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Abstract 

‘Cell sheet engineering’ has been noted as a new and valuable approach in the tissue 

engineering field.  The objective of this study is to explore procedure to induce hepatic 

progenitor cells and biliary duct structures in the liver.  Sprague-Dawley rat dermal 

fibroblast (DF) sheets were transplanted into the incised surface of the liver of F344 

nude rats.  In the control group, an incision was made without transplantation of the 

DF sheets.  Bile duct (BD)-like structures and immature hepatocyte-like cells were 

observed in the DF sheet transplant site.  These BD-like structures were cytokeratin-8 

positive, while the hepatocyte-like cells were both OV-6 positive and α-fetoprotein 

positive as well.  These proliferation and differentiation of liver progenitor cells were 

not influenced by hepatectomy.  We also transplanted DF sheets transfected with a 

plasmid encoding the enhanced yellow fluorescent protein target to mitochondria 

(pEYFP-Mito) by electroporation, and found that the new structures were pEYFP-Mito 

negative.  We observed new BD-like structures and immature hepatocytes after 

transplantation of DF sheets onto incised liver surfaces, and clarified that the origin of 

these BD-like structures and hepatocyte like cells was the recipient liver.  The present 

study described an aspect of the hepatic differentiation process induced at the site of 
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liver injury. 
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1. Introduction

Orthotropic liver transplantation is the only established treatment for end-stage 

liver disease.  The shortage of donors is a universal problem affecting this treatment, 

and hepatocyte transplantation or bio-artificial liver devices have been developed to 

address this problem (Behbahan et al., 2011; Puppi et al., 2011).  However, there are 

still many challenges to obtain satisfying results with these therapies, because the 

utilization of primary hepatocytes in therapy has been hindered by their slow growth, 

loss of function and de-differentiation in vitro (Ohashi et al., 2001).  

Owing to the recent development of tissue engineering technology, the liver 

tissue engineering field has also been expected to provide a new therapeutic modality 

for several kinds of liver diseases (Ohashi et al., 2007).  We (co-author K.O.) 

previously reported that hepatic tissue sheets using isolated primary hepatocytes 

cultured on temperature-responsive surfaces could be transplanted into the subcutaneous 

space and stably persist for longer than 200 days in mice (Ohashi et al., 2007; 2011).  

These reports demonstrated that transplanted hepatocytes can keep functioning by 

interacting with interstitial cells in the subcutaneous space.  These results indicated 

that interstitial cells may therefore have the potential to support the liver function by 
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being transplanted as sheets onto a dysfunctional liver. 

Recently, Miyagawa et al. (Miyagawa et al., 2010) demonstrated that skeletal 

muscle cell sheets produced histologically normal cells, and functionally prevented the 

deterioration of the impaired myocardium in a swine infarction model.  They showed 

that the smooth muscle cells existed in the lesion where they transplanted the skeletal 

muscle cell sheet, and the function of the ischemic heart was improved by the transplant.  

These results indicate that transplanted cell sheets have the potential not only for 

functional expression, but also for induction of organ-specific progenitor cells.  

However, the mechanisms underlying why smooth muscle cells grew at the site where 

the skeletal muscle cell sheet was transplanted are still unclear. 

‘Cell sheet engineering’ using temperature-responsive dishes has been noted as 

a new approach in the tissue engineering field.  Using temperature-responsive dishes, 

cells can be harvested by lowering the culture temperature from 37 to 20℃, thereby 

avoiding the use of digestive enzymes and chelating agents (Nagase et al., 2009).  This 

technique has already been used in some clinical fields; for example, corneal epithelial 

sheets have been applied for the treatment of patients with unilateral or bilateral total 

corneal stem cell deficiencies arising from alkali burns or Stevens-Johnson syndrome 

(Nishida et al., 2004), layered autologous skeletal myoblast sheets have been used in the 
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treatment of dilated cardiomyopathy (Memon et al., 2005) and autologous mucosal 

epithelial cell sheets have been used for the treatment of esophageal ulceration after 

endoscopic submucosal dissection (Ohki et al., 2006; Takagi et al., 2010).  The 

usefulness of cell sheet engineering has also been expected in the hepatic tissue 

engineering field. 

Based upon these previous studies, we hypothesized that cell sheets have the 

potential to heal injured tissues or accelerate cell regeneration under certain 

circumstances.  To observe the influence of transplanted cell sheets on the cut surface 

of the liver, we transplanted rat dermal fibroblast (DF) allograft sheets onto the liver 

where incision was made in recipient rats.  We chose to use DFs as the donor cells, 

because fibroblast are easily obtained, which makes them easier to apply as a clinical 

cell source in the future. 

