Figure 4	DBI as a function of number of clusters.					
628	Figure 5	Dendrogram with cluster numbers.					
629	Figure 6	Pattern classification map for 6 clusters based on SOM.					
630	Figure 7	Radar charts for the 6 clusters in Fig. 6 (number of wells indicated at upper left					
631	corner of each chart).						
632	Figure 8	Spatial distribution of 6 clusters in Fig. 7.					
633	Figure 9	Pattern classification map for 6 clusters based on SOM (before earthquake).					
634	Figure 10	Radar charts for the 6 clusters in Fig. 9 (before earthquake).					
635	Table 1	Characterization of sampled wells.					
636	Table 2	Data for earthquake-induced water chemistry anomaly based on each cluster.					

Figure 10 Click here to download high resolution image

ID	Longitude	Latitude	Well depth (m)	Screen depth (m)	Well type	Aquifer type
Т9	130.739528	32.792944	55.5	39.00-50.00	deep	confined
T10	130.727028	32.758778	35.3	22.30-33.30	shallow	unconfined
T12	130.819167	32.818611	90.0	60.00-90.00	deep	confined
T13	130.812278	32.817110	70.0	65.00-70.00	deep	confined
T14	130.681528	32.757028	45.7	31.70-42.70	shallow	unconfined
T15	130.681528	32.757028	154.5	121.5-138.0	deep	confined
T18	130.716333	32.747944	41.2	24.70-35.70	shallow	unconfined
T19	130.629667	32.766306	210.0	127.5-149.5	deep	confined
T20	130.629667	32.766306	100.0	53.30-64.30	shallow	unconfined
T21	130.629667	32.766306	15.0	6.75-12.25	shallow	unconfined
T32	130.745333	32.773639	24.8		shallow	unconfined
T33	130.746806	32.774333	25.0		shallow	unconfined
T34	130.716194	32.799611	65.4	39.50-55.40	deep	confined
T35	130.716194	32.799611	21.4	10.40-15.90	shallow	unconfined
T36	130.771278	32.834444	110.0	71.39-93.45	deep	confined
T40	130.777167	32.793167	70.8	48.00-59.00	deep	confined
T41	130.703000	32.869611	60.0	54.00-59.50	shallow	unconfined
T42	130.703000	32.869611	100.0	83.50-94.50	deep	confined
T43	130.712361	32.766861	80.0	36.10-47.10	shallow	unconfined
T44	130.712361	32.766861	115.3	82.32-98.82	deep	confined
T45	130.634917	32.733694	10.0	4.50-10.00	shallow	unconfined
T46	130.634917	32.733694	93.0	57.50-74.00	deep	confined
T47	130.634917	32.733694	145.0	112.0-145.0	deep	confined
T48	130.583889	32.836667	110.1		deep	confined
T51	130.769389	32.804944	137.0	120.5-131.5	deep	confined
T52	130.653056	32.757778	109.0	76.00-92.50	deep	confined
S2	130.743300	32.778280	41.0	35.00-39.00*	deep	confined
S5	130.743300	32.778280	40.0	35.00-39.00*	deep	confined
S7	130.743300	32.778280	60.0	35.00-39.00*	deep	confined
S10	130.743300	32.778280	47.5	35.00-39.00*	deep	confined
S12	130.786380	32.771110	160.0	119.5-125.0*	deep	confined
S13	130.786380	32.771110	140.5	119.5-125.0*	deep	confined
S17	130.786380	32.771110	170.0	119.5-125.0*	deep	confined
S18	130.786380	32.771110	180.0	119.5-125.0*	deep	confined
S22	130.762130	32.763240	201.5	166.0-199.0*	deep	confined
S23	130.762130	32.763240	210.0	166.0-199.0*	deep	confined
S24	130.762130	32.763240	130.0		deep	confined

