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Abstract 19 

We identified a unique amino acid of NS2A113 phenylalanine that affects the 20 

efficient propagation of two Japanese encephalitis virus strains, JaTH160 and 21 

JaOArS982 in neuroblastoma Neuro-2a cells but not in cell lines of extraneural origin. 22 

This amino acid did not affect viral loads in the brain nor survival curves in mice. These 23 

findings suggest that virus propagation in vitro may not reflect the level of virus 24 

neuroinvasiveness in vivo. 25 

  26 
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Japanese encephalitis (JE) virus (JEV) causes approximately 30,000 to 50,000 cases 27 

and 10,000-15,000 deaths in Asian countries annually (1, 2). JEV belongs to the family 28 

Flaviviridae, genus Flavivirus (3, 4), whose genomic RNA encodes one polyprotein, 29 

cleaved into three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, 30 

NS2B, NS3, NS4A, NS4B, and NS5) proteins (5). The clinical symptoms of JE vary 31 

from mild to severe and include a non-specific febrile illness, meningitis, encephalitis 32 

and meningoencephalitis (6, 7). The mechanism of severe central nervous system (CNS) 33 

disease is not fully understood. 34 

To evaluate disease pathogenesis and virulence, mice have been employed as an 35 

infection model. Several viral and host factors affect disease severity during JEV 36 

infection. We previously suggested that the host response, resulting in 37 

immunopathological effects, contributes to fatal infections (8). Furthermore, we also 38 

demonstrated that the JaOArS982 and JaTH160 strains of JEV exhibited different 39 

virulence in mice (8). Therefore, a genetic-based comparison between these strains may 40 

provide an effective approach to identify viral factors contributing to severe disease. 41 

Our previous results showed that following subcutaneous infection with 104 PFU of 42 

JaTH160, mice showed 100% mortality, whereas JaOArS982 caused approximately 43 

30% mortality in mice (8). We first constructed infectious cDNA clones harboring full 44 
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length genes of JaOArS982 and JaTH160, and produced infectious viruses of S982-IC 45 

and JaTH-IC from each cDNA, respectively (9). In the present study, subcutaneous 46 

infection with 104 PFU of S982-IC and JaTH-IC viruses caused 40% and 100% 47 

mortality, respectively, in C57BL/6j (B6) mice (Japan SLC Cooperation, Japan CLEA 48 

Cooperation) (Figure 1A), indicating that both JaTH-IC and S982-IC viruses possessed 49 

virulence potentials similar to their parent JaOArS982 and JaTH160 viruses. Our animal 50 

experimental protocols were approved by the Animal Care and Use Committee, 51 

Nagasaki University (approval number: 091130-2-7 /0912080807-9, 100723-1-3 / 52 

1008050873-3). 53 

Our previous data showed that viral loads in the CNS of JaTH160-infected mice 54 

were significantly higher than those of JaOArS982-infected mice (8). This raised the 55 

possibility that virus propagation in neuronal cells is different between JaTH160 and 56 

JaOArS982. Thus, we next compared virus propagations in murine neuroblastoma 57 

Neuro-2a (N2a) cell lines. 58 

N2a cells were infected with each JEV strain at an m.o.i. of 0.1 and supernatants 59 

were harvested at 0, 24, 48 and 72 hours post-infection (pi). Virus titers were 60 

determined by plaque forming assays on Baby Hamster Kidney (BHK) cells (10). In 61 

N2a cells, JaTH-IC and the parent JaTH160 viruses exhibited significantly higher virus 62 
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yields compared with S982-IC and the parent JaOArS982 viruses (Figure 1B). However, 63 

there were no significant differences of virus yields between the four viruses in BHK 64 

cells (Figure 1C), Vero (rhesus monkey kidney), PS (porcine kidney) and HeLa (human 65 

epithelial) cells (data not shown). These results suggest that replication in neuronal cells 66 

is different between JaTH160 and JaOArS982 viruses. 67 

To determine the specific region of the viral gene affecting virus propagation in N2a 68 

cells, we constructed four chimeric JEV clones, S982_J1-IC, S982_J2-IC, S982_J3-IC 69 

and S982_J4-IC, as shown in Figure 2A. S982_J2-IC exhibited a similar growth curve 70 

to JaTH-IC and produced significantly higher virus titers than S982-IC, S982_J1-IC, 71 

