1	Title:
2	Risk factors for death among hospitalized tuberculosis patients in poor urban
3	areas in Manila, the Philippines
4	
5	Authors:
6	Takaharu Shimazaki*, Shane D. Marte [†] , Naomi Ruth D. Saludar [†] , Efren M.
7	Dimaano [†] , Eumelia P. Salva [†] , Koya Ariyoshi*, Jose B. Villarama [†] , Motoi Suzuki*
8	
9	Affiliations:
10	* Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki
11	University, Nagasaki, Japan
12	[†] San Lazaro Hospital, Manila, the Philippines
13	
14	Correspondence to:
15	Motoi Suzuki MD
16	Department of Clinical Medicine
17	Institute of Tropical Medicine
18	Nagasaki University

19 Sakamoto	1-12-4
-------------	--------

- 20 Nagasaki, 852-8523, Japan
- 21 mosuzuki@nagasaki-u.ac.jp
- 22 Telephone number: +81-(0)95-819-7842
- 23 Fax number: +81-(0)95-819-7843
- 24

```
25 Running head:
```

- 26 In-hospital tuberculosis deaths in Manila
- 27
- Word count:
- 29 Summary; 232 words
- 30 Text; 2,716 words
- 31 Number count:
- 32 references; 35
- 33 tables; 2
- 34 figures; 1
- 35
- 36 **Keywords:** high-burden country; in-hospital death; urban poverty

38 SUMMARY

39 **OBJECTIVE:** To determine the mortality rate and risk factors for in-hospital death among hospitalized HIV-negative tuberculosis (TB) patients in poor urban 40 41 areas in the Philippines. 42DESIGN: A cross-sectional study was conducted at a national infectious disease hospital in Manila City. The target population was all forms of HIV-negative TB 43patients aged ≥13 years who were admitted from October through December 442009. Demographic and clinical information was collected from medical charts, 45and the risk of in-hospital death was measured. 46**RESULTS:** Among a total of 407 HIV-negative TB patients, four were excluded 47due to missing records, and 403 were included in the analysis. The majority 48were poor urban residents (90%), and 66% were males. Overall, 37.5% of 49hospitalized patients died in the hospital (n=151/403), and 30% of these patients 50died before the third day of hospitalization. The risk factor analysis demonstrated 51that complications of bacterial pneumonia had the greatest effect on in-hospital 52death (adjusted odds ratio [AOR]: 4.53; 95% confidence interval [CI]: 2.65 to 53547.72), followed by anorexia (AOR: 3.01; 95% CI: 1.55 to 5.84), anemia (hemoglobin <10 g/dL, AOR: 2.35; 95% CI: 1.34 to 4.13), and older age (aged 55

- \geq 50 years, AOR: 1.85; 95% CI: 1.08 to 3.17). The presence of hemoptysis (AOR:
- 57 0.44; 95% CI: 0.25 to 0.80) was associated with improved survival.
- 58 **CONCLUSION:** The mortality rate of hospitalized HIV-negative TB patients was
- 59 extremely high in poor urban areas in the Philippines.

61 **INTRODUCTION**

The Philippines has the ninth highest rate of endemic tuberculosis (TB) in the 62world. The annual estimated incidence rate of newly diagnosed TB was 275 per 63 64 100,000 population, and the TB-related mortality rate was 33 per 100,000 population in 2010¹, while the prevalence of human immunodeficiency virus 65 (HIV) infection among the adult population remains very low (<0.1% in 2009)². 66 As is the case in other TB-endemic countries, delays in seeking health care 67 are common among Filipino TB patients. According to a nationwide survey, 43% 68 of residents with TB symptoms took no action, 31.6% self-medicated, and only 69 25.4% consulted a health care provider³. Many TB patients thus remain 70untreated, and only those with serious disease are expected to be hospitalized, 71especially in poor urban areas such as Manila City. 72In TB-endemic countries, the mortality rate of hospitalized TB patients is 73considerably high. Studies have shown that the mortality rate of hospitalized TB 74patients is 26.5% in South Africa and 16.1% in Brazil; in these populations, 75acquired immune-deficiency syndrome (AIDS), respiratory failure requiring 7677mechanical ventilation, and malnutrition were associated with in-hospital death^{4,} ⁵. However, these studies were conducted in African and South American 78

 $\mathbf{5}$

countries, and no data regarding the in-hospital TB mortality are available for
Southeast Asian countries, including the Philippines.
We therefore conducted this hospital-based study 1) to describe the
clinical characteristics of HIV-negative TB patients hospitalized at a national
infectious disease hospital in poor urban areas of Manila, the Philippines; 2) to
calculate the in-hospital mortality rate; and 3) to elucidate the factors associated
with death.

