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Background. Ischemia-reperfusion (I/R) injury after lung transplantation causes alveolar damage, lung edema, and
acute rejection. Poly(adenosine diphosphate-ribose) polymerase (PARP) is a single-stranded DNA repair enzyme that
induces apoptosis and necrosis after DNA damage caused by reactive oxygen species. We evaluated tissue protective
effects of the PARP inhibitor (PARP-i) PJ34 against pulmonary I/R injury.
Methods. Rats (total n=45) underwent a thoracotomy with left hilar isolation and saline administration (sham
group) or thoracotomy with hilar clamping and saline administration (I/R group) or PJ34 administration (PARP-i
group). Parameters were measured for 7 days after reperfusion.
Results. Pathologic analysis revealed that reperfusion injury was drastically suppressed in the PARP-i group 2 days after
reperfusion. Terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick-end labelingYpositive
cells were significantly decreased in the PARP-i group compared to the I/R group (PG0.05). Accordingly, the wet-to-dry
lung ratio in the I/R group was significantly higher compared with the PARP-i group (P=0.025). Four hours after
reperfusion, serum tissue necrosis factor-> and interleukin-6 were significantly suppressed in the PARP-i group
compared with the I/R group (PG0.05). Serum derivatives of reactive oxygen metabolites increased quickly and
remained high in the I/R and PARP-i groups from 4 hr until 7 days after reperfusion. Interestingly, the serum biologic
antioxidant potential in the PARP-i group was significantly higher than that in the I/R group from day 2 until day 7.
Conclusion. The PARP-i decreased inflammation and tissue damage caused by pulmonary I/R injury. These bene-
ficial effects of the PARP-i may be correlated with its antioxidative efficacy.
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Ischemia-reperfusion (I/R) injury remains one of the ma-
jor problems in lung transplantation; it causes disorders

of the alveoli and the vascular endothelium and sequentially
induces pulmonary edema and acute rejection (1, 2).
Therefore, suppression of I/R injury is expected to prevent
or reduce lung disorders after lung transplantation.

Ischemia-reperfusion overactivates poly(adenosine
diphosphate-ribose) polymerase (PARP). Poly(adenosine
diphosphate-ribose) polymerase1 and PARP2 are involved
in replication, DNA repair, and cell death (3Y5) (Figure S1,
SDC, http://links.lww.com/TP/B25). In response to I/R,
the nuclear factor (NF)-JB-PARP1complex induces the
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transcription of proinflammatory genes in macrophages.
The subsequent production of nitric oxide and reactive
oxygen species triggers DNA strand breaks. Poly(adenosine
diphosphate-ribose) polymerase is dramatically activated by
DNA breaks and then catalyzes poly(adenosine diphosphate
ribosyl)ation on substrate proteins in regions of DNA damage,
events that require efficient recruitment of DNA repair factors
to the loci (6, 7). The overactivation of PARP decreases cellular
nicotinamide adenine dinucleotide and adenosine triphosphate
(ATP) levels, resulting in necrotic cell death (8Y11). Activated
PARP also modulates inflammatory signaling cascades and
apoptotic pathways by reduction of the mitochondrial mem-
brane potential and the release of apoptosis-inducing factor
(12Y16). Therefore, inhibition of PARP is believed to reduce cell
death in inflamed organs (17).

PJ34 (N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,
dimethylacetamide) is a potent PARP inhibitor (PARP-i)
with strong tissue protective effects in rat models of cerebral
stroke, heart transplantation, and liver I/R injury as well as
in a mouse hindlimb ischemia model (18, 19). The mecha-
nism of the tissue protective effect is suppression of PARP
activation and decreased competitive binding of PARP with
nicotinamide adenine dinucleotide, resulting in increased
ATP and preservation of the total adenylate pool. As a result,
necrotic and apoptotic cell populations are decreased.

In the present study, we evaluated the effect of the
PARP-i PJ34 in pulmonary I/R injury in a rat pulmonary
hilar clamping model. Because PARP-is are antioxidants,
the oxidative stress levels and antioxidant potential levels
were measured for 7 days after reperfusion.

RESULTS

Active PARP Protein Levels in the Lung
Full-length PARP (113 kDa) is cleaved into the active

89-kDa form in the early apoptotic phase. Western blotting

revealed that the cleaved PARP protein was increased 2 days
after reperfusion in the I/R group; however, the level in the
PARP-i administrated group remained as low as in the sham
group (Fig. 1A).