S982_J3-IC and S982_J4-IC (Figure 3A). Thus, the viral genome sequence in the region 72 

of NS1322 to NS335 affects virus propagation in N2a cells. 73 

There are three amino acid differences in this region between JaOArS982 and 74 

JaTH160. Thus, we inserted amino acid substitutes into S982-IC and JaTH-IC, as 75 

shown in Figure 2B. Site-directed mutagenesis was used, as described previously (11). 76 

S982_IA23FA113DB81 showed significantly higher virus production in N2a cells compared 77 

with S982-IC, S982_VA23LA113DB81 and S982_IA23LA113EB81 (Figure 3B). Conversely, 78 

JaTH_VA23LA113EB81 exhibited significantly lower virus yields than JaTH-IC, 79 

JaTH_IA23FA113EB81 and JaTH_VA23FA113DB81 (Figure 3C). These results indicate that an 80 
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amino acid substitution in NS2A113, F in JaTH-IC and L in S982-IC, is responsible for 81 

the difference in propagation in N2a cells. 82 

To examine whether the amino acid substitution in NS2A113 contributes to the 83 

virulence and virus propagation in vivo, B6 mice were subcutaneously inoculated with 84 

S982_IA23FA113DB81 and JaTH_VA23LA113EB81, and their mortality was observed. Viral 85 

loads in the brain were also compared as previously shown (8, 12). Unexpectedly, 86 

S982_IA23FA113DB81 showed similar survival curves to the parent S982-IC virus (Figure 87 

4A) and there was no significant difference in viral loads in the brain between S982-IC- 88 

and S982_IA23FA113DB81-infected mice (Figure 4B). JaTH_VA23LA113EB81 also showed 89 

similar survival curves and similar viral loads in the brain to the parent JaTH-IC virus 90 

(Figure 4B). Thus, an amino acid substitution in NS2A113 did not explain the different 91 

viral loads and virulence in the brain between S982-IC and JaTH-IC viruses. 92 

Flavivirus NS2A protein is a 22-kDa hydrophobic protein (13). Previous studies have 93 

shown that NS2A protein is involved in viral assembly/release, viral RNA synthesis, 94 

regulation of NS1’ expression and inhibition of type-I interferon response (14-20). 95 

These functions are affected by amino acid substitutions within NS2A, such as NS2A 96 

-G11A, -E20A, -P30A, -T33I, -L46H, -I59N, -D73H, -R84S/A/E, -E100A, M108K, 97 

D125A, -Q187A, -K188A, -K190S, and -G200A (14, 16-25). 98 
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The influence of the NS2A-L113F substitution identified here in JEV infection has 99 

not been reported previously. NS2A has eight predicted transmembrane segments 100 

(pTMS), and NS2A113 appears to localize to pTMS4 (14). However, how NS2A113 101 

substitution affects virus propagation in N2a cells remains unclear. Further investigation 102 

may provide information on the unknown function of NS2A. 103 

Although a single amino acid substitution in NS2A113 alters viral propagation in N2a 104 

cells, this substitution did not affect viral loads in the brain nor survival curves in mice. 105 

These findings suggest that virus propagation in vitro does not necessarily reflect virus 106 

replication in vivo. Further, other amino acid and/or nucleotide substitutions may affect 107 

host responses such as antiviral activity. In this regard, this study helps to elucidate the 108 

mechanism of pathogenesis due to JEV infection in a mouse model. 109 

Interestingly, our preliminary experiments showed that there were no significant 110 

differences of mortality following intracerebral inoculation between JaOArS982 and 111 