87 MATERIALS AND METHODS

88 Setting and study population

89	Metro Manila is the national capital region and comprises 16 cities, including
90	Manila City. According to the United Nations Human Settlements Program, the
91	population in the Philippines was 11 million in 2008, and 44% of Manila City
92	residents lived in urban slum areas ⁶ . The San Lazaro Hospital (SLH) is a
93	national infectious disease referral center for Metro Manila and neighboring
94	provinces. The hospital has a 500-bed capacity and provides free medical care,
95	particularly for poor inhabitants. According to the hospital admission database,
96	1,884 patients were hospitalized with a diagnosis of pulmonary TB (PTB) in
97	2009.
97 98	2009. We conducted a retrospective hospital-based cross-sectional study in
98	We conducted a retrospective hospital-based cross-sectional study in
98 99	We conducted a retrospective hospital-based cross-sectional study in November 2010. Our target patients were adolescents and adults aged ≥13
98 99 100	We conducted a retrospective hospital-based cross-sectional study in November 2010. Our target patients were adolescents and adults aged ≥13 years who were admitted to the SLH's TB ward with a diagnosis of PTB or
98 99 100 101	We conducted a retrospective hospital-based cross-sectional study in November 2010. Our target patients were adolescents and adults aged ≥13 years who were admitted to the SLH's TB ward with a diagnosis of PTB or extra-pulmonary TB (EPTB) from October 1 st 2009 through December 31 st 2009.

105	Although cultures for Mycobacterium tuberculosis were not performed in the
106	SLH, patients who failed two courses of the standard treatment regimen were
107	considered as multidrug-resistant TB (MDR-TB) cases and usually referred to
108	other institutions, and therefore MDR-TB cases were not likely included in our
109	study. Eligible patients were identified from a hospital admission database using
110	ICD-10 coding ⁷ .

112 Case definitions

113A patient was diagnosed with smear-positive PTB if s/he fulfilled at least one of the following criteria: 1) acid-fast bacilli (AFB) was positive for at least two 114sputum samples, 2) AFB was positive for one sputum sample and radiographic 115findings were consistent with active PTB, or 3) AFB was positive for one sputum 116 sample and sputum culture was positive for MTB. A patient was diagnosed with 117118 smear-negative PTB if s/he fulfilled the following criteria: 1) AFB was negative for three sputum samples, 2) radiographic findings were consistent with active PTB, 1193) antibiotic treatment was not effective, and 4) physicians or TB diagnosed 120121committee (TBDC) decided to treat the patient as PTB. A patient was diagnosed with EPTB if smear or culture was positive for at least one clinical sample from 122

123	an extra-pulmonary site, or there was a clinical and/or histopathological
124	evidence consistent with active EPTB ⁸ . We also included the patients who could
125	not provide appropriate sputum samples but whose signs and clinical history
126	were consistent with active TB. Patients with PTB plus EPTB were classified as
127	PTB patients based on the WHO definition ¹ .
128	
129	Data collection and analysis
130	Demographic and clinical information were collected from medical charts using a
131	standardized data collection form. The data were subsequently entered into an
132	electronic database programmed by EpiData Version 3.1 (the EpiData
133	Association, Denmark). We measured the risk of death during the hospitalization
134	as an outcome. Patient characteristics were summarized using descriptive
135	statistics. To investigate the risk factors for in-hospital death, unadjusted and
136	adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were
137	generated using logistic regression models. Variables were included in the
138	multiple logistic regression model if their p values were less than 0.2 by using a
139	backward stepwise selection method; body mass index (BMI) was excluded from
140	the final model as the data was available only for a limited number of patients.

- 141 The statistically significant level was taken to be 5%. All statistical analyses were
- 142 performed using STATA Version 10.0 (STATA Corp., USA).
- 143 This study was approved by the Institutional Review Board (IRB) of the
- 144 SLH and the IRB of the Institute of Tropical Medicine, Nagasaki University,
- 145 Nagasaki, Japan.

RESULTS

147 Baseline characteristics

148	During the target period, a total of 422 patients were hospitalized with a
149	diagnosis of TB. Of these patients, 19 (4.5%) were excluded because of missing
150	medical records (N=4), non-TB diagnosis (N=1), HIV positivity (N=11), and
151	suspected history of HIV (N=3). Therefore, 403 (95.5%) HIV-negative TB
152	patients were included in our analysis. Among these patients, 35 were
153	discharged against medical advice. We included these patients as surviving
154	patients.
155	The demographic and clinical characteristics of the 403 included
156	patients are shown in Table 1. The median age of the patients was 41 years (13
157	to 86 years), and more than 60% were male. The majority of our patients were
158	poor urban residents; more than three-quarters were residents of the National
159	Operited Designs, and 00 C0/ were living below the metional neverty line? A total of
	Capital Region, and 88.6% were living below the national poverty line ⁹ . A total of
160	332 (82.4%) patients were diagnosed with isolated PTB, 50 (12.4%) patients
160 161	
	332 (82.4%) patients were diagnosed with isolated PTB, 50 (12.4%) patients