Concentration of ATP in the Tissues
In the I/R group, the concentration of ATP at 2 days after

reperfusion was significantly lower than that in the other two
groups (PG0.03). No significant differences were noted among
the three groups at other time points after reperfusion (Fig. 1B).

Wet-to-Dry Lung Ratio
Two days after reperfusion, the wet-to-dry (W/D)

lung ratio in I/R group is significantly higher than those in
the sham and PARP-i groups (PG0.03) (Fig. 1C), indicating
that severe lung edema was induced in the I/R group but
suppressed in the PARP-i group by PJ34.

Histologic Findings and Blood Chemistry of Liver
Enzymes

Hematoxylin-eosin (H&E) staining showed that the 1-hr
ischemia induced severe inflammation in the I/R group 2 days
after reperfusion. However, in the PARP-i group, the degree of
inflammation was reduced to the same level as in the sham
group (Fig. 2A). No obvious systemic inflammation was ob-
served in the liver or kidney of any group 2 days after reperfu-
sion (Fig. 2B and C).

To measure the potential damages to liver, aspartate
transferase (AST), alanine transferase (ALT), and lactate dehy-
drogenase were measured. Two days after reperfusion, AST
levels were significantly higher in the I/R and the PARP-i group
compared to the sham group. No significant differences were
observed between the I/R and PARP-i group at any time point
(Fig. 2D). No differences in ALTor lactate dehydrogenase were
seen at any time points among any groups (Fig. 2E and F).

FIGURE 1. A,Western blot of the cleaved active form of PARP at 2 days after reperfusion. B, ATP concentration in the three
groups before treatment, 4 hr, 2 days, and 7 days after reperfusion. At 2 days after reperfusion, there were significant
differences between I/R group and other 2 groups (*PG0.05). C, W/D lung ratio at 4 hr, 2 days, and 7 days after reperfusion.
At 2 days after reperfusion, there were significant differences between I/R group and other 2 groups (*PG0.05). Data were
represented as meanTSD. (n=5). ATP, adenosine triphosphate; W/D, wet-to-dry; PARP, poly(adenosine diphosphate-ribose)
polymerase; SD, standard deviation.
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Terminal Deoxynucleotide Transferase-Mediated
Deoxyuridine Triphosphate Nick-End
Labeling Staining

Morphologically, most of the terminal deoxynucleotide
transferase-mediated deoxyuridine triphosphate nick-end la-
beling (TUNEL)-positive cells were inflammatory cells. How-
ever, TUNEL-positive cells were also observed in alveolar septa
(Fig. 3A-e). Fluorescent immunostaining also revealed that
TUNEL-positive cells were observed in alveolar septa and cap-
illaries in the I/R group (Fig. 3A-f ).

The TUNEL-positive cells were more frequently ob-
served in I/R group (Fig. 3A-a, A-d, and A-g). The number
of TUNEL-positive cells was significantly higher in the I/R
group than that in the other two groups (PG0.05) (Fig. 3B).

The Inflammatory Cytokines: Tissue Necrosis
Factor-> and Interleukin-6

Serum tissue necrosis factor (TNF)-> levels were in-
creased significantly in the I/R group compared to the other
two groups at 4 hr after reperfusion (PG0.05) (Fig. 4A). At
4 hr and 2 days after reperfusion, serum interleukin (IL)-6
was increased in the I/R group compared to the other two
groups (Fig. 4B). A significant difference in IL-6 levels be-
tween the I/R group and the other two groups was observed
2 days after reperfusion (Fig. 4; PG0.05). Neither TNF-> nor
IL-6 was detectable at 7 days after reperfusion in any of the
three groups (Fig. 4A and B). Similar results were observed
for messenger RNA (mRNA) expression of IL-6 and TNF->
(Fig. 4C and D).