JaTH160. In our previous study of tick-borne encephalitis viruses, we suggested that the 112 

mechanism of fatal infection is fundamentally different between intracerebral and 113 

peripheral infection (10, 26). We further showed that immune responses were different 114 

between JaOArS982- and JaTH160-infected mice (8). From these observations, we 115 

assumed that different viral replications in the brains between JaOArS982 and JaTH160 116 
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attributes to the peripherally induced host immune responses and those immune cells 117 

infiltrating in the brains. In addition, it appears that most of the volume of inoculum 118 

leaked from the brain due to intracranial pressure following intracerebral inoculation. 119 

Thus, we consider that intracerebral inoculation does not simply reflect virus infection 120 

and replication in neurons, and it appears that it is difficult to examine the different 121 

virulence mechanism between JaOArS982 and JaTH160. 122 

 We propose that actual virus propagation in the brain in vivo reflects a combined 123 

mechanism of viral replication properties in neuronal cells and the host antiviral 124 

immune response. Furthermore, we believe that the disease mechanisms of JEV in vivo 125 

involve a complex mechanism that includes the host immune response and neuronal 126 

infection in the CNS. Further investigations in a step-by-step fashion will provide clues 127 

to elucidate the precise pathogenic mechanisms of JEV infection and enable the 128 

development of effective treatment strategies for JE. 129 

 130 
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 224 

Figure Legends 225 

FIG 1  Virulence in mice and viral yields in cultured cells infected with the S982-IC 226 

and JaTH-IC viruses. (A) Survival curves and (B) Weight ratios of mice subcutaneously 227 



12 
 

infected with 104 PFU of each virus (n=10). P: Log-rank (Mantel-Cox) Test. 228 

Propagation of JaOArS982 (original virus) and S982-IC (derived from infectious cDNA 229 

clone of JaOArS982), JaTH160 (original virus) and JaTH-IC (derived from infectious 230 

cDNA clone of JaTH160) viruses in N2a (C) and BHK cells (D) at 0, 24, 48 and 72 231 

hours post-infection. Error bars represent standard deviations. p: One-way analysis of 232 

variance. 233 

 234 

FIG 2  Schematic representation of full-length chimeric and amino acid 235 

substituted-viruses derived from S982-IC and JaTH-IC. (A) A genome representations 236 

of S982_J1-IC, S982_J2-IC, S982_J3-IC and S982_J4-IC showing the replacement of  237 

5’UTR-NS1322, NS1323-NS335, NS336-NS5566, NS5567-3’UTR of S982-IC, respectively, 238 

with the corresponding region of JaTH-IC. (B) A genome representation of a single 239 

amino acid substituted-S982-IC and JaTH-IC. The white and black arrowheads indicate 240 

amino acids derived from S982-IC and JaTH-IC, respectively. S982-IC and JaTH-IC 241 

are also named S982_IA23LA113DB81 and JaTH_VA23FA113EB81 , respectively. 242 

 243 

FIG 3  Growth curves for virus propagation of the chimeric and amino acid 244 

substituted-viruses in N2a cells at 0, 24, 48 and 72 hours post-infection. (A) Viral yields 245 
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of S982_J1-IC, S982_J2-IC, S982_J3-IC and S982_J4-IC compared with S982-IC and 246 

JaTH-IC viruses. Viral yields of JaTH-IC and S982-IC are the same data as FIG 1C. 247 

Viral yields of amino acid substituted-S982-IC (B) and JaTH-IC (C) viruses. p: 248 

One-way analysis of variance. The white and black arrowheads indicate amino acids 249 

derived from S982-IC and JaTH-IC, respectively. 250 

 251 

FIG 4  Virulence in mice and viral loads in the brains of mice following subcutaneous 252 

infection with 104 PFU of S982_IA23LA113DB81 (S982-IC), S982_IA23FA113DB81, 253 

JaTH_VA23FA113EB81 (JaTH-IC), and JaTH_VA23LA113EB81. (A) Survival curves (n=10) 254 

P: Gehan-Breslow-Wilcoxon Test. (B) Viral loads in the brain (n=6). P: Kruskal-Wallis 255 

test, *: p<0.05 by Dunn’s Multiple Comparison Test. 256 
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