2. Materials and methods

2.1.  Rat dermal fibroblast sheets  

Rat DFs (Cell Applications, Inc., CA, USA) were seeded at a density of 1x106cells/dish 

onto 35mm temperature-responsive culture dishes (Cellseed, Tokyo, Japan).  RDF 
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growth medium (Cell Applications, Inc., CA, USA) with 1% penicillin and 

streptomycin (Sigma- Aldrich, Inc.,MO, USA) was used to culture the cells, and the 

medium was replaced with fresh medium every 48-72 hours.  After 10 days of culture 

at 37 ℃  in a humidified 5% CO2 atmosphere, confluent fibroblasts on the 

temperature-responsive dishes were transferred to another CO2 incubator set at 20℃ for 

about 30 minutes, upon which the fibroblast sheets detached spontaneously (Kobayashi 

et al., 2008). 

2.2.  Rats, transplantation of DF sheets, and surgical hepatic injury  

All rats received humane care according to the criteria outlined in the “Guide for the 

Care and Use of Laboratory Animals” prepared by the National Academy of Sciences 

and published by the National Institutes of Health (NIH publication 86-23 revised 1985). 

The animal protocol was approved by the Animal Experimentation Committee of 

Nagasaki University.  Eight- to 10-week-old male F344 nude rats (F344/NJcl-rnu/rnu, 

CLEA Japan, Tokyo, Japan) were used for the experiments.  While under pentobarbital 

(1ml/kg) anesthesia by intraperitoneal injection, the rats were laparotomized, and a 1cm 

long incision was made on the edge of the anterior lobe of the liver.  The rats were 

randomly divided into two experimental groups.  In the DF group, DF sheets were 
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transplanted onto the cut surface of the liver using a Cell Shifter (Cellseed, Tokyo, 

Japan) and 1 suture was made on the edge of the incision.  In the control group, the 

1cm long incision and 1suture were made in the same way, but no cells were 

transplanted.  The rats were sacrificed on days 7 (DF group n=5, Control group n=5), 

14 (DF group n=5, Control group n=5), and 28 (DF group n=5, Control group n=5) after 

the laparotomy.  Five rats per group were examined at each time point.  We also 

examined the impact of the hepatectomies in one additional groups.  In the DF with 

hepatectomy group (DF-H, n=3), the classical Higgins-Anderson 70% hepatectomy 

(Melo et al., 2010) was performed on postoperative days (POD) 7 of the initial DF sheet 

transplantation.  The rats were then sacrificed on day 7 after the hepatectomy. 

2.3.  Histology and immunohistochemistry  

Formalin-fixed paraffin embedded (4 μm) sections were used for hematoxylin-eosin 

(H&E) staining, Azan-Mallory stain as a marker of collagen fibers, and 

immunohistochemical staining with cytokeratin (CK) 8 as a marker of rat bile duct 

epithelial cells (Mitaka et al. 1999), OV-6 as a marker of oval cells (rat liver progenitor 

cells) (Chen et al., 2012; Dunsford et al., 1989; Sell et al., 1989)  and α-fetoprotein 

(AFP) as a marker of immature hepatocytes (Cascio et al.,1991).  For CK8 and OV-6 
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immunostaining, a high temperature antigen unmasking technique was used.  The 

sections were boiled in pH 9.0 EDTA buffer solution at 95℃ for 20 minutes.  After 10 

minutes of blocking with 0.1% H2O2/methanol, the sections were incubated for 30 

minutes at room temperature in a humidified chamber with primary antibodies.  For 

primary antibodies, anti-CK8 rabbit polyclonal antibodies (dilution 1:300, Abcam, MA, 

USA), anti-human/rabbit OV-6 mouse monoclonal antibodies (dilution 1:100, R&D 

Systems, Inc, MN, USA) and anti-α-fetoprotein rabbit polyclonal antibodies (dilution 

1:50, EpitomicsInc, CA, USA) were used.  After a 30 minute reaction with primary 

antibodies, slides were reacted with HistofineⓇ Simple Stain RAT MAX PO (MULTI) 

(Nichirei Bioscience, Tokyo, Japan) at room temperature for 30 minutes.  Slides were 

then visualized with H2O2 and DAB solution (Tamaru et al., 2004) at room temperature 

for 5 minutes and stained in hematoxylin for 1.5 minutes.  The coverslips were 

mounted with 90% glycerol containing 1 mg/ml p-phenylenediamine and the slides 

were reviewed by an expert histologist (co-author T.K.). 

