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Abstract— A precipitation retrieval algorithm is proposed for the Dual-frequency Precipitation 

Radar (DPR) on the core satellite of the Global Precipitation Measurement (GPM) mission. The 

proposed algorithm is called the HB-DFR algorithm, in reference to the combination of 

Histchfeld-Bordan’s attenuation correction method (HB method) and the dual-frequency ratio (DFR) 

method. The HB-DFR algorithm is tested with a synthetic DPR dataset produced from the standard 

product of the Precipitation Radar on the Tropical Rainfall Measuring Mission. Precipitation rates 

estimated by the HB-DFR algorithm at the lowest (near-surface) range bin are evaluated by 

comparing them with the corresponding values calculated from the drop size distribution of the 

synthetic dataset. For “light precipitation” (below 1 mm h-1), precipitation rates are slightly 

underestimated because of the multiple-solution problem in the DFR method. For “heavy 

precipitation” (above 10 mm h-1), the precipitation rates are severely underestimated, and the biases 

become large when thick liquid phase precipitation occurs. For “medium precipitation” (between 1 

and 10 mm h-1

Index Terms—Attenuation, radar, rain. 

), the estimates are satisfactory. As almost 50% of precipitation falls as medium 

precipitation in the synthetic dataset, this result validates the usefulness of DPR measurements and the 

HB-DFR algorithm. Because the HB-DFR algorithm is a forward retrieval algorithm, it has multiple 

solutions and produces larger errors when applied to lower (farther) range bins. Unlike other 

dual-frequency algorithms, the HB-DFR algorithm can be easily switched to a single-frequency 

algorithm at a range bin where a measurement at one of the two frequencies is not available. 
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I. INTRODUCTION 

The Dual-frequency Precipitation Radar (DPR) on the core satellite of the Global Precipitation 

Measurement (GPM) mission is composed of two radars: KuPR (13.6 GHz) and KaPR (35.5 GHz). KuPR is 

similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR; 13.8 GHz). The DPR 

has three objectives: (I) continuation of PR-like measurements by KuPR, (II) detection of solid and/or light 

precipitation by KaPR, and (III) accurate estimation of the drop size distribution (DSD) and precipitation 

rates by simultaneous measurements with KuPR and KaPR. 

Fig. 1 schematically shows observations by DPR. KuPR operation is similar to that of PR; there are 49 

pixels in a normal scan with the swath width of 245 km. At each pixel, precipitation and surface echoes are 

measured with a vertical resolution of 250 m (oversampled data are available at an interval of 125 m). When 

KuPR observes a pixel in the inner part of a normal scan, KaPR observes the same pixel with the same 

vertical resolution. When KuPR observes pixels in the outer part of a normal scan, KaPR produces an 

interleaved scan and observes pixels in the inner swath with a vertical resolution of 500 m (oversampled data 

are available at the interval of 250 m). The coarser vertical resolution in interleaved scans makes it possible to 

detect lighter precipitation; the minimum detection level is 18 dBZ in a normal scan, but is reduced to 12 dBZ 

in an interleaved scan. There are three types of pixels: those (A) measured by KuPR only, (B) measured by 

KaPR only, and (C) measured both by KuPR and KaPR. Pixel types (A) to (C) correspond to objectives (I) to 

(III).  

For each pixel type, a precipitation retrieval algorithm must be developed. For pixel type (A), a 

single-frequency (KuPR) algorithm can be developed based on the PR standard algorithm [1], [2]. The PR 

standard algorithm adopts a hybrid method with Hitschfeld-Bordan’s attenuation correction method (HB 

method) [3] and the surface reference technique (SRT). The basic structure of the PR standard algorithm is 

also applicable to a single-frequency (KaPR) algorithm for pixel type (B), although the differences in 

frequency and vertical resolution need to be considered. 
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For pixel type (C), there are a few dual-frequency algorithms proposed in previous studies. Some of these 

can retrieve two DSD parameters per range bin. Meneghini et al. [4] applied a backward retrieval algorithm 

(BRA), where the DSD parameters are retrieved from the bottom to the top with path integrated attenuation 

(PIA) estimated by the SRT. Generally, the BRA is robust compared with forward retrieval algorithms 

(FRAs). This is because the lower boundary condition is given in the BRA, while errors in attenuation can 

accumulate wrongly and may diverge in FRAs. However, BRA estimations depend largely on the SRT, which 

is sometimes inaccurate over land. Mardiana et al. [5] developed an iterative backward retrieval algorithm 

(IBRA) that did not use the SRT. In the IBRA, PIA is arbitrarily assumed and the BRA is applied until the 

boundary condition at the top of the precipitation is satisfied. The IBRA is equivalent to an FRA and it has 

multiple solutions [6]. As the IBRA tends to select a solution with smaller precipitation rates among multiple 

solutions, it yields underestimations for heavy precipitation [6]-[8]. To get unique and better solution in a 

dual-frequency algorithm, differential attenuation constraint [8] and DSD constraint [9] are proposed. 