S25	130.762130	32.763240	200.0	166.0-199.0*	deep	confined
S29	130.748180	32.784810	45.0		deep	confined
S30	130.748180	32.784810	47.2		deep	confined
S34	130.748180	32.784810	51.0		deep	confined
S38	130.792060	32.830570	103.5	84.00-89.00*	deep	confined
S39	130.792060	32.830570	107.4	84.00-89.00*	deep	confined
S41	130.754460	32.855460	123.0	84.00-89.00*	deep	confined
S43	130.757070	32.856260	137.0	113.0-130.0*	deep	confined
S44	130.744900	32.854170	145.0	113.0-130.0*	deep	confined
S46	130.752330	32.853360	120.0	84.00-89.00*	deep	confined
S47	130.748100	32.854320	111.0	84.00-89.00*	deep	confined
S48	130.688760	32.748040	200.0	113.5-124.5*	deep	confined
S53	130.660700	32.775770	125.0	111.5-122.5*	deep	confined
S59	130.723380	32.844530	131.0	110.0-131.0*	deep	confined
S60	130.721690	32.842320	140.0	110.0-131.0*	deep	confined
S61	130.723380	32.844530	7.6		shallow	unconfined
S62	130.721690	32.842320	9.5	3.50-8.50*	shallow	unconfined
S63	130.718700	32.849790	100.0		deep	confined
S65	130.718700	32.849790	9.6	3.50-8.50*	shallow	unconfined
S66	130.717760	32.844530	124.0		deep	confined
S67	130.720410	32.847710	127.0		deep	confined
S69	130.724310	32.832250	120.0	75.77-86.84*	deep	confined
S71	130.724310	32.832250	10.0		shallow	unconfined
S72	130.705740	32.868950	212.0		deep	confined
S73	130.702640	32.867956	150.0		deep	confined
S75	130.693440	32.891890	150.0	102.0-107.0*	deep	confined
S77	130.719630	32.862070	152.0		deep	confined
S81	130.713320	32.965810	44.6		deep	confined
S83	130.713480	32.968430	90.0		deep	confined
S98	130.659880	32.723170	206.0		deep	confined

* Denotes reference values of screen depth from close-by water level observation well. Blank space implies that there are no data.

	Well number	Concentration ratio	Estimated Conc. (2016), (mg/L)	Measured Conc. (2016)*, (mg/L)	Estimated Conc.+2 σ (upper limit), (mg/L)	Estimated Conc2 σ (lower limit), (mg/L)
Cluster 1						
SiO_2	S72	1.08	72.5	78	76.0	68.9
	S41	1.12	56.1	63	58.3	53.9
	S44	1.09	55.2	60	57.3	53.2
	S77	1.08	63.1	68	67.0	59.2
	T34	1.17	48.6	57	50.4	46.8
	S48	1.19	55.3	66	59.1	51.4
	S62	1.08	55.6	60	59.3	51.8
	S69	1.12	56.4	63	59.6	53.2
$(NO_{3}^{-}+NO_{2}^{-})-N$	S72	0.72	4.50	3.25	5.44	3.56
	T43	1.88	0.39	0.74	0.47	0.32
	S77	1.19	4.89	5.81	5.73	4.06
	T34	2.46	0.14	0.34	0.31	-0.04
	S69	0.94	3.80	3.57	3.87	3.72
Fe _{total}	T43	0.00	0.126	0.00	0.212	0.04
	T34	0.246	0.366	0.09	0.484	0.248
Mn _{total}	S72	8.250	0.008	0.066	0.03	-0.014
F	S72	0.00	0.00	0.07	0.00	0.00
	S41	0.00	0.161	0.00	0.245	0.077
	S44	0.408	0.147	0.06	0.177	0.117
	S77	0.619	0.21	0.13	0.275	0.145
	S69	0.617	0.227	0.14	0.292	0.162
Cl	S72	0.80	12.41	9.9	13.77	11.05
	S44	0.91	9.00	8.2	9.75	8.25
	S48	0.97	12.59	12.2	12.92	12.26
	S61	0.88	10.49	9.2	11.50	9.48
	S62	0.90	11.48	10.3	12.54	10.42
	S69	0.96	10.0	9.6	10.18	9.82
	S65	0.79	25.43	20.1	27.69	23.17
SO_4^{2-}	S61	0.89	8.64	7.7	9.23	8.05
	S65	0.65	12.79	8.3	16.67	8.91
Na^+	T43	0.95	20.0	19.0	20.0	20.0
	S41	0.82	15.47	12.7	17.86	13.08
	S44	0.85	17.42	14.8	19.61	15.23