2.4.  Statistical analysis  

To evaluate the influence of the 70% hepatectomy on the DF sheet transplantation site, 

we compared the total number of OV-6 positive cells, which appeared at the site in the 
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non-hepatectomy group (POD 14, n=3) and the hepatectomy group (n=3).  Five 

different fields at 200x magnification were randomly selected on each slide of OV-6 

immunostaining, and the total number of positive cells was counted.  We performed a 

post-test analysis using the Mann-Whitney U test.  We considered P values < 0.05 to 

be statistically significant. 

2.5.  Transfection of the plasmid encoding enhanced yellow fluorescent protein 

targeted to the mitochondria (pEYFP-Mito) into DF sheets 

To make clarify the origin of the new structures which appeared in the site of the DF 

sheet transplantation, we used a plasmid encoding enhanced yellow fluorescent protein 

targeted to the mitochondria (pEYFP-Mito) as a marker of DF cells.  We used the 

pEYFP-Mito vector, which encodes a fusion of the enhanced yellow fluorescent protein 

and the mitochondrial targeting sequence from subunit VIII of human cytochrome c 

oxidase (BD Biosciences, Palo Alto, CA).  Plasmid DNA was prepared, and purified 

using a Qiagen Maxi kit (Qiagen, Hilden, Germany), and dissolved in 

phosphate-buffered saline (PBS) (pH 7.2) at a final concentration of 1 mg/ml.  By 

using an electroporation method, current was applied via a NEPA21 electroporator 

(NEPA GENE, Chiba, Japan. Setting: 20V, 50 pulses 50ms wide in 5s interval), 
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pEYFP-Mito was transfected into the DFs resulting in 40-50% transfection efficiency 

and 90% of cell viability, which were then used to make cell sheets (YFP-DF sheets). 

The generation of the cell sheets and the sheet transplantation process were the same as 

in the previous studies, and rats were sacrificed on POD 7 (n=3).  Liver tissues were 

fixed in OCT compound (TissueTek, Tokyo, Japan) and kept -80°C until use. 

2.6.  Observation of pEYFP-Mito expression  

The 5µm-thick serial sections were obtained using a cryostat and fixed with 4% 

paraformaldehyde in PBS (pH 7.4) for 20 minutes at room temperature.  After 1 

minute of staining with DAPI, the slides were observed, and imaging was done using a 

Biorevo BZ-9000 (Keyence Co., Osaka, Japan).  H&E staining and CK8 

immunostaining were also performed. 

3. Results and discussion

3.1.  Collagen production after the DF sheet transplantation 

Macroscopically, the incision site became linear and indistinguishable from the recipient 

original liver tissue in the control group, especially by POD 28 (Figure 1a).  On the 
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other hand, thickened yellow-whitish granulation tissue was observed on the incision 

site in the DF group at POD 7, 14 and 28 (Figure 1b).  Azan staining showed higher 

volumes collagen fiber on the thickened tissue in the DF group compared to the control 

group at each time point (Figure 1c, d). 

3.2.  Histological assessment; H&E staining  

In the control group, necrotic tissue or inflammatory cell infiltration was observed on 

POD7, and these were gradually absorbed.  On POD 28, the incision site had become 

linear and almost could not be distinguished from the normal liver (Figure 2a, c).  On 

the other hand, in the DF group, the site where the DF sheets were transplanted became 

thicker (Figure 2b, d).  Under high magnification, bile duct (BD)-like structures were 

observed near the recipient liver on POD 7 (Figure 3a).  On POD 14, these BD-like 

structures more intensely formed and some immature hepatocyte-like cells were 

observed (Figure 3b).  On POD 28, the BD-like structures had formed nearly normal 

BD structures (Figure 3c, d).  In addition, hepatocyte-like cells were found to be more 

prevalent and had formed cell aggregates (Figure 3c, e).  The BD-like structures and 

hepatocyte like cells seemed to have arisen from the recipient liver site and grew 

towards the thickened tissues where the DF sheets had been transplanted.  This 
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phenomenon was observed in all individuals in the DF group. 

3.3.  Histological assessment; immunohistochemistry  

The BD-like structures which appeared in the DF groups were CK8 positive (Figure 4a).  

Interestingly, around the bile duct-like structures, OV-6 positive oval shape cells were 

observed (Figure 4b).  We suggest that the OV-6 positive oval shape cells were 

hepatocyte progenitor cells, which have the ability to differentiate into hepatocytes or 

bile duct epithelial cells.  Some of the hepatocyte-like cells which formed aggregates 

in the site of the DF sheet transplantation demonstrated AFP positivity (Figure 4c, d).  