The above dual-frequency algorithms are developed independently of single-frequency algorithms such as 

the PR standard algorithm. However, consistency between single- and dual-frequency algorithms is desired 

for the DPR to produce a seamless three-dimensional field of the precipitation rate estimates. In this paper, a 

precipitation rate retrieval algorithm, which is applicable both for single-frequency and dual-frequency 

measurements is proposed. The proposed algorithm is termed the HB-DFR algorithm, because the HB 

method is applied in combination with the DFR method. We propose the HB-DFR algorithm as part of a 

baseline algorithm for the DPR standard algorithm and demonstrate the potential and limitations of this 

algorithm. Because the SRT is not used in the HB-DFR algorithm, robustness cannot be expected. In future 

work we propose to involve the SRT to make the HB-DFR algorithm more accurate and robust for the DPR 

standard algorithm. 

The remainder of this paper is organized as follows. In Section II, the synthetic DPR dataset that we use to 

test and evaluate the HB-DFR algorithm is described. In Section III, the operation of the HB-DFR algorithm 
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as a fully dual-frequency algorithm is explained. Then, the HB-DFR algorithm is applied to a synthetic 

dataset and general evaluations are presented in Section IV. This is followed by discussions of errors related 

to multiple solutions in Section V and to vertical profiles in Section VI. In Section VII, the HB-DFR 

algorithm as a fully or partially single-frequency algorithm is explained. It is applied to the synthetic dataset 

with measured radar reflectivity factors smaller than the minimum detection level being masked. The 

summary and conclusions are given in Section VIII. 

 

II. SYNTHETIC DATASET 

To test the HB-DFR algorithm, a synthetic dataset is produced from the PR standard product in version 7. 

The synthetic dataset has vertical profiles of the measured radar reflectivity factor [denoted by Zm (in mm6 

m-3)] at 13.8GHz and 35.5GHz. The PR frequency (13.8 GHz) is used instead of the KuPR frequency (13.6 

GHz) to ease production of the synthetic dataset. This minor difference in frequency does not significantly 

affect the results obtained. The vertical resolution of the synthetic dataset [denoted by L (km)] is 0.25 km, but 

oversampled data are not produced. A profile with N range bins is presented in Fig. 2. Here the range bin 

number increases in the downward direction; the highest range bin is range bin 1 and the lowest range bin is 

range bin N. The r axis is taken along the radar beam, and r gives the distance from the radar. Let r equal ri-1 

at the top of range bin i and ri at the bottom of range bin i. The phase (liquid / melting / solid) of range bin is 

determined according to the PR standard product. DSD parameters are not stored in the PR standard product, 

but they can be calculated from the effective radar reflectivity factor [denoted by Ze (in mm6 m-3

βεα )()()( 0 rZrrk e=

)] and the 

specific attenuation [denoted by k (in decibels per kilometer)] as follows. The value of k is also not stored in 

the standard product, but can be calculated by the k-Z relation shown in 

                                         (1) 

where α0 and β are parameters dependent on the precipitation type. α0 is vertically variable, but β is constant. 

The values of α0 at some range bins (termed nodes) and β are given in the standard product (Table I). The 
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nodes are defined by referring to a bright band (if it exists) and air temperature as illustrated in Fig. 3. α0

 

 at the 

other range bins can be calculated by linear interpolation. ε is termed the k-adjustment factor in this paper and 

its value is given in the standard product. 

A. DSD at Liquid Phase Range Bins 

At liquid phase range bins, according to the PR standard algorithm, the DSD is assumed to follow the 

function given in 

),;()( mw DDfNDN µ=                                       (2-1) 
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where D (in millimeters) is the diameter of a precipitation particle, and N(D) (in m-3 mm-1) is the number 

density. Nw (in m-3 mm-1) and Dm (in millimeters) are the DSD parameters to be retrieved. The third DSD 

parameter µ is fixed to be 3 throughout this paper. With this assumption, Ze (in mm6 m-3

)( mwe DFNZ =

) and k (in decibels 

per kilometer) are written as functions of the DSD parameters as shown in 
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where σb is the backscattering cross section (in square millimeters), λ is the wavelength of the microwave (in 

centimeters), and nw is the refractivity index of water in liquid phase at 0o

)( mw DGNk =

C. 

                                          (4-1) 
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where σe

By dividing Eq. (4-1) by Eq. (3-1), k/Z

 is extinction cross section (in square millimeters). 

e is found to be a function of Dm. 
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)()(/ mme DFDGZk = .                                       (5) 

As shown in Fig. 4, k/Ze at node D (liquid phase, 0oC) is a monotonic decreasing function of Dm as long as Dm 

takes realistic values. This means that Dm can be retrieved uniquely from k/Ze. Once Dm is derived, Nw can be 

calculated by substituting Dm into (3) or (4). Ze

The precipitation rate R (in millimeters per hour) is calculated from the DSD parameters as shown in 

 and k at 35.5 GHz are calculated from the DSD parameters 

using (3) and (4), respectively. 

)( mw DHNR =                                           (6-1) 
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where V(D) (in meters per second) denotes a falling velocity function and is given in the following equation 

according to Gunn and Kinzer [10]. 