Oxidative Status–Related Markers
Derivatives of reactive oxygen metabolites (d-ROMs)

were drastically increased until 2 days after reperfusion and
then decreased. The I/R and PARP-i groups had significantly
higher d-ROM levels compared to the sham group from 3
days to 7 days (Fig. 5A). Biologic antioxidant potential
(BAP) was significantly increased in the I/R group 4 hr

after reperfusion (PG0.03) and then decreased to the pre-
ischemia level. Interestingly, the peak of the BAP level in
the PARP-i group was delayed until 2 days and remained
high throughout the week (Fig. 5B). Significant differences
in BAP levels between the PARP-i group and I/R group were
observed until 5 days. The oxidative stress index 2 days after
reperfusion was 0.90T0.04 in the sham group, 1.50 T 0.07 in
the I/R group, and 0.92 T 0.05 in the PARP-i group. The
PARP-i group had a significantly lower oxidative stress in-
dex than the I/R group (PG0.03) (Fig. 5C), and this difference
remained until 7 days after reperfusion.

DISCUSSION
The present results clearly illustrate the tissue protec-

tive effect of PJ34 in pulmonary I/R injury. Histologic
analysis revealed that PJ34 suppressed lung edema and in-
flammatory cell infiltration. The TUNEL-positive cells were
observed in the I/R group but were rarely observed in the
PARP-i group, indicating that tissue damage was lower in
the PARP-i group.

The results were consistent with I/R models of the
brain, heart, and liver. The beneficial effects of a PARP-i on
neutrophil infiltration (20) and brain hemorrhage (21) have
been demonstrated in brain ischemia models. Poly(adenosine
diphosphate-ribose) polymerase activation contributes to the
expression of P-selectin and intracellular adhesion molecule
(ICAM)-1 (22). Because a PARP-i reduces the immunostain-
ing of P-selectin and ICAM-1 1 hr after reperfusion (23),
PARP-i reduces neutrophil adhesion activity by suppressing P-
selectin and ICAM-1. In a study of PARP-deficient mice
(PARPj/j), the postischemic increase in the numbers of
rolling or adherent leukocytes, and platelets is significantly
lower, and the serum ALT and AST activities are also lower
compared to PARP+/+ mice (24). Therefore, we suggest that
a similar phenomenon may occur in the present pulmonary
I/R model.

FIGURE 2. A, representative pulmonary histologic findings of hematoxylin-eosin staining 2 days after reperfusion. Two
days after reperfusion, I/R injury caused severe inflammation. Scale bar, 200 Km. Representative hepatic (B) and renal (C)
histologic findings of hematoxylin-eosin staining at day 2. Changes in AST (D), ALT (E), and LDH (F) 4 hr, 2 days, and 7 days
after reperfusion. There was a significant difference between sham group and other 2 groups (*PG0.03; **PG0.05). However,
no significant difference was observed between I/R group and PARP-i group. I/R, ischemia-reperfusion; AST, aspartate
transferase; ALT, alanine transferase; LDH, lactate dehydrogenase; PARP-I, PARP, poly(adenosine diphosphate-ribose)
polymerase inhibitor.
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In the present study, serum TNF-> and IL-6 levels
were increased after reperfusion, and PJ34 administration
significantly suppressed the increase. These results are con-
sistent with the report by Huang and colleagues (25) who
showed that increased PARP activity and PARP expression
in circulating mononuclear cells are positively correlated
with plasma TNF-> and IL-6 levels. They also showed that
PARP1 inhibition prevents the lipopolysaccharide-induced
DNA binding activity of NF-JB and the decreased expres-
sion of TNF-> and IL-6. A supershift assay demonstrated
that PARP is a component of the NF-JB-DNA complex.
Therefore, in the present study, PJ34 may have reduced the
DNA-binding activity of NF-JB and suppressed the signal-
ing cascade of NF-JBYrelated cytokines, resulting in reduced
serum levels of TNF-> and IL-6, which also reduce the cy-
tokine storm and inflammatory cell infiltration in the I/R
lung. The putative mechanism of PJ34 in I/R injury is shown
in Figure S1 (SDC, http://links.lww.com/TP/B25).

Ischemia-reperfusion injury increases oxidative stress
which results in DNA strand breakage, which in turn acti-
vates PARP (26). In the present study, d-ROM and BAP
were used to evaluate the oxidative status. The d-ROM level
is proportional to the serum hydroperoxide concentration,
which reflects the peroxidation products of proteins, pep-
tides, amino acids, lipids, and fatty acids. The d-ROM
measurement is based on the ability of transition metals to
catalyze, in the presence of peroxides, the formation of free

radicals, which are trapped by an alchilamine. The BAP
measurement is based on the ability to reduce trivalent ferric
ions (27). In our study, the d-ROM level was increased 4 hr
after reperfusion and remained high in the I/R group and
PARP-i group. This result indicates that oxidative stress was
similar in the I/R group and PARP-i group after reperfusion.