Table 2Click here to download Table: 5_Table 2.docx

	S65	1.10	27.33	30.0	28.77	25.89
\mathbf{K}^+	T43	0.94	7.66	7.20	7.77	7.55
Ca^{2+}	S72	0.89	16.11	14.3	17.28	14.94
	S77	1.08	21.17	22.9	22.87	19.47
	S69	0.95	18.73	17.8	19.52	17.94
	S65	0.81	19.49	15.8	21.95	17.03
Mg^{2+}	S77	1.12	7.29	8.2	8.03	6.55
	T34	1.08	13.90	15.0	14.79	13.01
	S65	0.83	6.59	5.5	7.30	5.88
Cluster 2						
SiO_2	T18	1.05	55	58	56.10	53.90
	T19	0.82	21.9	18	25.19	18.61
	T32	1.06	55.8	59	56.69	54.91
	T40	1.02	54.8	56	55.69	53.91
	T44	1.04	71.1	74	72.77	69.43
	S13	1.06	55.68	59	57.85	53.51
	S22	1.05	54.51	57	56.18	52.84
	S23	1.15	54.03	62	57.05	51.01
	S38	1.07	53.97	58	54.58	53.36
	S39	1.09	53.36	58	54.59	52.13
	S46	1.14	55.2	63	56.90	53.50
	S60	1.09	65.89	72	68.52	63.26
	S67	1.07	65.5	70	68.47	62.53
	S83	1.20	67.72	81	72.42	63.02
$(NO_3^{-}+NO_2^{-})-N$	T51	0.90	3.66	3.3	3.77	3.55
	S5	1.06	3.398	3.6	3.59	3.20
	S 7	1.04	3.464	3.61	3.58	3.34
	S10	1.05	3.324	3.48	3.46	3.19
	S17	1.04	2.197	2.29	2.25	2.14
	S22	1.05	2.269	2.38	2.32	2.22
	S24	1.07	2.39	2.56	2.45	2.33
	S25	1.05	2.223	2.34	2.29	2.15
	S29	1.06	3.475	3.67	3.65	3.30
	S 34	1.05	3.592	3.78	3.77	3.41
	S46	1.12	4.816	5.41	5.33	4.30
	S59	0.80	0.758	0.61	0.79	0.73
	S60	0.71	0.678	0.48	0.73	0.63

Fe _{total}	S63	0.00	0.00	0.04	0.00	0.00
Mn _{total}	S63	0	0	0.008	0	0
pН	T51	1.03	7.09	7.30	7.18	7.00
	S23	1.01	7.10	7.20	7.10	7.10
	S38	0.97	7.22	7.0	7.36	7.08
	S39	0.98	7.13	7.0	7.24	7.02
	S83	0.99	7.20	7.1	7.20	7.20
\mathbf{F}	S2	0.78	0.193	0.15	0.22	0.17
	S5	0.75	0.187	0.14	0.20	0.17
	S 7	0.86	0.174	0.15	0.18	0.16
	S10	0.85	0.177	0.15	0.20	0.16
	S12	0.77	0.207	0.16	0.22	0.19
	S13	0.80	0.226	0.18	0.25	0.20
	S17	0.76	0.237	0.18	0.25	0.22
	S18	0.73	0.219	0.16	0.25	0.19
	S22	0.87	0.23	0.2	0.25	0.21
	S23	1.19	0.219	0.26	0.23	0.21
	S24	0.83	0.24	0.2	0.26	0.22
	S29	0.83	0.181	0.15	0.20	0.16
	S 30	0.83	0.18	0.15	0.20	0.16
	S34	0.79	0.177	0.14	0.19	0.16
	S46	0.00	0.089	0.00	0.13	0.05
	S59	0.88	0.855	0.75	0.92	0.79
	S67	0.92	0.793	0.73	0.83	0.76
	S83	0.00	0.095	0.00	0.13	0.06
Cl	T40	1.01	9.28	9.4	9.39	9.17
	S13	0.99	8.01	7.9	8.10	7.92
	S17	1.03	8.37	8.6	8.51	8.23
	S22	1.04	8.78	9.1	8.89	8.67
	S23	1.03	9.04	9.3	9.15	8.93
	S24	1.05	8.8	9.2	8.98	8.62
	S38	0.96	9.75	9.4	10.02	9.48
	S46	1.13	8.12	9.2	8.70	7.54
	S60	1.08	30.97	33.3	31.35	30.59
-	S83	1.08	4.27	4.6	4.50	4.04
SO_4^{2-}	T9	1.08	19.4	21	20.81	17.99
	S12	1.04	32.58	33.8	33.45	31.71
	S13	1.02	31	31.6	31.39	30.61

