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Abstract: 16 

Objectives.  The aim of this study was to evaluate the effect of hypothermia on the in 17 

vivo pharmacokinetics of 4-nitrophenol (4NP) using rat liver homogenate and rat liver 18 

perfusion system. 19 

Methods.  Rat liver homogenate was incubated with 4NP, which is mainly metabolized 20 

by CYP2E1, at 37, 34, 32, or 28oC. The Michaelis constant (Km) and maximum 21 

elimination velocity (Vmax) of 4NP were calculated by a Hanes-Woolf plot.  The hepatic 22 

extraction ratio (Eh) of 4NP was evaluated in a rat liver perfusion study at 37, 34, 32, or 23 

28oC.  Moreover, the plasma concentration profiles of 4NP after its i.v. administration 24 

to rats were analyzed by the moment theory and were compared to in vitro parameters. 25 

Key findings.  While the Km of 4NP was not changed, the Vmax and Eh were reduced at 26 

low temperatures.  The plasma concentrations of 4NP after its i.v. administration to rats 27 

were significantly increased at 28oC.   28 

Conclusion.  Changes in the pharmacokinetics of 4NP under hypothermic conditions 29 

were caused by alterations in Vmax and Eh. We may be able to predict the disposition of a 30 

drug by in vitro studies. 31 

 32 
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Introduction 35 

 Therapeutic hypothermia is beneficial for patients with acute myocardial 36 

infarction or post cardiac arrest syndrome [1-5].  Several drugs such as propofol, 37 

midazolam, or dexmedetomidine have been used during hypothermia to cause a sedative 38 

action or negate the complications of hypothermia [5, 6].  However, the pharmacokinetics 39 

of drugs used during therapeutic hypothermia have been shown to be altered [7-9]. We need 40 

to identify the factors affecting the disposition of a drug to optimize medication.  We 41 

previously reported that the pharmacokinetics of phenolsulfonphthalein (PSP), 42 

indocyanine green (ICG), and fluorescein isothiocyanate-dextran (FD-4, MW 4400) as 43 

marker compounds and their hepatic disposition under hypothermic conditions in rats 44 

could differ with the disposition route and intrinsic clearance of these drugs [10, 11].  45 

Despite of necessity to determine the individual factors affecting drug disposition for 46 

prediction the pharmacokinetics during hypothermia, it has not been clarified.  In this 47 

study, we tried to evaluate the effect of temperature on drug disposition by focusing on 48 

the hepatic disposition.  49 

In this study, we chose 4-nitrophenol (4NP) as a model compound metabolized 50 

in the liver by CYP2E1 [12, 13].  We thought we could evaluate the effect of hypothermia 51 

on a drug disposition metabolized by CYP2E1 which plays a major role in the metabolism 52 
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of several drugs used during hypothermia such as acetaminophen, isoflurane, isoniazid, 53 

and theophylline [14-18].   54 

In the present study, we examined the effect of low temperature on the CYP2E1 55 

activity and hepatic extraction ratio of 4NP.  Moreover, we evaluated the relationship 56 

between the in vitro and in vivo pharmacokinetic parameters of 4NP to evaluate the 57 

possibility of predicting changes in the pharmacokinetics of drugs under hypothermic 58 

conditions by an in vitro study. 59 

 60 

Materials and Methods 61 

Materials 62 

4NP was purchased from Nacalai Tesque, Inc. (Kyoto, Japan).  All chemicals 63 

were of the highest purity available. 64 

 65 

Animals 66 

Male Wistar rats (180-210 g or 240-270 g) were housed in a cage in an air-67 

conditioned room and maintained on a standard laboratory diet (MF, Oriental Yeast, Co., 68 

Ltd., Tokyo, Japan) and water ad libitum.  All animal experiments in the present study 69 

conformed to the Guidelines for Animal Experimentation of Nagasaki University and 70 
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were approved by the Committee of Animal Experimentation of Nagasaki University 71 