Interestingly, the BAP levels in the I/R group increased
4 hr after reperfusion but decreased by 2 days and remained
low. In the PARP-i group, BAP remained at a low level 4 hr
after reperfusion and increased from 2 days. Because the
BAP level reflects the biologic reducing capacity, severe ox-
idative stress at 4 hr after reperfusion may induce serum
antioxidants, resulting in the preservation of homeostasis.
However, 2 days after reperfusion in the I/R group, the ox-
idative ability of infiltrated inflammatory cells and damaged
necrotic tissue may have consumed the antioxidants,
resulting in a decreased BAP level that remained low. On the
other hand, in the PARP-i group, the inflammatory reaction
in the tissue was low, which may have resulted in the
maintenance of a high BAP level.

The detailed mechanism of BAP upregulation by
PARP-is is complex and not completely understood. We
believe that the present data indicate that an increased BAP
level may be a favorable biomarker, indicating a sufficient
amount of antioxidants in the serum during conditions of
tissue damage. In addition, the oxidative stress index may be
a more accurate biomarker for oxidative stress.

FIGURE 3. A, representative images of TUNEL staining 2 days after reperfusion (a, d, and g). The high-power field viewof
the same section of TUNEL staining (b, e, and h). Double fluorescent immunostaining of vascular endothelial cells (red) and
TUNEL-positive cells (yellow, white arrowheads) (c, f, and i). (a, b, and c) Sham group; (d, e, and f ) I/R group; (g, h, and i)
PARP-i group. Some of the TUNEL-positive cells were observed in the I/R group (arrowheads). (a, d, g) Scale bars, 200 Km.
(b, c, e, f, h, i) Scale bar, 50 Km. B, the number of TUNEL-positive cells in the lung (per 10 hpf ) 2 days after reperfusion.
There was a significant difference between I/R group and other 2 groups (*PG0.05). TUNEL, terminal deoxynucleotide
transferase-mediated deoxyuridine triphosphate nick-end labeling; hpf, high-power field.

* 2014 Lippincott Williams & Wilkins Hatachi et al. 621

Copyright © 2014 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

http://links.lww.com/TP/B25


Our study has an important limitation. Although we
aimed to confirm the tissue protective effect of the PARP-i
against I/R injury in the lung, hilar clamping is different
from transplantation, and our experimental setup reflects
basic science. An experimental setup that involves lung
preservation using PJ34-contained perfusate and an actual
transplant procedure will be necessary to draw conclusions

about clinical applications of a PARP-i. On the other hand,
the tissue protective effect in the warm ischemia setting in-
dicates that a PARP-i might be useful during perfusion of
harvested lungs from nonYheart beating cadaveric donors.

In conclusion, the present results indicate that the
PARP-i PJ34 has a tissue protective effect in the rat pul-
monary I/R injury model, and the use of PJ34 may be

FIGURE 4. Assessment of serum cytokine levels 4 hr, 2 days, and 7 days after reperfusion. Serum TNF-> (A) and serum IL-6
(B) 4 hr, 2 days, and 7 days after reperfusion as measured with ELISA. The mRNA expression of TNF-> (C) and IL-6 (D) in the
lung 4 hr, 2 days, and 7 days after reperfusion. ELISA, enzyme-linked immunosorbent assay; TNF, tissue necrosis factor; IL,
interleukin, mRNA, messenger RNA.

FIGURE 5. Measurement of oxidative stress over the course of 7 days. Changes in the serum d-ROM levels (A), serum BAP
levels (B), and the oxidative stress index (C) among the three groups. In the oxidative stress index, there were significant
differences between I/R group and PARP-i group from 2 days after reperfusion until 7 days (PG0.05).(1 U. CARR.=0.08 mg
H2O2/dL). BAP, biologic antioxidant potential. d-ROM, derivatives of reactive oxygen metabolites; U.CARR, Carratelli Units;
PARP-I, PARP, poly(adenosine diphosphate-ribose) polymerase inhibitor.
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correlated with the BAP. Further basic research and clinical
trials will be necessary to demonstrate the usefulness of a
PARP-i in lung disorders.