164	pleural, n=2). Half of the patients had a previous history of TB treatment.
165	Although the data of BMI, past medical history, and social history were available
166	only for a limited number of patients, a low BMI (median 16.8; range 8.5-32) and
167	a high rate of comorbidities (10.7%) were observed in our patients.
168	Among all hospitalized TB patients, cough was the most common
169	symptom, followed by dyspnea. The median duration of symptoms from onset to
170	admission was 30 days (range: a few hours to four years), but the data was not
171	available for six patients. 26.2% of our patients had experienced chronic
172	symptoms for more than three months. A total of 183 (45.2%) patients submitted
173	at least one sputum sample, and among them, 60 were AFB smear positive for
174	two specimens. Most patients who failed to submit sputum did so due to the
175	severity of their conditions, and 118 (29.3%) patients died before submitting
176	sputum samples. Chest radiography findings were available only for 221 (54.8%)
177	patients because many patients kept their chest X-ray films after discharge. A
178	total of 50 (12.5%) patients had already received anti-TB treatment before
179	coming to our hospital, but 28 of these patients were receiving inadequate
180	regimens (ie. only one or two anti-TB drugs were prescribed) and their treatment
181	was suspended after the hospitalization: 19 were prescribed from private

182	practitioners, and 9 were from health centers. Anti-TB treatment was initiated in
183	76 (18.9%) patients during their hospitalization at our institution, and thus a total
184	of 98 patients (ie. 22 continued and 76 newly initiated) received anti-TB
185	treatment before their discharge. 34.5% of TB patients had bacterial pneumonia
186	at the time of admission or developed pneumonia after admission; amoxicillin,
187	cephalosporins, and azithromycin were mainly used for treatment of bacterial
188	pneumonia.
189	
190	Risk factors for in-hospital mortality
191	Among all 403 patients evaluated, 151 died during hospitalization, resulting in an
192	in-hospital mortality rate of 37.5% (Table 1). Of these patients, 101 (66.9%) died
193	within the first week of hospitalization; 21 (13.9%) died on the day of admission,
194	and another 24 (15.9%) died on the second day of hospitalization (Figure 1). The
195	causes of death were recorded only in 29 patients, and among them, massive
196	hemoptysis was the leading cause (n=11) followed by heart failure (n=4). The
197	factors associated with in-hospital mortality are shown in Table 2. Univariate
198	analysis showed that older age (patients aged \geq 50 years), referrals, dyspnea,
199	anorexia, absence of hemoptysis, neutrophilia (white blood cell count \geq 12 $ imes$

200	10 ⁹ /L), anemia (hemoglobin <10 g/L), not receiving anti-TB treatment, and the
201	presence of bacterial pneumonia were associated with higher mortality. Lower
202	BMI was also likely to be associated with death, but the statistical evidence was
203	weak due to the limited number of patients for whom BMI data were available.
204	We excluded BMI from the multivariate analysis due to the deficiency of sample
205	size. Multivariate analysis revealed that the presence of bacterial pneumonia
206	was most strongly associated with in-hospital death. Absence of hemoptysis,
207	anorexia, anemia, and older age also remained associated with higher rates of
208	death. To control for the potential change in patients' characteristics throughout
209	the duration of hospitalization, we stratified our patients into two groups: patients
210	who stayed in the hospital for <7 days (N=137) and those stayed for \geq 7 days
211	(N=266). The magnitude of the effect of each risk factor was almost identical
212	between these two groups (data not shown).

215 **DISCUSSION**

216The in-hospital mortality rate among HIV-negative TB patients in poor urban areas in the Philippines was as high as 37.5%; this figure was substantially 217higher than the mortality among PTB patients at local health centers in Manila 218city (7.7% in 2009, according to the local health authority). The in-hospital 219mortality shown in our study was higher than those previously reported in other 220TB-endemic countries (4.9 to 26.5%)^{4,5,10,11}. Several studies have reported 221higher mortality rates (25.9 to 67.8%)¹²⁻¹⁵, but these studies included only 222223patients requiring intensive care. We demonstrated that 34.5% of HIV-negative TB patients had 224complications from bacterial pneumonia, and bacterial pneumonia co-infection 225substantially increased the risk of in-hospital TB death. Studies have shown that 226TB/pneumonia co-infection is not uncommon in TB-endemic countries¹⁶⁻¹⁸. 227228Nyamande et al showed that TB co-infection increased the mortality rate of bacterial pneumonia¹⁷. Among the TB patients requiring intensive care, 229hospital-acquired pneumonia was associated with in-hospital death^{12, 14}. These 230231findings may indicate that severe PTB causes serious lung damage and/or reduces the effectiveness of the immune response, thus increasing the risk of 232

