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Abstract 1 

Mesenchymal stem cells (MSCs) are known to have a protective effect on islet cells. Cell 2 

sheets developed using tissue engineering help maintain the function of the cells themselves. This 3 

study describes a tissue engineering approach using islets with MSC sheets to improve the 4 

therapeutic effect of islet transplantation. MSCs were obtained from Fischer 344 rats and engineered 5 

into cell sheets using temperature-responsive culture dishes. The islets obtained from Fischer 344 6 

rats were seeded onto MSC sheets, and the islets with MSC sheets were harvested by 7 

low-temperature treatment after co-culture. The functional activity of the islets with MSC sheets was 8 

confirmed by a histological examination, insulin secretion assay, and quantification of the levels of 9 

cytokines. The therapeutic effects of the islets with MSC sheets were investigated by transplanting 10 

the sheets at subcutaneous sites in severe combined immunodeficiency (SCID) mice with 11 

streptozotocin-induced diabetes. Improvement of islet function and viability was shown in situ on the 12 

MSC sheet, and the histological examination showed that the MSC sheet maintained adhesion factor 13 

on the surface. In the recipient mice, normoglycemia was maintained for at least 84 days after 14 

transplantation, and neovascularization was observed. These results demonstrated that islet 15 

transplantation in a subcutaneous site would be possible by using the MSC sheet as a scaffold for 16 

islets. 17 

 18 

 19 
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Introduction 1 

In the field of cell transplantation therapy, mesenchymal stem cells (MSCs) have been shown 2 

to have a protective effect on islet cells (1,2). Cell sheets developed using tissue engineering help 3 

maintain the function of the cells via a trophic effect (3,4). The protective effect of MSCs engineered 4 

into a cell sheet is thus thought to be improved. In the present study, we attempted to create MSC 5 

sheets co-cultured with islets as an approach to islet transplantation. 6 

In islet transplantation recipients who have undergone an intraportal injection, the ability to 7 

achieve long-term glycemic control remains insufficient (5). During intraportal transplantation, 8 

60%–80% of the islets are lost within 1 h after transplantation due to immediate blood-mediated 9 

inflammatory reactions (IBMIRs), activation by direct exposure to foreign immunological cells, and 10 

the toxic effects of the immunosuppressive compounds on the transplanted islets (6). Additionally, an 11 

insufficient blood supply and immunoreactions associated with intraportal islet transplantation are 12 

primary causes of islet loss (6,7). 13 

Several studies described the transplantation of islets at extrahepatic sites, including the 14 

omentum (8), spleen (9), testes (10), and renal subcapsular space (11). However, a sufficient 15 

long-term control of blood glucose levels has been not shown after implantation at these sites. In 16 

2009, Shimizu et al. (12) reported the creation of islet cell sheets using a tissue engineering method 17 

involving subcutaneous transplantation. Saito et al. (13) reported that subcutaneously transplanted 18 

islet cell sheets maintain their function over the long term. Tissue engineering methods used for islet 19 
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transplantation could generate islets to be transplanted at subcutaneous sites and serve as the 1 

foundation for generating a new therapeutic modality. 2 

MSCs are known to differentiate into endothelial cells (14,15) and improve the engraftment 3 

of islets by secreting anti-apoptotic and angiogenic cytokines such as vascular endothelial growth 4 

factor (VEGF), hepatocyte growth factor (HGF), and transforming factor beta 1 (TGFβ1) (16–18).  5 

These MSCs ability could solve problems associated with graft loss following various forms 6 

of transplantation. Additionally, there are reports that cell sheets created by tissue engineering 7 

preserve cellular communication junctions, the endogenous extracellular matrix (ECM), and 8 

integrative adhesive agents (3), and further maintain the functions of the cells themselves (4). 9 

The ECM provides the necessary structural and adhesive properties for maintaining cell sheet 10 

integrity during transplantation. More recently, our group reported that human hepatic cell sheets 11 

could be made rapidly and efficiency by using fibroblasts cells (19). We propose that the protective 12 

and engraftment effects of MSCs for transplanted islets could be improved by using MSCs 13 

engineered into cell sheets. 14 

In the present study we applied a tissue engineering approach using islets with MSC sheets 15 