(Approval number: 0506280443). 72 

 73 

Liver homogenate study 74 

 The liver was removed from male Wistar rats (180-210 g) and homogenized in 75 

cold Tris/HCl buffer containing 5 mM MgSO4 (pH 7.4).  Rat liver homogenate was 76 

incubated at 37, 34, 32, or 28oC for 15 min after the addition of 4NP (50, 100, 200, 400, 77 

800 µg/mL) and several lots of the liver homogenate were used in this study.  We have 78 

preliminary examined the elimination of 4NP from liver homogenate until 15 min 79 

followed the first elimination manner (data not shown).   After incubation, the 80 

incubation mixture was mixed with acetone to stop the metabolism reaction and 81 

centrifuged for 5 min at 15,000 rpm.  The remaining concentration of 4NP was 82 

determined by spectrophotometer and then the eliminate velocity of 4NP was calculated 83 

by Eq.1 84 

proteinmgVCCv ÷
×−

=
15

)( 150      (1) 85 

where v is the eliminate velocity, C0 and C15 represent the concentration of 4NP 86 

at 0 and 15 min, respectively, and V is the incubation volume (1 mL). 87 

The Michaelis constant (Km) and maximum eliminate velocity (Vmax) were 88 
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calculated by a Hanes-Woolf plot (Eq.2). 89 

𝐶𝐶
𝑣𝑣

= 1
Vmax

× 𝐶𝐶 + Km
Vmax

     (2) 90 

where v is the eliminate velocity normalized by protein content of the 91 

homogenate, C is the concentration of 4NP, Km is the Michaelis constant, and Vmax is the 92 

maximum eliminate velocity. 93 

 94 

Liver perfusion study 95 

 Male Wistar rat liver was perfused in situ as described previously [11].  After a 96 

stabilization period of 30 min, the 4NP solution (20 mg/mL x 0.1 mL) was injected into 97 

the perfusion route.  After administration of the 4NP solution, venous outflow samples 98 

were collected into tubes for 5 min.  The hepatic extraction ratio (Eh) was calculated as 99 

follows Eq 3 with the assumption that the hepatic disposition of 4NP was allowed to well-100 

stirred model. 101 

D
VCDE outout

h
×−

=       (3) 102 

where D is administration dose of 4NP, Cout is concentration of 4NP in outflow 103 

effluent and Vout is the volume of outflow effluent.  104 
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In vivo study 105 

 Male Wistar rats (240-270 g) were anesthetized with sodium pentobarbital (50 106 

mg/kg, i.p.) and the left femoral artery was cannulated with a polyethylene tube (i.d. 0.25 107 

mm, o.d. 0.61 mm, Dual Plastics, Dural, Australia). 108 

 Rats were divided into four groups: a control group in which rectal temperature 109 

was maintained at 37oC by a heat lamp throughout the procedure; a hypothermic group 110 

kept at 34oC, 32oC, or 28oC, in which hypothermia was induced by external cooling with 111 

icepack on their body before the administration of the drug, and rectal temperature was 112 

maintained at 34, 32, or 28oC. 113 

The drug solution (20 mg/mL x 0.1 mL) was injected into the right femoral vein.  114 

After administration of the drug solution, blood was collected at the selected times from 115 

the heparinized cannula inserted into the femoral artery until 50 min.  Blood was 116 

centrifuged at 15000 rpm for 5 min. 117 

Moment parameters (AUCp and MRTp) were calculated by numerical integration 118 

using a linear trapezoidal formula and extrapolation to infinite time based on a 119 

monoexponential equation [19].  120 
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Assay 121 

The concentration of 4NP was determined spectrophotometrically at 410 nm 122 

after dilution with 1 M NaOH [20]. 123 

 124 

Statistical analysis 125 

Statistical comparisons were performed by Dunnett’s test after examining with 126 

an analysis of variance (ANOVA) or repeated measured ANOVA.  P < 0.05 was 127 

considered to be indicative of significance compared to control group (37oC).  The 128 

results were expressed the mean ± S.E.  129 
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Results 130 