	S17	1.03	34.13	35	34.89	33.37
	S18	1.03	31.21	32.3	31.61	30.81
	S25	0.98	34.44	33.6	35.22	33.66
	S67	1.04	6.52	6.8	6.70	6.34
Ca ²⁺	T19	0.94	8.18	7.7	8.36	8.0
	S 83	1.08	8.72	9.4	9.37	8.07
Mg ²⁺	T19	0.89	3.84	3.4	4.08	3.60
0	T51	0.97	7.86	7.6	7.97	7.75
	S10	1.09	8.16	8.9	8.87	7.45
	S18	1.05	8.64	9.1	8.94	8.34
	S 59	1.04	5.6	5.8	5.60	5.60
	S 83	1.07	4.47	4.8	4.74	4.20
Cluster 3						
SiO_2	S53	1.09	58.8	64	61.5	56.1
	S98	1.26	46.9	59	50.9	42.9
Fe _{total}	T20	3.64	0.33	1.2	0.59	0.07
lotai	S53	2.86	0.063	0.18	0.17	-0.04
	T15	3.85	0.078	0.3	0.14	0.01
	T47	3.84	0.099	0.38	0.19	0.01
Mn _{total}	T20	4.211	0.038	0.16	0.062	0.014
	T21	0.769	0.078	0.06	0.095	0.061
	T15	2.368	0.038	0.09	0.056	0.02
pН	S98	0.98	7.72	7.60	7.83	7.61
F	T20	1.69	0.767	1.3	1.07	0.46
Cl	T20	0.39	113.2	44	147.2	79.2
	T21	0.81	135	110	156.9	113.1
	S53	0.91	27.03	24.7	29.33	24.73
SO_4^{2-}	T15	1.09	22	24	22.0	22.0
Na ⁺	T20	0.69	160	110	184.5	135.5
\mathbf{K}^+	T20	0.80	8.38	6.7	9.45	7.31
Cluster 4						
SiO_2	T46	1.06	38.8	41	40.59	37.01
Fe _{total}	T35	6.25	0.024	0.15	0.051	-0.003
pН	T35	0.93	9.607	8.9	10.14	9.07
Mg^{2+}	T35	3.75	0.56	2.1	0.82	0.30
Cluster 5						

SiO_2	S43	1.15	53.91	62	56.25	51.57
	S47	1.20	54.97	66	57.94	52.0
	S71	1.14	52.59	60	54.97	50.21
	S73	1.09	73.72	80	77.04	70.40
	S81	1.16	72.36	84	75.52	69.20
	T36	1.04	52	54	53.10	50.90
	T41	1.04	71.1	74	72.77	69.43
	T42	1.07	73.8	79	76.25	71.35
	T10	1.06	58.6	62	59.70	57.50
$(NO_{3}^{-}+NO_{2}^{-})-N$	T42	1.05	4.78	5.0	4.95	4.61
	T48	1.26	1.43	1.8	1.69	1.17
Cl	S71	0.94	9.49	8.9	9.87	9.11
	S73	0.89	10.85	9.7	11.11	10.59
	S81	0.93	7.82	7.3	8.02	7.62
	T48	1.19	5.73	6.8	6.44	5.02
SO_4^{2-}	S43	1.10	6.01	6.6	6.15	5.87
	S47	1.06	6.42	6.8	6.72	6.12
	S71	1.08	9.86	10.6	10.30	9.42
	T48	1.49	3.9	5.8	4.40	3.40
Ca ²⁺	T36	1.17	13.7	16	14.80	12.60
Mg^{2+}	T42	1.05	5.72	6	5.86	5.58
	T48	1.09	4.75	5.2	5.16	4.34
	S 81	0.98	6.74	6.60	6.83	6.65
Cluster 6						
F	T52	1.20	0.36	0.43	0.42	0.30
SO_4^{2-}	T14	1.13	36.40	41.0	39.08	33.72
	T45	4.92	0.13	0.62	0.34	-0.09
	T52	1.10	22.80	25.0	24.21	21.39
Mg^{2+}	T52	1.19	1.26	1.50	1.48	1.04

*The red color data represent the 2016 year's measured concentration which is larger than the upper limit, on the contrary, the blue color data is smaller than the lower limit.

_