(islets + MSC sheet) for transplantation at subcutaneous sites. The purpose of this study was to 16 

confirm the protective and therapeutic effects of using MSCs engineered into a cell sheet by tissue 17 

engineering as a scaffold for islet cell transplantation at an extrahepatic site. 18 

 19 
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Materials and Methods 1 

Animals 2 

Eight-week-old male Fischer 344 rats, 200–300-g male Fischer 344 rats, and 6-wk-old male 3 

SCID mice (Charles River Laboratories Japan, Yokohama, Japan) were used.  4 

 This study was carried out in strict accordance with the recommendations in the Guide for 5 

the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was 6 

approved by the Committee on the Ethics of Animal Experiments of the Nagasaki University.  7 

 8 

Isolation and culture of MSCs derived from bone marrow 9 

We isolated bone marrow cells from the femurs of 8-wk-old rats by flushing the femurs with 10 

alpha minimum essential medium (αMEM) (Invitrogen GIBCO, Carlsbad, CA, USA) containing 11 

10% fetal bovine saline (FBS) (Invitrogen), 100 IU/mL penicillin (Invitrogen) and 100 μg/mL 12 

streptomycin (Invitrogen). These MSCs were used for the experiments at passage two or three. 13 

 14 

Characterization of the MSCs 15 

Flow cytometry (FACS) analysis 16 

The MSCs were prepared for use with the following markers: CD29, CD31, CD34, and 17 

CD90. First, MSCs were incubated with fluorescence-conjugated primary antibodies for 1 h. Then 18 

the cells were washed three times in phosphate-buffered saline (PBS) and incubated with secondary 19 
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antibodies for 1 h. After three washing steps, the MSCs were acquired using a FACSCanto II (Becton 1 

Dickinson, Lincoln Park, NY) flowcytometer and analyzed with the FACSDiva software program 2 

(Becton Dickinson). The following antibodies were employed: PE mouse anti-rat CD29 (Miltenyi 3 

Biotec, Auburn, CA), FITC mouse anti-rat CD31 (LSBio, Seattle, WA), PE mouse anti-CD34 (Santa 4 

Cruz Bio-Technology, Santa Cruz, CA), and FITC mouse anti-rat Thy-1/CD90 (LSBio). 5 

 6 

Differentiation of MSCs in vitro 7 

We induced the differentiation of isolated MSCs into mesenchymal osteogenic and 8 

adipogenic lineages according to published protocols (20). Adipocytes were detected by standard Oil 9 

Red O staining. Osteocytes were detected by Alizarin Red staining. 10 

 11 

Isolation of islets 12 

Fischer 344 rats (200–300 g) were used as donors for islet transplantation. The islets were 13 

isolated using collagenase digestion according to published methods (21). The islets were stained 14 

with dithizone (140 mmol/L) and counted under a microscope, and the number was converted into 15 

standard islet equivalents (IEs). 16 

 17 

Preparation of islets co-cultured with the MSC sheets (islets + MSC 18 

sheets) 19 



Hirabaru et al. 

8 
 

We seeded MSCs at a density of 5×105 cells/dish onto 35-mm-dia. temperature-responsive 1 

culture dishes (CellSeed, Tokyo). For the cells’ culture, αMEM supplemented with 10% FBS was 2 

used. Over-confluent MSCs on the temperature-responsive dishes were transferred to another 3 

incubator set at 20°C for approx. 30 min, causing the MSC sheet to detach spontaneously. To create 4 

islets + MSC sheets, we seeded 400–500 islets onto the MSCs after the MSCs reached 90% 5 

confluence. Following an additional 48–72 h in culture, confluent MSCs topped with islets were 6 

harvested as an islet + MSC sheet. MSCs were seeded at the density of 5×105 cells/dish onto 7 

35-mm-dia. dishes. After 7 days’ cultivation, the MSCs were over confluence in the culture dish, and 8 

the number of MSCs was 1×106 cells/dish. We found that 96–120-h cultivation was required for the 9 

cells to reach 90% confluence. Islets + MSC sheets were detached by the same procedure as that 10 

used for the MSC sheets. As a control, 400–500 islets were cultivated alone under the same 11 

conditions in sterilized, non-coated culture dishes. 12 

 13 

Histological and immunohistochemical analysis 14 

The islets + MSC sheets were fixed in 10% formalin and sectioned. Serial sections were 15 

then cut from the paraffin-embedded blocks and stained with hematoxylin and eosin (H&E). The 16 

presence of cytoplasmic insulin and glucagon in the islets on the MSC sheets was confirmed via 17 

immunostaining using pig polyclonal anti-insulin antibodies (LSBio) and mouse polyclonal 18 

anti-glucagon antibodies (Sigma Chemical, St. Louis, MO). 19 



Hirabaru et al. 