233	secondary bacterial infection ¹⁴ . However, our study lacked sufficient
234	microbiological/immunological data to provide a causal explanation for the
235	observed phenomenon. Some of community-acquired bacterial pneumonia
236	cases may have been misclassified as PTB in our cases. Furthermore, the data
237	on antimicrobial therapy for pneumonia were not recorded systematically.
238	Further investigations are warranted.
239	We found that anorexia and anemia were correlated with mortality. Many
240	of our patients had a low BMI. Studies have suggested that lower BMI, a lower
241	serum albumin concentration, and a lower hemoglobin level are important risk
242	factors for mortality among TB patients ^{19,20} . The high in-hospital mortality
243	observed in this study is likely at least partly explained by the poor nutritional
244	status of our study population. Older age was also associated with in-hospital TB
245	death. Many elderly individuals have comorbidities, and the presence of
246	comorbidities is known to be associated with a lower diagnostic yield for TB ^{10,21} .
247	Although the available data on underlying conditions were limited, our findings
248	were compatible with previous reports. Unexpectedly, the presence of
249	hemoptysis was associated with improved survival. According to a
250	healthcare-seeking behavior survey conducted in the Philippines, residents with

hemoptysis were more likely to consult healthcare providers³. Together, these 251data suggest that a frightening symptom, such as hemoptysis, may drive 252patients to consult a doctor earlier than they would otherwise. 253254In our study, 25.1% of hospitalized patients died within a week of admission. Similar findings were reported in other countries with high TB 255endemicity. In South Africa, the in-hospital mortality was highest during the first 256week of hospitalization, and late presentation was associated with mortality²². In 257Serbia, 34% of hospitalized TB patients died within four days of admission due 258to the delay in diagnosis²³. The delay in healthcare seeking determines the 259outcome of TB patients²⁴. In the Philippines, only 25% of patients with TB 260symptoms consult a health care provider³. In the current study, a quarter of our 261patients were not hospitalized until three months or more after disease onset 262and we believe that the late visit to the hospital should be attributed to the high 263264 mortality. In our setting, we could not show the significant association between the duration from onset to admission and mortality. This may be due to recall 265266bias; recalling exact point of chronic disease onset is difficult. Furthermore the 267associations with anolexia, anemia, low BMI indicate that the poor health state in the population should also be a determinant of the high TB mortality in the 268

269	Philippines. In addition, the quality of care offered by private practitioners is often
270	questionable in TB-endemic countries ²⁵⁻²⁷ . A systematic review suggested that
271	consulting a private practitioner is one risk factor associated with diagnostic
272	delay ²⁸ . In Metro Manila, 53% of TB patients initially consulted a private
273	physician ²⁹ . In fact, among 28 of our patients who had been receiving
274	inadequate anti-TB treatment prior to admission, 19 (68%) had consulted private
275	practitioners. Improvements in access to high-quality care are critical to the
276	success of TB programs in slum settings, such as those studied here. We noted
277	that almost half of our patients had a previous history of TB treatment. But the
278	history of TB treatment was not associated with the mortality.
278 279	history of TB treatment was not associated with the mortality. Even after hospitalization, the delay between admission and the
279	Even after hospitalization, the delay between admission and the
279 280	Even after hospitalization, the delay between admission and the initiation of anti-TB treatment—i.e., the in-hospital delay—remains problematic ^{30,}
279 280 281	Even after hospitalization, the delay between admission and the initiation of anti-TB treatment—i.e., the in-hospital delay—remains problematic ^{30, 31} . In our setting, of the 252 patients who survived to discharge, 71% were
279 280 281 282	Even after hospitalization, the delay between admission and the initiation of anti-TB treatment—i.e., the in-hospital delay—remains problematic ^{30,} ³¹ . In our setting, of the 252 patients who survived to discharge, 71% were discharged without anti-TB treatment. According to our hospital guideline,
279 280 281 282 283	Even after hospitalization, the delay between admission and the initiation of anti-TB treatment—i.e., the in-hospital delay—remains problematic ^{30,} ³¹ . In our setting, of the 252 patients who survived to discharge, 71% were discharged without anti-TB treatment. According to our hospital guideline, patients need to submit three sputum samples for AFB screening prior to

287	treatments were intended to be initiated at the hospital outpatient department or
288	at community clinics, a high follow-up rate cannot be expected in our poor urban
289	setting. The delayed treatment of TB is a crucial problem not only with respect to
290	curing patients but also with respect to protecting the wider community from the
291	spread of <i>Mycobacterium tuberculosis</i> ³² . The recent national clinical guidelines
292	recommend that anti-TB treatment be initiated for any patient whose symptoms
293	or chest radiographs are highly suggestive of TB before final culture results are
294	received ³³ . The initiation of anti-TB treatment during the hospitalization must be
295	considered for newly diagnosed TB patients in high endemic areas. The
296	introduction of early TB detection systems, such as Xpert MTB/RIF, may shorten
297	the in beenited delow ³⁴
	the in-hospital delay ³⁴ .
298	Our study has several limitations due to its retrospective nature. Some
298 299	
	Our study has several limitations due to its retrospective nature. Some
299	Our study has several limitations due to its retrospective nature. Some potential risk factors for mortality, including comorbidities, social histories, and
299 300	Our study has several limitations due to its retrospective nature. Some potential risk factors for mortality, including comorbidities, social histories, and contact histories, were not sufficiently recorded in the medical charts. Chest
299 300 301	Our study has several limitations due to its retrospective nature. Some potential risk factors for mortality, including comorbidities, social histories, and contact histories, were not sufficiently recorded in the medical charts. Chest radiographs were available only for 55% of our patients. The TB diagnosis was