Effect of temperature on 4NP metabolism in rat liver homogenate 131 

 The Michaelis constant (Km) and maximum eliminate velocity (Vmax) of 4NP at 132 

37, 34, 32, and 28oC were obtained from the Hanes-Woolf plot (fig.1A).  The Vmax of 133 

4NP was decreased to about 30% at 32oC and 70% at 28oC compared to 37oC and there 134 

was a significant difference between 37oC and 28oC. (Fig 1B)  The Km of 4NP was not 135 

altered at 34oC and 32oC compared to 37oC. (Fig 1B)  The Km at 28oC was decreased 136 

by the half from 37oC although not significant. 137 

 138 

Change in the hepatic extraction ratio at low temperatures in the rat liver perfusion system 139 

Fig.2 illustrates the Eh of 4NP obtained by the rat liver perfusion study at each 140 

temperature.  The Eh at 28oC was decreased about 15% compared to 37oC although the 141 

difference was not significant.  The Eh of 4NP was linearly decreased according to the 142 

reduction of temperature (r2=0.931, p=0.034).  143 

 144 

Pharmacokinetics of 4NP in vivo in rats under hypothermic conditions  145 

Fig.3 shows the plasma concentration – time profile of 4NP after its i.v. 146 

administration to rats under different body temperatures.  The plasma concentration of 147 

4NP at 28oC was significantly higher than that at 37oC.  The AUCp, MRTp, and CLtot of 148 
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4NP at each temperature are listed in Table I.  The AUCp of 4NP was 1.7 (34oC), 2.9 149 

(32oC), and 5.5 (28oC) times greater than that at 37oC, and the MRTp of 4NP was 150 

significantly prolonged at 32 and 28oC.  In addition, the CLtot of 4NP was significantly 151 

lower at 32 and 28oC than that at 37oC.   152 

  153 

Discussion 154 

 We performed an in vitro metabolism study using rat liver homogenate and 155 

isolated liver perfusion study to evaluate the effect of temperature on the elimination in 156 

the liver homogenate and Eh of 4NP.  We evaluated the effect of temperature on 4NP 157 

metabolism activity in rat liver homogenate since liver homogenate containing the 158 

metabolic enzymes or co-enzymes necessary to metabolize drugs and easy to handling 159 

compared to another method.  The Vmax of 4NP decreased according to the temperature, 160 

while no significant difference was observed in Km.  This suggests that the affinity of 161 

4NP with CYP2E1 was not affected by temperature, whereas the eliminate velocity could 162 

have been altered under hypothermic conditions.  Similar to our result, it has been 163 

reported that the Vmax of midazolam metabolized by CYP3A4 was decreased at 33oC 164 

compared to 37oC while the Km was not altered [21].  The previous study [18] has shown 165 

that NADPH, NADPH-cytochrome P-450 reductase, and lipids are required for 166 
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metabolism by CYP.  These factors also produced by enzymatic reaction and the activity 167 

of these enzymes could also be decreased under hypothermia.  Further study is needed 168 

to clarify the mechanisms the change in Vmax under hypothermic condition.  169 

Moreover, we performed an isolated liver perfusion study to analyze changes in 170 

the Eh of 4NP at low temperatures.  The isolated liver perfusion study is a useful method 171 

to evaluate the effect of temperature on the hepatic uptake of 4NP because we can easily 172 

control the flow rate and perfusion temperature.  Since Eh is affected by these factors, 173 

we ran the liver perfusion study under a constant flow rate and protein-free conditions. 174 

The Eh of 4NP at 37oC was approximately-same as the reported value obtained 175 

under the steady-state condition [22] and it was decreased according to temperature.  Eh 176 

is influenced by the liver blood flow rate, protein binding ratio, and hepatic intrinsic 177 

clearance (CLint,h).  The reduction in Eh could have been caused by alterations in CLint,h, 178 

owing to the constant flow rate and protein-free conditions.  CLint,h is divided into 179 

several processes including influx into the cell or efflux from the cell and metabolism by 180 

the enzymes in the cell.  The uptake process of 4NP into the liver has not been fully 181 

identified.  Quebbeman has reported that the organic anion transporter (Oat) is related 182 

to 4NP uptake into the liver [23].   183 

Concerning Oat activity under hypothermic conditions, a decrease in the uptake 184 
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of phenolsulfonphthalein into the liver via Oat was suggested in our previous study [11].  185 