9 
 

 1 

Electron microscopy 2 

We used electron microscopy to confirm the presence of ECM on the surface of the MSC 3 

sheet and to observe an adhesion between islets and the MSC sheet. The islets + MSC sheets were 4 

fixed with 2.5% glutaraldehyde in 0.1 M phosphate-buffered 1% osmium tetroxide. The dehydrated 5 

samples were cut into ultrathin section and then examined using an electron microscope 6 

(JEM-1200EX, JEOL, Tokyo). 7 

 8 

Islet recovery after incubation 9 

Islets were co-cultured with MSCs or an MSC sheet, and we counted the number of islets 10 

and calculated the IE after 24 and 72 h of incubation. The IE of the islets present following the 11 

incubation/IE of the seeded islets was considered to indicate the recovery rate. 12 

 13 

Islet viability after incubation 14 

We assessed the viability of the islets co-cultured with MSCs or an MSC sheet after 72 h of 15 

incubation using calcein-AM and propidium iodide (PI) (Cellstain Double Staining Kit; Dojindo, 16 

Kumamoto, Japan) staining. The samples were placed on a fluorescent microscope (Eclipse Ti-U; 17 

Nikon, Tokyo). Viable cells were stained green and dead cells were stained red. The degree of cell 18 

viability was assessed according to published protocols (2). We also evaluated the viability by cell 19 
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size (<150 μm, 151−250 μm, 251−500 μm). Ten or more islets were evaluated for each size category. 1 

 2 

Insulin secretion assay 3 

For the insulin secretion assay, islets co-cultured with MSCs or an MSC sheet after 72 h of 4 

incubation were preincubated for 1 h at 37°C with RPMI-1640 medium containing 3.3 mM glucose. 5 

After preincubation step, the culture medium was changed to fresh RPMI-1640 containing 3.3 mM 6 

glucose for an additional 1 h. The media were replaced with 20 mM glucose for 1 h. For the final 7 

step, the medium was changed to 3.3 mM glucose for 1 h. The culture medium was collected and 8 

frozen at −20°C until the analysis. The amount of secreted insulin was measured using an 9 

Ultrasensitive Rat Insulin ELISA Kit (Morinaga Institute of Biological Science, Kanagawa, Japan). 10 

The stimulation index (SI) was calculated as follows: SI = (insulin content in the 20 mM glucose 11 

media)/(insulin content in the initial 3.3 mM glucose media). 12 

 13 

Cytokine quantification 14 

We measured the secretion of cytokines in the supernatants using the VEGF Rat ELISA Kit 15 

(Abcam, Cambridge, MA), Rat HGF EIA (Institute of Immunology Co., Tokyo), and Rat TGF-beta 1 16 

Quantikine ELISA Kit (R&D Systems, Minneapolis, MN). 17 

 18 

Induction of diabetes mellitus (DM) and transplantation of the 19 
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islet + MSC sheets 1 

Severe combined immunodeficiency (SCID) mice were rendered diabetic via an 2 

intraperitoneal injection of 200 mg/kg of streptozotocin (Sigma). SCID mice were categorized in 3 

diabetic mice that exhibited a nonfasting blood glucose (NFBG) level of more than 350 mg/dL for 2 4 

consecutive days. The islets + MSC sheets were harvested via low-temperature treatment and placed 5 

on glass plates (GPs) for subcutaneous transplantation into the abdomen. To transplant the 6 

islets + MSC sheets (500 islets were riding on each MSC sheet), we created an arc-shaped incision in 7 

the abdominal skin of the mouse. After the attachment of the islets + MSC sheet to the subcutaneous 8 

site, the GP was immediately and carefully removed. Another islets + MSC sheet was transplanted on 9 

the initial sheet. Two or four islets + MSC sheets were transplanted in the subcutaneous site. 10 