Oval cells, which were first described by Farber in 1956, have the capacity to 

proliferate and differentiate into hepatocytes or biliary epithelial cells, and their 

existence has led to the hypothesis that there is a liver stem cell compartment that 

proliferates in response to severe injury (Coleman et al., 1998).  Although there are no 

definitive markers for oval cells or liver progenitor cells, the epitope identified by the 

monoclonal antibody OV-6 has been found to be particularly useful in identifying early 

proliferation of oval cells in a rat model (Dunsford et al., 1989).  In the rat liver, bile 

ducts, oval cells and nodular hepatocytes, as well as transitional hepatocytes, which are 

believed to be cells differentiating from oval cells to hepatocytes, are positive to OV-6 
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(Crosby et al., 1998).  In our study, the BD-like structures and small cell aggregates 

around the BD-like structures, which appeared near the thickened tissue where the DF 

sheets were transplanted, were also clearly positive to OV-6.  Some of the OV-6 

positive BD-like structures showed CK-8 positivity.  CK expression has been well 

studied in liver development, and they are often used as lineage markers.  CK-7, 8, 18 

and 19 are expressed in bile duct cells but CK7 and 19 are rarely in hepatocytes (Melo 

et al., 2010), thus CK-7 or 19 are usually used as a BD epithelium marker.  The 

BD-like structures showed CK-7, 8 and 19 positive, however CK-8 staining marker was 

the strongest.  Several previous reports confirmed that hepatoblasts express genes 

characteristics of hepatocytes and biliary epithelial cells, including AFP, albumin, 

laminin, and CK-7, 8, 18, and 19.  As development proceeds, hepatoblasts become 

committed to either lineage and develop into mature cells with the appropriate 

morphology and gene expression (Marcean et al., 1994; Melo et al., 2010; Shiojiri et al., 

1994).  We considered the BD-like structures which appeared in the DF sheet 

transplanted site to still be in the developmental process and to possibly have 

characteristics of both BD epithelium cells and hepatocytes, however farther 

investigations will be needed to confirm this.  We presumed the presence of these 

BD-like structures to demonstrate cell differentiation from hepatic progenitor cells to 
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bile ducts or hepatocytes. 

We also considered this phenomenon equivalent to the ductular reaction which 

is observed in the damaged especially in the cirrhotic liver.  Ductular reactions are 

primarily composed of oval cells which are known as “intermediate hepatobiliary cells” 

(Zhou et al.,2007).  The mechanisms underlying these reactions are still unclear, but 

the proliferation of liver progenitor cells may be stimulated by damage to the liver, such 

as cirrhosis.  This may be a reaction by the body to improve the function of the 

damaged liver.  In our series, however, even though the recipient rats had normal liver 

functions, we observed ductular reactions in the DF sheet transplanted groups.  There 

is a possibility that the transplanted DF sheets stimulated the proliferation and 

differentiation of liver progenitor cells. 

3.4.  Influence of 70% hepatectomy  

The total number of OV-6 positive cells in the 5 randomly selected fields of the DF 

sheet transplantation site of the non-hepatectomy group (n=3) and hepatectomy group 

(n=3) were 361.7 and 372.3 respectively (Figure 5).  The number of OV-6 positive 

cells in the site where the DF sheets were transplanted was not significantly different 

between hepatectomy group and the non-hepatectomy group, and although we expected 
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that stimulation from hepatic regeneration, such as that which occurs after a partial 

hepatectomy, would activate the proliferation and differentiation of hepatic progenitor 

cells, there was no statistically significant difference between the two groups.  Some 

reports mentioned that hepatocytes are the replicating cells responsible for liver 

regeneration after partial hepatectomy, and that progenitor cell activation leading to 

lineage generation is not observed during this process (Fausto et al., 2003), although 

there was no experimental evidence for this inference.  In the present study, we used 

rats which had normal liver function as recipients.  It could be speculated that the 

proliferation and differentiation of hepatic progenitor cells may be activated by partial 

hepatectomy in rats which already have a dysfunctional liver, as would be the case in 

cirrhosis, because these livers have defects in regeneration due to their pre-existing 

damage (Gu et al., 2011).  

3.5.  Origin of the BD-like structures and hepatocyte like cells  

We observed a proliferation of the pEYFP-Mito positive cells in the YFP-DFs sheet 

transplanted site, however, the cells that were recognized by H&E staining and CK8 

immunostaining as BD-like structures and hepatocyte like cells were pEYFP-Mito 

negative (Figure 6a-e).  These results indicate that the origin of the BD-like structures 
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and hepatocyte like cells was the recipient liver. 