MATERIALS AND METHODS

Animals and Rat Pulmonary I/R Injury Model
Inbred male Wistar rats (mean, 265 g) were purchased from Kyudo Co.

Ltd. (Saga, Japan) and maintained in a specific pathogen-free animal facility

at Nagasaki University. All procedures were performed in accordance with

the guidelines of the Institutional Animal Care and Use Committee of

Nagasaki University.

The previously described rat pulmonary I/R injury model was used with

modifications (28). Briefly, after inhalation of diethyl ether in a glass

chamber, 0.05 mg/kg pentobarbital sodium salt was administered intra-

peritoneally. Anesthetized rats were orally intubated. Mechanical ventilation

was set to 10 mL/kg, 90 breaths per min, and 8 mL/kg during one-lung

ventilation (Harvard volume-cycled ventilator SN-480-7-10cc-2T; Shinano

Seisakusyo, Tokyo, Japan). In the supine position, the left jugular vein was

isolated, and a 24-G catheter was inserted. A 1-mL blood sample was col-

lected as the pretreatment blood sample. Then, 400 U/kg heparin sodium

(#3334401A6107; Mochida Pharmaceutical Co. Ltd., Tokyo, Japan) was

slowly injected intravenously, followed by 0.2 mL saline (Sham group or I/R

injury group) or 10 mg/kg PJ34 in a diluted solution (PARP-i group). After

pretreatment, the catheter was capped and placed under the skin.

Forty minutes after the injections, a thoracotomy was performed in the

left fifth intercostal space. The left lung ligament was detached to expose the

left hilum. In the sham group (n=15), only a thoracotomy and left hilar

isolation were performed, and the chest was closed after 1 hr. In the I/R

injury group (n=15), the left main bronchus, pulmonary artery, and vein

were clamped separately for 1 hr using 4-mm-long single microclamps

(#1SC01; Kono Seisakusyo, Chiba, Japan). After confirming full inflation of

the left lung, the chest was closed. For the I/R injury plus PARP-i group

(n=15), using the previous protocol, 10 mg/kg diluted PJ34 was adminis-

tered through the jugular vein 40 min before thoracotomy (19, 29). Then,

the same procedures as in the I/R group were performed for the PARP-i

group. The results of the dose-response study and cell viability analysis

with different concentrations of PJ34 are shown in Figures S2 and S3 (SDC,

http://links.lww.com/TP/B25).

Five rats in each group were killed at 4 hr, 2 days, and 7 days after the

reperfusion to harvest organs and blood samples. In the day 7 sacrifice

group, blood samples were collected from the catheter inserted in the jug-

ular vein at 4 hr, 2 days, 3 days, 5 days, and 7 days after reperfusion. Before

blood sampling, all rats were anesthetized with diethyl ether inhalation and

pentobarbital sodium salt intraperitoneal injection.

Western Blotting
The protocol for sample homogenization was performed as described

with partial modification (30). Denatured nuclear proteins were

electrophoresed and electrotransferred to PVDF membranes. Blots were

incubated with rat-specific cleaved PARP (Asp214) antibody (#9545S; Cell

Signaling Technology, Tokyo, Japan) as the primary antibody at 4-C over-

night. After washing, blots were incubated with horseradish peroxidase-

conjugated secondary antibody for 1 hr. Blots were developed with the

enhanced chemiluminescence system, and images were captured and scanned.

Densitometric analysis of the bands was performed with AlphaEase Image

Analysis Software (V.3.1.2).

Histologic Analysis
Resected lungs were fixed in 10% buffered formalin and embedded in

paraffin. Representative sections were stained with HE and examined.

For analysis of apoptosis, paraffin sections were processed for TUNEL

using an in situ apoptosis detection kit (Wako Pure Chemical Industries,

Ltd., Osaka, Japan) according to the manufacturer’s instructions. The

number of TUNEL-positive cells was counted in ten high-power (�400)

fields randomly selected from areas of severe inflammation in each rat. To

assess apoptosis in detail, double fluorescent immunostaining was

performed. Representative sections were treated with Proteinase K for

5 min. The sections were incubated with rat vascular endothelial cell

antigen-1 (ab9774; Abcam, Tokyo, Japan) at 4-C overnight. The sections

were treated with AlexaFluor647 (ab150115; Abcam) for 1 hr at 37-C. At the

same time, TUNEL labeling was performed.