Two thousands islets were transplanted to SCID mice within 24 h after isolation without or 11 

with 4×106 MSCs, and four MSC sheets were also transplanted in the subcutaneous site. The ratio of 12 

the number of MSCs in an MSC sheet and the number of islets was 1×106 cells:500 islets, and the 13 

number of MSCs and the number of islets was 4×106 cells:2,000 islets. An investigation was also 14 

performed in sham-operated diabetic SCID mice (DM sham). Diabetic sham-operated (DM-Sham) 15 

mice (n=5), and recipient mice were used: 2,000 islets alone (n=5), MSC sheet alone (n=5), 2,000 16 

islets with MSCs (n=5), two islets + MSC sheets (1,000 islets) (n=5), and four islets + MSC sheets 17 

(2,000 islets) (n=6). For an investigation of the long-term efficacy of the islets + MSC sheets, 18 

another six mice were transplanted with four islets + MSC sheets (2,000 islets). 19 
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 1 

Validation of the therapeutic effects of the islets + MSC sheets 2 

The level of NFBG was measured twice weekly. On day 28, we obtained serum samples to 3 

measure the rat-nonspecific insulin levels using ELISA kits (Morinaga Institute of Biological 4 

Science). In other experiments, to confirm the long-term therapeutic effects (-day 84), five diabetic 5 

SCID mice underwent transplantation of four islets + MSC sheets, and the transplanted islets + MSC 6 

sheets were removed by abdominal wall resection on day 84. 7 

 8 

Intraperitoneal glucose tolerance test 9 

We evaluated the functionality of the islets + MSC sheets in vivo by conducting 10 

intraperitoneal glucose tolerance tests (IPGTTs) on day 56 in the mice transplanted with four 11 

islets + MSC sheets. The mice received an intraperitoneal inoculation of glucose solution (2 g/kg 12 

body weight) after 18 h of fasting. 13 

 14 

Immunohistochemical and immunofluorescence examinations 15 

On day 28, specimens of subcutaneous tissue were fixed in 10% buffered formalin and 16 

sectioned (5-µm-thick sections) and stained with H&E and Azan Mallory. To evaluate the degree of 17 

vascularization, we immunostained the specimens using anti-von Willebrand factor (vWF) 18 

polyclonal antibodies (1:50; Chemicon-Millipore, Billerica, MA), anti-insulin polyclonal antibodies 19 
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(1:50; Santa Cruz Biotechnology, Santa Cruz, CA), and anti-pancreas duodenum homeobox (PDX)-1 1 

antibodies (1:100; Upstate, Charlottesville, VA). The number of vessels was determined by counting 2 

the vessels randomly in five different subcutaneous areas. 3 

 4 

Statistical analysis 5 

Data are presented as the mean ± standard error (SEM). Statistical analyses were performed 6 

using GraphPad Prism software (version 6:00; GraphPad, San Diego, CA) for numerical variables, 7 

using a repeated-measures analysis of variance (ANOVA) when comparing more than two groups, 8 

Student’s t-test when comparing two groups, and the Mann-Whitney U-test. P-values < 0.05 were 9 

considered significant. 10 

 11 

Result 12 

Characteristics of MSCs isolated from rat bone marrow 13 

The isolated cells were positive for the mesenchymal markers CD29 and CD90, and 14 

negative for the hematopoietic markers CD31 and CD34 (Fig. 1A). These findings indicated that the 15 

characteristic immunophenotype of rat bone marrow-derived MSCs was exhibited in the isolated 16 

cells (22–24). MSCs have differentiation ability into osteogenic and adipogenic lineages (22, 23). 17 

The cells described herein are able to differentiate into osteocytes and adipocytes (Fig. 1B). 18 

 19 
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Harvest of the islet + MSC sheets 1 

The islets seeded on the MSC sheet immediately sank to the bottom of the culture dishes 2 

and came into contact with the MSCs (Fig. 2A, B). After a 72-h culture, the islets adhered to the 3 

MSCs. The MSCs detached from the culture dish while shrinking slowly as a cell sheet following 4 

low-temperature treatment (Fig. 2C, D). The islets were confirmed on the sheet using dithizone 5 

staining (Fig. 2E). 6 

 7 

Histological assessment of the adherent islets in vitro 8 

H&E staining showed that the islets adhered to the sheet while maintaining a spherical 9 

shape in their physiological form. In addition (Fig. 2F), the MSC sheets firmly adhered to the islets, 10 

which demonstrated cytoplasmic immunostaining for both insulin and glucagon (Fig. 2G,H). 11 