305	diagnosed clinically, and the timing of disease onset was not recorded. However,
306	all of our doctors are experienced infectious disease experts, and their clinical
307	diagnoses were expected to be sufficiently accurate ³⁵ . We are now conducting a
308	prospective study to identify aetilogy of co-existing bacterial pneumonia.
309	

310 CONCLUSION

- 311 The in-hospital mortality among HIV-negative TB patients was high in poor
- urban areas in Manila, the Philippines. Bacterial co-infection and poor nutritional
- status were strongly associated with TB-related death, reflecting these poor
- living conditions. The expansion of case detection and the early initiation of
- treatment are important strategies for reducing the in-hospital TB mortality rate in
- countered with high TB endemicity such as the Philippines. Early antibiotic
- therapy for bacterial co-infection may also improve outcomes of patients with
- severe TB; however, further investigations are warranted.
- 319

320	Acknowledgments
-----	-----------------

- 321 We thank the staff of the San Lazaro Hospital for supporting the data collection
- and Dr. Kei Miyagi and Dr. Hikaru Sato for supporting the field work.

324 Funding

- 325 This study was funded by the Nagasaki University Global COE Program and the
- 326 Nagasaki University GP program. The funders had no role in the design of the
- study; in the collection, analysis, and interpretation of the data; in the writing of
- the report; or in the decision to submit the paper for publication.

329

- 330 Conflicts of interest
- None declared.

332

- 333 Author Contributions
- TS, SDM, EMD, EPS, KA, JBV, and MS were responsible for the study
- conception and design. TS, SDM, NRDS, and EPS acquired the data. TS, SDM,
- EPS, KA, JBV, and MS analyzed and interpreted the data. TS, EMD, EPS, KA,

and MS drafted the manuscript. All authors commented on and approved the

338 final draft.

- 339 References
- World Health Organization. Global tuberculosis control: WHO Report 2011.
 WHO/HTM/TB/2011.16.
- 3422.The Joint United Nations Programme on HIV/AIDS (UNAIDS). AIDSinfo. Available343at: http://www.unaids.org/en/dataanalysis/datatools/aidsinfo/ Accessed 24 Oct 2012.
- 344 3. Tupasi TE, Radhakrishna S, Co VM, et al. Bacillary disease and health seeking
 345 behavior among Filipinos with symptoms of tuberculosis: implications for control.
 346 Int J Tuberc Lung Dis 2000; 4: 1126-1132.
- Alvarez GG, Thembela BL, Muller FJ, Clinch J, Singhal N, Cameron DW.
 Tuberculosis at Edendale Hospital in Pietermaritzburg, Kwazulu Natal, South
 Africa. Int J Tuberc Lung Dis 2004; 8: 1472-1478.
- 5. Silva DR, Menegotto DM, Schulz LF, Gazzana MB, Dalcin Pde T. Factors associated
 with mortality in hospitalized patients with newly diagnosed tuberculosis. Lung
 2010; 188: 33-41.
- United Nations Human Settlements Programme (UN-HABITAT) Regional Office for
 Asia and the Pacific. COUNTRY PROGRAMME DOCUMENT 2008-2009
 PHILIPPINES.
- 356 7. ICD-10 Version:2008. Available at:
- 357 <u>http://apps.who.int/classifications/icd10/browse/2008/en</u> Accessed 13 Jan 2013.
- Bepartment of Health Republic of the Philippines. Manual of Procedures for the
 NATIONAL TUBERCULOSIS CONTROL PROGRAM. Philippines, 4th Edition,
 2005. In: Case Holding. Department of Health Republic of the Philippines,
 December 2005
- 362 9. Department of Health Republic of the Philippines. Implementing Guidelines on
 363 Classification of Patients and on Availment of Medical Social Services in
 364 Government Hospital. Available at: <u>http://portal1.doh.gov.ph/files/ao51A-01.pdf</u>
 365 Accessed 19 Sep 2012.
- Rao VK, Iademarco EP, Fraser VJ, Kollef MH. The impact of comorbidity on
 mortality following in-hospital diagnosis of tuberculosis. Chest 1998; 114:
 1244-1252.
- 369 11. Greenaway C, Menzies D, Fanning A, Grewal R, Yuan L, FitzGerald JM. Delay in