Furthermore, we showed a reduction in CYP2E1 activity at low temperatures in this study, 186 

and this alteration may have also had an effect on the Eh of 4NP.  Thus, the reduction in 187 

CYP2E1 and Oat activity could cause changes in the Eh of 4NP under hypothermic 188 

conditions. 189 

 As the next step, we evaluated the pharmacokinetics of 4NP in rats to identify 190 

how alterations in the hepatic disposition affected the pharmacokinetics of 4NP in rats.  191 

As illustrated in Fig.2, the plasma concentration of 4NP was significantly increased at 192 

28oC and the CLtot of 4NP was decreased according to a reduction in the body temperature 193 

(Table I).  In general, the hepatic clearance of a drug depends on hepatic blood flow and 194 

Eh.  It has been reported that the blood flow was reduced under hypothermia[24].   195 

Moreover, we determined the protein binding ratio of 4NP with BSA by equilibrium 196 

dialysis method and it was slightly increased at 28oC compared to 37oC (data not shown).  197 

These results suggest that the reduction of CLtot might be caused by reduction of Eh, 198 

hepatic blood flow or unbound fraction of 4NP. 199 

Conclusion 200 

 We showed that the elimination velocity from homogenate and Eh of 4NP were 201 

decreased under hypothermic conditions and that these alterations could affect the 202 
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pharmacokinetics of a drug under hypothermic conditions in rats.  These results may be 203 

helpful in predicting the pharmacokinetics of a drug during hypothermia. 204 

 205 
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Table 209 

Table I Pharmacokinetic parameters for the plasma concentration time profiles of 4NP 210 

after its i.v. administration to rats at a dose of 2 mg under different temperatures. 211 

Body temperature 
(oC) 

37 34 32 28 

AUCp (µg・mL/min) 
106.4 207.5 372.7 727.0** 

±16.9 ±111.1 ±42.2 ±140.5 

MRTp (min) 
6.5 15.5 34.0** 48.4** 

±1.1 ±5.3 ±4.7 ±5.2 

CLtot (mL/min) 20.7 17.9 5.7** 3.2** 

 ±3.1 ±5.7 ±0.7 ±0.6 

AUCp: area under the plasma concentration-time profile, MRTp: mean resistance time, 212 

CLtot: total body clearance. 213 

The AUCp, MRTp, and CLtot represent the mean ± S.E. of at least four experiments. 214 

** p < 0.01: significantly different from the result at 37oC 215 

216 
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Legend to Figures 217 

Fig.1  (A) Hanes-Woolf plots of 4NP elimination from rat liver homogenate under 218 

different temperatures and (B) Km and Vmax of 4NP at each temperature obtained by 219 

Hanes-Woolf plots.  Each point represents the mean ± S.E. and bar represents the mean 220 

+ S.E. of at least three experiments.  Key: at 37oC (○), 34oC (■), 32oC (▲), or 28oC 221 

(◇).  **: p<0.01, significantly different from 37oC. 222 

 223 

224 
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Fig.2  Relationship between the perfusate temperature and hepatic extraction ratio (Eh) 225 

of 4NP at a dose of 0.2 mg in the rat liver perfusion system.  Each symbol represents the 226 

mean ± S.E. of at least five experiments.  The solid line represents the regression curve.  227 

Key: at 37oC (○), 34oC (■), 32oC (▲), or 28oC (◇). 228 

 229 

  230 
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Fig.3  Plasma concentration profiles of 4NP at a dose of 2 mg after its i.v. administration 231 

to rats at 37oC (○), 34oC (■), 32oC (▲), or 28oC (◇).  Each point represents the mean ± 232 

S.E. of at least five experiments. 233 

 234 

  235 
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