 12 

Transmission electron microscopy 13 

The islets adhered firmly to the MSC sheets and partially to the ECM (Fig. 2I, J), forming 14 

tight junctions (Fig. 2K). The MSC sheets contained multiple cell layers (Fig. 2L) that established 15 

cell-to-cell connections via the formation of tight and gap junctions (Fig. 2M). 16 

 17 

Recovery rate of islets 18 

After 24 h, there were no differences in the recovery rate among the islets co-cultured with 19 
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the MSC sheet and the groups of MSCs and islets cultured alone. However, the recovery rate 1 

significantly improved in the co-cultured groups compared to the group of islets cultured alone. 2 

There were no significant differences between the MSCs group and the MSC sheet group at 72-h 3 

culture (Fig. 3). 4 

 5 

Viability of the islets 6 

We assessed the viability of the islets using calcein-AM /PI staining. Viable cells were 7 

stained in green, and dead cells were stained in red (Fig. 4A). The MSCs were almost 100% viable in 8 

the range observed. The 72-h viability of the co-cultured islets groups was significantly improved 9 

compared to the islets cultured-alone group (Fig. 4B). There were no significant differences between 10 

the MSCs group and the MSC sheet group. 11 

 12 

Insulin secretion assay of the islet function 13 

In the co-culture with MSCs and MSC sheet groups, the SI values were significantly higher 14 

than in the cultured-alone group. There were no significant differences between the MSCs group and 15 

the MSC sheet group (Fig. 5). 16 

 17 

Cytokine secretion 18 

The VEGF, HGF, and TGFβ1 levels were significantly higher in the co-culture groups 19 
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compared to the cultured-alone islets group. The TGFβ1 level was significantly higher in the 1 

co-culture with MSC sheet group than in the co-culture with MSCs group (Fig. 5). 2 

 3 

Therapeutic effects of the engrafted islets + MSC sheets 4 

Islets + MSC sheet transplantation was performed as described in the Materials and Methods 5 

section (Fig. 6A). In the recipient SCID mice treated with two islets + MSC sheet transplantation, 6 

three of the five recipient mice had maintained normoglycemia 2 wks after transplantation, two of 7 

the five recipient mice had maintained normoglycemia at 3 wks after transplantation, and all mice 8 

became hyperglycemic more than 3 wks after transplantation. Therefore, four islets + MSC sheet 9 

transplantation was performed. All recipient SCID mice returned to a normoglycemic state within 1 10 

wk, whereas all sham-operated mice remained hyperglycemic. The transplantation of 2,000 islets 11 

alone and that of the same numbers of islets with MSCs was performed within 24 h after islet 12 

isolation. All recipient mice exhibited a minimal decrease in the NFBG level and remained 13 

hyperglycemic. In the diabetic SCID mice transplanted with MSC sheets only, all mice remained 14 

hyperglycemic (Fig. 6B). The body weight as a clinical condition of recipient mice in the four 15 

islets + MSC sheet transplantation group improved (Fig. 6C). All recipient SCID mice treated with a 16 

four islets + MSC sheet remained normoglycemic for 84 days, and the NFBG levels rose rapidly 17 

after graft removal (Fig. 6D). An IPGTT was performed in the recipient mice treated with four 18 

islets + MSC sheets and control (nondiabetic naive) SCID mice. The blood glucose levels returned to 19 
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normal levels after elevations at 15 and 30 min. (Fig. 6E). 1 

 2 

Assessment of the engrafted islets and serum insulin levels 3 

The appearance of connective tissue was observed at the subcutaneous sites of transplantation, 4 

and collagen-rich connective tissue was noted on Azan Mallory staining. In addition, on 5 

immunofluorescence, islets with the expression of insulin and Pdx1 were observed in the new tissue. 6 