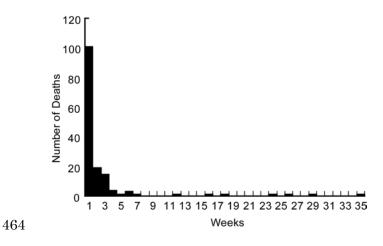
- diagnosis among hospitalized patients with active tuberculosis--predictors and
 outcomes. Am J Respir Crit Care Med 2002; 165: 927-933.
- Erbes R, Oettel K, Raffenberg M, Mauch H, Schmidt-Ioanas M, Lode H.
 Characteristics and outcome of patients with active pulmonary tuberculosis
 requiring intensive care. Eur Respir J 2006; 27: 1223-1228.
- 375 13. Ryu YJ, Koh WJ, Kang EH, et al. Prognostic factors in pulmonary tuberculosis
 376 requiring mechanical ventilation for acute respiratory failure. Respirology 2007; 12:
 377 406-411.
- Lin SM, Wang TY, Liu WT, et al. Predictive factors for mortality among
 non-HIV-infected patients with pulmonary tuberculosis and respiratory failure. Int
 J Tuberc Lung Dis 2009; 13: 335-340.
- 381 15. Silva DR, Menegotto DM, Schulz LF, Gazzana MB, Dalcin PT. Mortality among
 382 patients with tuberculosis requiring intensive care: a retrospective cohort study.
 383 BMC Infect Dis 2010; 10: 54.
- 16. Lockman S, Hone N, Kenyon TA, et al. Etiology of pulmonary infections in
 predominantly HIV-infected adults with suspected tuberculosis, Botswana. Int J
 Tuberc Lung Dis 2003; 7: 714-723.
- 17. Nyamande K, Lalloo UG, John M. TB presenting as community-acquired pneumonia
 in a setting of high TB incidence and high HIV prevalence. Int J Tuberc Lung Dis
 2007; 11: 1308-1313.
- 390 18. Feng JY, Fang WF, Wu CL, et al. Concomitant pulmonary tuberculosis in
 391 hospitalized healthcare-associated pneumonia in a tuberculosis endemic area: a
 392 multi-center retrospective study. PLoS One 2012; 7: e36832.
- Hanrahan CF, Golub JE, Mohapi L, et al. Body mass index and risk of tuberculosis
 and death. AIDS 2010; 24: 1501-1508.
- 395 20. Kim HJ, Lee CH, Shin S, et al. The impact of nutritional deficit on mortality of
 396 in-patients with pulmonary tuberculosis. Int J Tuberc Lung Dis 2010; 14: 79-85.
- 397 21. Schaaf HS, Collins A, Bekker A, Davies PD. Tuberculosis at extremes of age.
 398 Respirology 2010; 15: 747-763.
- 399 22. Sacks LV, Pendle S. Factors related to in-hospital deaths in patients with
 400 tuberculosis. Arch Intern Med 1998; 158: 1916-1922.
- 23. Zafran N, Heldal E, Pavlovic S, Vuckovic D, Boe J. Why do our patients die of active
 tuberculosis in the era of effective therapy? Tuber Lung Dis 1994; 75: 329-333.
- 403 24. Pablos-Mendez A, Sterling TR, Frieden TR. The relationship between delayed or
 404 incomplete treatment and all-cause mortality in patients with tuberculosis. JAMA
 405 1996; 276: 1223-1228.

406	25.	Pirkis JE, Speed BR, Yung AP, Dunt DR, MacIntyre CR, Plant AJ. Time to initiation
407		of anti-tuberculosis treatment. Tuber Lung Dis 1996; 77: 401-406.
408	26.	Auer C, Lagahid JY, Tanner M, Weiss MG. Diagnosis and management of
409		tuberculosis by private practitioners in Manila, Philippines. Health Policy 2006; 77:
410		172-181.
411	27.	Hopewell PC, Pai M, Maher D, Uplekar M, Raviglione MC. International standards
412		for tuberculosis care. Lancet Infect Dis 2006; 6: 710-725.
413	28.	Storla DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and
414		treatment of tuberculosis. BMC Public Health 2008; 8: 15.
415	29.	Auer C, Sarol J, Jr., Tanner M, Weiss M. Health seeking and perceived causes of
416		tuberculosis among patients in Manila, Philippines. Trop Med Int Health 2000; 5:
417		648-656.
418	30.	Lin CY, Lin WR, Chen TC, et al. Why is in-hospital diagnosis of pulmonary
419		tuberculosis delayed in southern Taiwan? J Formos Med Assoc 2010; 109: 269-277.
420	31.	Whitehorn J, Ayles H, Godfrey-Faussett P. Extra-pulmonary and smear-negative
421		forms of tuberculosis are associated with treatment delay and hospitalisation. Int J
422		Tuberc Lung Dis 2010; 14: 741-744.
423	32.	Squire SB, Belaye AK, Kashoti A, et al. 'Lost' smear-positive pulmonary tuberculosis
424		cases: where are they and why did we lose them? Int J Tuberc Lung Dis 2005; 9:
425		25-31.
426	33.	Philippine Society for Microbiology and Infectious Disease. Clinical Practice
427		Guidelines for the Diagnosis, Treatment, Prevention and Control of Tuberculosis in
428		Adult Filippinos: 2006 UPDATE.
429	34.	Parsons LM, Somoskovi A, Gutierrez C, et al. Laboratory diagnosis of tuberculosis in
430		resource-poor countries: challenges and opportunities. Clin Microbiol Rev 2011; 24:
431		314-350.
432	35.	Chen TC, Lu PL, Lin WR, et al. Diagnosis and treatment of pulmonary tuberculosis
433		in hospitalized patients are affected by physician specialty and experience. Am J
434		Med Sci 2010; 340: 367-372.
435		
436		