Sekiya et al. (Sekiya et al., 2011) concluded that adult mouse dermal fibroblasts 

converted into hepatocyte-like cells that can mature to functional hepatocytes in vivo 

under certain conditions.  In this study, however, we used pEYFP-Mito transfected DF 

sheets as a donor and clarified that the new structures had developed from the recipient 

liver.  Dermal fibroblasts have been shown to have the potential to produce a 

heterogeneous population of cytokines and growth factors, including vascular 

endothelial growth factor (VEGF), hepatocyte growth factor (HGF), transforming 

growth factor-β1 and angiopoetin-1 (Mansbridge et al., 1999; Pinney et al., 2000).  

We hypothesized that the secretion of these factors from transplanted DF sheets might 

lead to the migration of hepatic progenitor cells from the recipient liver and accelerate 

their differentiation.  

4. Conclusions

We demonstrated the migration of liver structures in the site where the DF 

sheets were transplanted onto the incised surface of the liver in rats.  This is the first 

report indicating that viable dermal fibroblast sheets induce the migration of hepatic 
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progenitor cells and cause their differentiation into hepatic structures in vivo.  

Although further investigations will be needed to confirm our results and optimize the 

procedures, this tissue engineering technology may become a useful therapeutic method 

for liver diseases. 
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Figure legends 

Figure 1: Macroscopic changes, Azan-Mallory staining on day 28 and the effects of 

the DF sheet transplantation. (H&E staining)  (a) A representative liver from the 

control group on day 28 (n=5).  The incision site is indicated by a white arrow.  (b) A 

representative liver from the DF group on day 28 (n=5).  The DF sheet transplantation 

site is indicated by a gray arrow.  (c) Azan-Mallory staining of a liver from the control 

group on day 28 (n=5).  Collagen was stained blue.  (d) Azan-Mallory staining of a 

liver from the DF group on day 28 (n=5).  Scale bars, 100µm  

Figure 2: The effects of the DF sheet transplantation (H&E staining)  (a) Day 7 for 

the control group (n=5).  (b) Day 7 for the DF group (n=5).  (c) Day 28 for the control 

group (n=5).  The incision site is indicated by a black arrow.  (d) Day 28 for the DF 

group (n=5).  Scale bars, 100µm  RL; recipient liver 

Figure 3: Chronological changes at the site where the DF sheet was transplanted. 

(H&E stains, each group n=5)  (a) Bile duct (BD)-like structures are indicated with 

black arrows.  (b) New structures are surrounded by a black line, and immature 
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hepatocyte-like cells are indicated by a gray arrow.  (c) BD-like structures are 

indicated with black arrows, and immature hepatocyte-like cells are surrounded by a 

black dotted line.  (d) Day 28 (n=5).  The proliferation of BD-like structures.  (e) 

Day 28 (n=5).  The aggregation of immature hepatocyte-like cells.  The immature 

hepatocyte-like cells are surrounded by a black dotted line.  A-C; Scale bars, 80µm  

D, E; Scale bars, 20µm  RL; recipient liver 

Figure 4: The immunohistochemical findings of the site where the DF sheets were 

transplanted (each group n=5).  (a) BD-like structures were shown to be CK8 

positive.  (b) Oval shape cells which existed around the BD showed OV-6 positivity 

(black arrow).  (c, d) Some of the immature hepatocyte-like cells were shown to be 

AFP positive (black arrow). A; Scale bars, 20µm  B; Scale bars, 10µm  C, D; Scale 

bars, 5µm 

Figure 5: A bar graph of number of OV-6 positive cells in the DF-non HT group 

(n=5) and DF-HT group (n=5).  A P value < 0.05 was considered to be statistically 

significant (Mann-Whitney U test).  NS; not significant. 
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Figure 6: The origin of the new structures. (a) H&E staining of the DF group on day 

7 (n=3). (b) CK8 immunostaining of the DF group on day 7 (n=3). (c) pEYFP-Mito 

positive fibroblasts proliferated around the new BD-like structures.  The cells which 

composed BD-like structures were pEYFP-Mito negative (n=3).  (d) DAPI staining 

(n=3).  Nuclei were stained blue.  (e) A synthesized picture of the staining in (c) and 

(d).   Scale bars, 80µm  (the pEYFP-Mito negative area in the new structures is 

surrounded by a white dotted line). 
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