Islets maintaining their physiological shape were also detected (Fig. 7A), although no islets were 7 

apparent at the subcutaneous sites in the specimens in the islet transplantation alone group (data not 8 

shown). A significant amount of insulin was seen in the four islets + MSC sheet transplantation 9 

group compared to that observed in the DM-sham mice group. There was no significant difference 10 

among the 2,000 islets, 2,000 islets with MSCs, two islets + MSC sheet transplantation, and the DM 11 

sham-operated group (Fig. 7B). 12 

 13 

Angiogenesis associated with the transplantation of islets + MSC sheets 14 

The numbers of detectable vessels in the MSC sheet and islets + MSC sheet groups were 15 

significantly higher than in the sham-operated and islets alone groups. There was no significant 16 

difference in the vessel numbers among DM sham-operated, islets alone, and islets with MSCs 17 

groups (Fig. 8A, B). 18 

 19 
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Discussion 1 

Previous studies have examined MSCs’ abilities to preserve the inflammatory response 2 

(25,26), modulate the immune reaction (27,28), inhibit apoptosis (29), and promote vascularization 3 

(30,31). Such effects may solve problems associated with graft loss following various forms of 4 

transplantation. In islet transplantation, MSCs secrete a variety of cytokines that modulate 5 

intracellular signaling related to the cell function and increased survival of islets both in vitro and in 6 

vivo (1,2). The results of the present study suggest that the use of the islets + MSC sheet improves 7 

graft survival compared to islets with MSCs in transplantation into diabetic mice. 8 

VEGF, HGF, and TGFβ1 are the major cytokines secreted by MSCs that exhibit effects in 9 

graft protection. TGFβ1 stimulates the production of heat shock protein HSP32 and X-linked 10 

inhibitor of apoptosis protein (XIAP) (32). HSP32 has a protective effect on islets and suppresses 11 

inflammatory reactions and oxidative stress (33,34). XIAP is known to be anti-apoptoticmolecules in 12 

β cells (35,36). And, previous studies indicated the effects of MSC neovascularization due to 13 

secretion of angiogenic growth factors, such as VEGF and HGF (16,37), and differentiation 14 

themselves into endothelial cells and create new vessels (38,39). Moreover, Spees et al. (40) reported 15 

that MSCs provide mitochondria to and inhibit the apoptosis of cells damaged by 16 

ischemia-reperfusion. Therefore, providing mitochondria to islets by MSCs may inhibit the apoptosis 17 

of islets. In the present study, we did not clarify particular elements that improve the function and 18 

survival of islets; however, we observed improvement in the function and survival of islets in situ on 19 
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the MSCs and MSCs sheets. 1 

Several studies have described the usefulness of islet transplantation using MSCs (1,2), but 2 

islet transplantation using MSC sheets is thought to be more useful regarding the therapeutic effect. 3 

Although the MSCs were sheeted using tissue engineering techniques, the MSCs maintained their 4 

function, including the production of cytokines and their protective effects on islets. Our present 5 

findings verified that the secretion of angiogenic factors is not deteriorated even when MSCs are 6 

modified into a cell sheet. 7 

It is also interesting that TGFβ1 was significantly increased by the modification into MSC 8 

sheets. Electron microscopy showed the attachment between the islet cells and MSCs to be sufficient 9 

for harvesting sheets as islets + MSC sheets, and the attachment withstood the transplantation 10 

procedures. ECM components such as adhesion factor were also observed on the surface of the MSC 11 

sheets. Previous studies reported that the use of tissue-engineered cell sheets resulted in a greater 12 

degree of engraftment at the transplantation sites compared to cell transplantation (41,42) because 13 

the cell sheets preserve adhesion factors when harvested without trypsin. We also found that although 14 

the protective effect of MSCs was comparable to that of MSC sheets in vitro, the therapeutic effects 15 

of the islets + MSC sheet transplantation were significantly higher than those of islet transplantation 16 

with MSCs. 17 

These findings suggest that MSC sheets improve the engraftment rate of islets at 18 

subcutaneous sites depending on the presence of adhesion factors in the MSC sheets. The MSC sheet 19 
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improved the efficiency of islets transplantation more than the same number of MSCs did. Moreover, 1 

the creation of the MSC sheets does not require a scaffold, such as a laminin coating or Matrigel, and 2 

only donor cells will be used. The main advances shown by our study were the fabrication of the 3 

islets + MSC sheets and the evaluation of the efficacy of islets + MSC sheet transplantation in a 4 

subcutaneous site. Therefore, we used an immunodeficiency animal model in the experiments, and 5 

the immune-activity of the MSC sheets was not clarified in this study. The immunomodulatory 6 

ability of the MSCs should be evaluated in a future study using an immunocompetent animal model. 7 