	Total	N (%) or		Total	N (%) or
	Ν	Median (range)		Ν	Median (range)
Age (years)	403	41 (13-86)	Duration of symptoms ^D	397	
13 – 30 yrs		118 (29.3)	< 1 months		178 (44.8)
31 – 50 yrs		145 (36)	>=1 months - <3 months		115 (29.0)
> 50 yrs		140 (34.7)	>=3 months		104 (26.2)
Sex	403		Sputum status	403	
Male		266 (66)	Smear positive		
Female		137 (34)	>= 2 sputum		60 (14.9)
Body mass index (kg/m²)	149	16.8 (8.5-32.0)	1 sputum		5 (1.2)
Address	403		Negative		118 (29.1)
Metro Manila		313 (77.7)	No sputum		220 (54.6)
Other region		90 (22.3)	WBC (x 10 ⁹ /L)	358	10.7 (1.4-44.0)
Income level*	378		Hemoglobin (g/L)	358	11.4 (3.0-17.3)
Non-poor		21 (5.2)	CXR findings ^Φ	221	
Poor		357 (88.6)	Normal		10 (2.5)
			Abnormal		211 (52.4)
Referrals [†]	403		Minimal		22 (10)
Yes		128 (32)	Extensive		183 (82.8)
No		275 (68)	Form of TB	403	
Any comorbidities [‡]	149		Isolated PTB		332 (82.4)
Yes		43 (10.7)	PTB + Extra PTB		50 (12.4)
No		106 (26.3)	Extra PTB		21 (5.2)
Past TB treatment [¶]	403		Anti-TB drug	403	
Yes		205 (50.9)	Started		98 (24.3)
No		198 (49.1)	not started		305 (75.7)
Symptoms at admission	403		Complication	403	
Cough		276 (68.5)	bacterial pneumonia		139 (34.5)
Dyspnea		259 (64.3)	Pneumothorax		40 (9.9)
Fever		170 (44.7)	Length of hospital stay [§]	403	
Sputum production		178 (44.2)	<= 7 days		175 (43.4)
Hemoptysis		134 (33.3)	> 7days		228 (56.6)
Anorexia		85 (21.1)	Status at discharge	403	
Weight loss		73 (18.1)	Alive		252 (62.5)

Table 1 Characteristics of hospitalized TB patients at the San Lazaro Hospital, Manila, the Philippines.

Boo	dy malaise	68 (16.9)	Death		151 (37.5)
439	TB = tuberculosis; SD = standard	deviation; BMI = B	ody mass index; m	no = month; WBC = White bl	ood cell
440	count; CXR = Chest X ray; PTB =	pulmonary tubercu	Ilosis.		
441	The number of missing data for BN	/II, income level, c	omorbidities, durat	ion of symptoms, WBC cour	nt,
442	hemoglobin, and CXR findings we	re 254, 35, 254, 6,	45, 45, and 182, r	espectively.	
443	* Income level was classified acco	rding to the per ca	pita poverty thresh	old (PCPT) defined by the	
444	government ⁹ . PCPT indicated the	annual per capita	income required to	satisfy essential nutritional	
445	requirements (2,000 calories) and	other basic needs.	. The annual incom	e of non-poor people was al	bove the
446	PCPT and that of poor people was	below the PCPT.			
447	[†] Cases referred from other hospit	als, health centers	, or private clinics.		
448	[‡] Past medical history included as	hma, chronic obst	ructive pulmonary	disease, hypertension, diabe	etes
449	mellitus, heart diseases, and renal	diseases.			
450	¹ A history of past TB treatment reg	gardless of treatme	ent completion stat	us.	
451	$^{\rm I\!M}$ median; 30 days, range; few hou	rs to 4 years			
452	$^{\Phi}$ The terminology of CXR findings	is according to the	e national TB guide	line ⁸ .	
453	$^{\$}$ median; 9 days, range; few hours	s to 241 days			
454					


Table 2 Univariate and multivariate analysis of risk factors for in-hospital TB mortality.