W/D Lung Ratio
Lung, heart, and trachea were extracted en bloc. The lung was dissected

at the bilateral hilum from the heart and dissected at the level of the carina

from the trachea. Lung tissue was weighed immediately as the wet lung

weight, and the lung was placed in a thermostatic chamber at 60-C for

72 hr. Then, the dry lung was weighed, and the W/D ratio was calculated.

Cytokine Evaluation

Enzyme-Linked Immunosorbent Assay

Interleukin-6 was measured with a rat IL-6 enzyme-linked immunosorbent

assay kit (Native form) (#27197; IBL, Gunma, Japan). According to the kit

protocol, samples were measured in duplicate. Assays were performed with

immobilized antiYIL-6 antibody. Plates were incubated overnight at 4-C and

then washed before adding labeled antibody to each well for 60 min at room

temperature. Then, each well was washed and allowed to react with 3,3¶,5,5¶-

tetramethylbenzidine substrate for 30 min at room temperature in the dark.

Absorbance was immediately measured with MULTISKAN JX (#51118230C;

Thermo Scientific, Fukuoka, Japan) at a wavelength of 450 nm.

Tissue necrosis factor-> was measured with a rat TNF-> enzyme-linked

immunosorbent assay kit (#27194; IBL, Gunma, Japan) according to the

assay kit protocol as described above for IL-6.

RNA Extraction and TaqMan Real-Time PCR

Total RNA was extracted from the lung and kidney with TRIzol reagent

(Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. The

RNA concentration was determined by Nanodrop ND1000 at 260 nm (Thermo

Scientific). complementary DNA (cDNA) was synthesized using TaqMan reverse

transcription reagents and quantified using PC707 (ASTEC Co., Ltd., Fukuoka,

Japan). The primers and TaqMan probes for TNF->, IL-6, and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) mRNA were purchased from Sigma

Genosys (Sigma-Aldrich, Hokkaido, Japan). The mRNA expression of TNF->

and IL-6 was determined with TaqMan real-time PCR using Lightcycler Nano

(Roche Applied Science, Tokyo, Japan). Rat GAPDHwas amplified as an internal

control, and relative gene expression values were determined using the 2Y$$CT

method (31). The following primer sequences were used: TNF->: 5¶-

AGGAGAAGTTCCCAAATG-3¶, 5¶-GTATGAAGTGGCAAATCG-3¶, IL-6: 5¶-

TTGGGACTGATGTTGTTG-3¶, 5¶-TGAATGACTCTGGCTTTG-3¶, GAPDH: 5¶-

TGAGGCCGGTGCTGAGTATGT-3¶, 5¶-CAGTCTTCTGGGTGGCAGTGAT-3¶.

Oxidative Stress Evaluation
Oxidative stress was evaluated by measuring d-ROM and BAP using Free

Radical Elective Evaluator Carpe Diem (#13B2X10066W00004; Wismerll

Co. Ltd., Tokyo, Japan) as described previously (32). Briefly, both tests

(d-ROM and BAP) were performed in duplicate for each sample at 37-C.
Serum samples were reacted with chromogenic reagent for d-ROM in the

cartridge. The absorbance of the d-ROM reagent was measured at 505 nm

for 5 min. To measure the BAP level, chromogenic reagent for BAP was

reacted with serum sample for 5 min, and then the absorbance was mea-

sured at 505 nm. The oxidative stress index was calculated with the formula:

d-ROM/BAP�8.85 (oxidative stress factor), as described previously (33).

Statistical Analysis
For comparisons among three groups, a global test of significance

(Kruskal-Wallis test with Bonferroni correction to account for the number

of comparisons) was performed to determine differences between median

values with standard division. If a difference was significant, the Steel-

Dwass test was performed. Statistical analysis was performed using SPSS

statistics 21.0 (IBM, Tokyo, Japan). A P value less than 0.05 was considered

indicative of a significant difference.

Additional Materials and Methods can be found online (SDC, http://

links.lww.com/TP/B25).
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