The successful improvement of the blood glucose levels in diabetic mice was reported in a 8 

study using approx. 400–500 islets for portal vein islet transplantation (43). A marginal amount of 9 

islets was detected following the transplantation of 1,000–2,000 islets using the islet + MSC sheet 10 

procedure. The major reasons underlying these findings are thought to be: [1] the engrafted islets 11 

were damaged following culture for over 48 h to establish islet-MSC co-cultured sheets, and [2] the 12 

effects of vascularization in the MSC sheets were insufficient in the early phase of islet engraftment 13 

at the subcutaneous sites, although the MSC sheets exerted a stimulating effect on angiogenesis. 14 

Fumimoto et al. (44) reported that in their study, the engraftment and function of islets was 15 

remarkably increased following transplantation at subcutaneous sites treated pre-vascularization with 16 

MSCs. When performing transplantation into subcutaneous tissue lacking an adequate blood flow, 17 

vascularization is an important factor enabling the therapeutic effects of islets + MSC sheet 18 

transplantation. In order to improve the efficiency of transplantation, obtaining efficient early 19 
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angiogenesis and/or using other sites with a sufficient blood flow for engraftment is required. In 1 

addition, in the present study angiogenesis was significantly increased in the islets + MSC sheet 2 

group compared to the MSC sheet alone group. We suspect that the islets exposed to hypoxia 3 

induced some signals to the MSC sheet for the angiogenesis effect. 4 

Hasegawa et al. (45) reported that MSCs can differentiate into β cells,  however another 5 

study reported low levels of regeneration (46). In the present study, no insulin-positive and 6 

Pdx1-positive cells were detected by immunofluorescence examinations around the islets in the 7 

specimens of the recipient mice treated with islets + MSC sheet transplantation. These results 8 

indicate that MSC sheets are unable to differentiate into β cells around islets at subcutaneous sites 9 

under hyperglycemic conditions. Conversely, connective tissue was observed at the subcutaneous 10 

sites of islets + MSC sheet transplantation, although the outgrowth of connective tissue was not 11 

detected in the specimens of the recipient mice transplanted with islets only and the sham-operated 12 

mice. These findings thus indicate that the outgrowth of connective tissue is due to the presence of 13 

transplanted MSC sheets. 14 

In addition, the connective tissue containing a rich vascular bed that appeared following 15 

transplantation provided ideal conditions for islet engraftment. In the present study, the 16 

differentiation of transplanted MSCs was insufficiently clarified. However, no abnormal proliferation 17 

was detected in the recipient mice by the macroscopic or microscopic examinations. A confirmation 18 

of the differentiation of MSCs transplanted into humans is absolutely necessary. 19 
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 1 

Conclusions 2 

We successfully fabricated islets + MSC sheets by using tissue engineering. Our findings 3 

indicate that the MSC sheets exerted protective effects on the viability and function of islets and 4 

improved the engraftment of islets at subcutaneous sites. The islets engrafted with MSC sheets at 5 

subcutaneous sites had a therapeutic effect on hyperglycemia compared to that observed following 6 

islet transplantation without MSC sheets. In the future, more detailed elucidation of the mechanisms 7 

in MSCs’ activity and cell sheet potentiality would help to expand the clinical applications of islet 8 

transplantation therapy. 9 

 10 
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Figure Legends 1 

Fig. 1. (A) A flow cytometric analysis. CD29 and CD90 such as mesenchymal markers were positive, 2 

and CD31 and CD34such as hematopoietic markers were negative. (B) To confirm a capability of 3 

MSC differentiation into osteogenesis and adipogenesis, Alizarin Red S staining and Oil Red O 4 

staining were performed. 5 

 6 

Fig. 2. (A, B) The islets were seeded at a density of 50 islets/cm2 in 35-mm temperature-responsive 7 

dishes. The islets were riding on the confluent MSCs in the temperature-responsive dish. (C) The 8 

islets + MSC sheets were harvested by low-temperature treatment after 72 h co-culture. (D) The 9 

islet + MSC sheets were harvested while shrinking during low-temperature treatment. (E) The islets 10 

were stained with dithizone. (F) H&E staining showed that the sheets adhered to the islets in the 11 

shape of spheres. (G, H) Rat insulin and glucagon immunostaining of islets co-cultured with MSC 12 

sheets. Ultrastructures of the islets + MSC sheets were observed by electron microscopy. (I, J) ECM 13 

was partially detected between the islets and MSC sheets. (K) The islets and MSC sheets were 14 

connected via the formation of tight junctions. (L) The MSC sheets consisted of multiple layers. (M) 15 