	Discharged	Deceased	Unadjusted odds ratio	Adjusted odds ratio*
	N (%)	N (%)	(95% CI)	(95% CI)
Age (years)				
>= 50	77 (51.7)	72 (48.3)	2.07 (1.37-3.14)	1.85 (1.08-3.17)
< 50	175 (68.9)	79 (31.1)	Ref.	Ref.
Sex				
Male	164 (61.6)	102 (38.4)	1.11 (0.73-1.71)	0.77 (0.43-1.37)
Female	88 (64.2)	49 (35.8)	Ref.	Ref.
Body mass index (kg/m ²)				
< 17	50 (64.9)	27 (35.1)	1.89 (0.91-3.91)	
>= 17	56 (77.8)	16 (22.2)	Ref.	
Place of residence				
Other region	59 (65.6)	31 (34.4)	0.85 (0.52-1.38)	
Metro Manila	193 (61.7)	120 (38.3)	Ref.	
Income level				
Poor	228 (63.9)	129 (36.1)	3.4 (0.98-11.7)	1.17 (0.62-2.22)
Non-poor	18 (85.7)	3 (14.3)	Ref.	Ref.
Referrals				
No	163 (59.3)	112 (40.7)	1.57 (1.00-2.45)	
Yes	89 (69.5)	39 (30.5)	Ref.	
Any comorbidities				
Yes	24 (55.8)	19 (44.2)	1.26 (0.66-2.42)	
No	72 (67.9)	34 (32.1)	Ref.	
Past TB treatment				
Yes	124 (60.5)	81 (39.5)	1.2 (0.80-1.79)	
No	128 (64.6)	70 (35.4)	Ref.	
Symptom at admission				
Cough				
Yes	175 (63.4)	101 (36.6)	0.89 (0.58-1.37)	
No	77 (60.6)	50 (39.4)	Ref.	
Dyspnea				
Yes	145 (56.0)	114 (44.0)	2.27 (1.45-3.55)	
No	107 (74.3)	37 (25.7)	Ref.	
Fever				

Yes	104 (61.2)	66 (38.8)	0.94 (0.63-1.41)	
No	138 (61.9)	85 (38.1)	Ref.	
Sputum production				
Yes	116 (65.2)	62 (34.8)	0.82 (0.54-1.23)	
No	136 (60.4)	89 (39.6)	Ref.	
Hemoptysis				
Yes	103 (76.9)	31 (23.1)	0.37 (0.23-0.60)	0.44 (0.25-0.80)
No	149 (55.4)	120 (44.6)	Ref.	Ref.
Anorexia				
Yes	36 (42.4)	49 (57.7)	2.88 (1.76-4.71)	3.01 (1.55-5.84)
No	216 (67.9)	102 (32.1)	Ref.	Ref.
Weight loss				
Yes	45 (61.6)	28 (38.4)	1.05 (0.62-1.76)	0.57 (0.27-1.19)
No	107 (46.5)	123 (53.5)	Ref.	Ref.
Duration of symptoms				
>= 3 months	62 (60.0)	42 (40.0)	1.20 (0.76-1.89)	
< 3 months	187 (63.8)	106 (36.2)	Ref.	
WBC (x 10 ⁹ /L)				
>= 12	84 (60.0)	56 (40.0)	1.64 (1.05-2.57)	
< 12	155 (71.1)	63 (28.9)	Ref.	
Hemoglobin (g/L)				
< 10	65 (56.0)	51 (44.0)	2.01 (1.27-3.19)	2.35 (1.34-4.13)
>= 10	174 (71.9)	68 (28.1)	Ref.	Ref.
CXR findings				
Abnormal	163 (77.3)	48 (22.7)		
Minimal				
Yes	20 (91.0)	2 (9.0)	0.30 (0.07-1.32)	
No	149 (74.9)	50 (25.1)	Ref.	
Extensive				
Yes	138 (75.4)	45 (24.6)	1.44 (0.60-3.50)	
No	31 (81.6)	7 (18.4)	Ref.	
Form of TB				
Extra PTB	15 (71.4)	6 (18.6)	0.61 (0.23-1.62)	
PTB + Extra PTB	36 (72.0)	14 (28.0)	0.60 (0.31-1.15)	
Isolated PTB	201 (60.5)	131 (39.5)	Ref.	
Anti-TB drug				

not started	180 (59.0)	125 (41.0)	1.92 (1.16-3.18)	
Started	72 (74.5)	26 (26.5)	Ref.	
Bacterial pneumonia				
Yes	58 (41.7)	81 (58.3)	3.87 (2.51-5.97)	4.53 (2.65-7.72)
No	194 (73.5)	70 (26.5)	Ref.	Ref.

458	*Variables were included in the multiple logistic regression model if their p values were less than 0.2 by
459	using a backward stepwise selection method; BMI was excluded from the final model as the data was
460	available only for a limited number of patients. <i>Definition of abbreviations:</i> SD = standard deviation, CI =
461	Confidence interval, TB = tuberculosis, WBC = White blood cell count, PTB = pulmonary tuberculosis
462	

Figure 1 Number of in-hospital TB deaths by week after admission to the San Lazaro Hospital,

466 Manila, the Philippines