Cell-to-cell connections were observed in the MSC sheets due to the formation of tight and gap 16 

junctions. ECM: extracellular matrix; N: nucleus; TJ: tight junctions (arrow); GJ: gap junctions 17 

(arrowhead). 18 

 19 
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Fig. 3. The recovery rate was calculated after 24 and 72 h of incubation. n=5 each; **P<0.01 1 

compared to the group of islets cultured alone. 2 

 3 

Fig. 4. (A) The viability of the islets was assessed using calcin-AM and propidium iodide (PI). 4 

Viable cells were stained green and dead cells were stained red. Almost all MSCs and MSC sheets 5 

were viable. (B) Viability of the islets cultured alone and co-cultured with MSCs and MSC sheets. 6 

n=5 each; *P<0.05, **P<0.01. 7 

 8 

Fig. 5. The insulin levels changed along with the change in the glucose concentration. The SI was 9 

calculated in the cultured-alone group and co-cultured with MSCs and MSC sheet groups. n=5 each. 10 

The secretions of VEGF, HGF, and TGFβ1 in the supernatants obtained from the islets alone, islets 11 

co-cultured with MSCs, and MSC sheets groups. n=5 each. *P<0.05, **P<0.01. 12 

 13 

Fig. 6. (A) The islets + MSC sheets adhered to glass plates (GP). The islets + MSC sheets were 14 

attached to the surrounding tissue. The implanted islets + MSC sheets are indicated by a dashed line. 15 

(B) The blood glucose levels of diabetic sham-operated (DM-Sham) mice (n=5) and those of the 16 

recipient mice: 2,000 islets alone (n=5), MSC sheet alone (n=5), 2,000 islets with MSCs (n=5), two 17 

islets + MSC sheets (1,000 islets) (n=5), and four islets + MSC sheets (2,000 islets) (n=6). *P<0.05, 18 

**P<0.01 compared to the DM-Sham group. (C) Body weight changes in the recipient mice treated 19 
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with four islets + MSC sheets (2,000 islets; black circles, n=6) and the DM-Sham mice (white1 

triangles, n=5). *P<0.05, **P<0.01 compared to the DM-Sham group. (D) The recipient mice were 2 

transplanted with four islets + MSC sheets (2,000 islets; black circles, n=6). The graft tissue was 3 

4 surgically removed on day 84. †: graft removal. (E) The IPGTT was performed in the control mice 

(white squares, n=9) and recipient mice treated with four islets + MSC sheets (2,000 islets; black 5 

circles, n=6) on day 56. 6 

7 

Fig. 7. (A) Histological, immunohistochemical, and immunofluorescence analyses on day 28 after 8 

the subcutaneous transplantation of the islets + MSC sheets. The expression of insulin and PDx1 on 9 

islets was observed in the connective tissue. (B) Serum insulin level was investigated in the 10 

DM-Sham (n=5), recipient SCID mice [2,000 islets (n=5), 2,000 islets with MSCs (n=5), two 11 

islets + MSC sheets (1,000 islets) (n=5), four islets + MSC sheets (2,000 islets) (n=6)], and normal 12 

SCID mice (n=7). **P<0.01 compared to the DM-Sham group. 13 

14 

Fig. 8. (A) The expression of vWF was observed in the subcutaneous site. (B) The degree of 15 

vascularization was evaluated according to the number of vessels for anti-vWF immunostaining. In 16 

the implanted subcutaneous tissue, the number of vessels per square millimeter was counted. At 28 17 

days after treatment, specimens were obtained from DM-Sham mice (n=5), recipient SCID mice 18 

treated with islets alone (n=5), four MSC sheets alone (n=5), 2,000 islets with MSCs (n=5), and four 19 
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islets + MSC sheet (n=6). *P<0.05, **P<0.01. 1 
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