)195.0exp(854.4)( DDDV −××=                                  (7) 

For all liquid phase range bins, particle temperature (denoted by T) is set to be 0oC in order to calculate σb 

and σe

 

, as their dependence on temperature is negligible. Dependence of the falling velocity on air pressure is 

also neglected, and (7) is always used for liquid phase range bins. As long as the same V(D) is used in the 

retrieval algorithm, this simplified assumption does not affect the performance of the retrieval algorithm. 

B. DSD at Solid and Melting Phase Range Bins 

At solid and melting phase range bins, according to Awaka’s model [11],[12], the DSD is simulated to 

follow (2) when all the particles melt into the liquid phase with non-coalescence and non-breakup assumption. 

This assumption is written as shown in 

sssss dDDVDNdDDVDN )()()()( =                                 (8-1) 

33
ssDD ρ=                                              (8-2) 

where the variables with subscripts s denote the solid and melting phases, and variables without subscripts 
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indicate post melting. ρs (in grams per cubic centimeters) denotes the density of a solid and melting phase 

particle. Vs (in meters per second) depends on ρs

5.03.3 ssV ρ×=

 as shown in 

             )05.0( ≤sρ                          (9-1) 
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The refractivity index of solid and melting phase particles (denoted by n
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                                  (10) 

where Pw is the volumetric ratio of liquid water to the particle and Pi is the volumetric ratio of solid water to 

the particle. U is a form factor. ni is the dielectric constant of ice, and nw and ni depend on T. According to the 

PR standard algorithm, T, Pw, Pi, ρs

Using the above settings, F(D

, and U are given for the nodes as shown in Table I. 

m) and G(Dm) can be calculated for the nodes. For range bins between the 

nodes, F(Dm) and G(Dm) are linearly interpolated for the distance r. For range bins above node A, F(Dm) and 

G(Dm) are identical to those at node A. In the same way in liquid phase range bins, Nw and Dm are calculated 

from k and Ze at 13.8 GHz, and k and Ze at 35.5 GHz are then calculated from Nw and Dm

 

. 

C. Simulation of Zm

As the DSD is assumed to be uniform in a range bin, Z

 at Range Bins 

e(r) and k(r) are constant in the range bin. The 

constant values at range bin i are denoted as <Ze>i and <k>i, respectively. However, Zm(r) is not constant in 

the range bin. Zm

∑
−

=
− −=

1

1
1 2dB)(dB

i

j
jieim LkZrZ

(r) at the top of range bin i and the bottom of range bin i are given as shown in 

                                 (11) 
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where the prefix “dB” indicates that the variable is given at the decibel scale as dBZ=10logZ. j is a dummy 

parameter of i. Measured radar reflectivity factor at range bin i is denoted by <Zm>i

LkLkZZ
i

i

j
jieim 25.02dBdB

1

1
×−−≡ ∑

−

=

 and is assumed to be 

given as shown in 

.                           (13)
 

The third term on the right hand side of (13) represents the “internal attenuation”, which is caused by 

precipitation particles inside range bin i. 

 

 A synthetic dataset are produced from 489 PR orbits observed in July 2001. Because of limited computer 

resources, no more than 10,000 precipitating pixels are selected from each orbit. At each pixel, a series of 

continuous precipitating range bins is taken. Precipitating range bins separated from lower precipitating range 

bins are neglected in producing the synthetic dataset. 

 

III. DUAL-FREQUENCY ALGORITHM 

When dual-frequency measurements are available at all range bins in a profile, the HB-DFR algorithm can 

be fully applied as a dual-frequency algorithm. The framework of the HB-DFR algorithm as a dual-frequency 

algorithm is shown in Fig. 5. Zm, α0

 The procedure can be divided into steps (i) to (iv). At each frequency, the vertical profile of Z

, and β are given at each range bin and at each frequency. Initially, the 

k-adjustment factor is arbitrarily given at each range bin and at each frequency. Although the k-adjustment 

factor is vertically constant in the PR standard algorithm, it can vary between range bins in this 

dual-frequency algorithm, allowing higher degrees of freedom in the DSD. Moreover, the k-adjustment factor 

can be different for KuPR and KaPR. 

e is derived 
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using the HB method [steps (i) and (ii)]. At each range bin, the DSD parameters (Nw, Dm) are derived from 

the dual-frequency Ze values using the DFR method [step (iii)]. At each range bin and at each frequency, the 

k-adjustment factor is calculated from the derived (Nw, Dm

 

) by (1), (3), and (4) [step (iv)]. With the updated 

k-adjustment factors, steps (i) to (iv) are executed again. In this way, steps (i) to (iv) are iteratively applied to 

optimize the k-adjustment factors. Details of the HB method and the DFR method are described below. 

A. HB Method 

Here, the HB method is briefly reviewed. When a k-Z relation is assumed as in (1), Ze

[ ] βς /1)(1
)()(

r
rZrZ m

e −
=

(r) is analytically 

solved as shown in 

                                       (14-1) 
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where s is a dummy parameter of r. 

In reality, <Zm>i (i=1,...,N) is given instead of Zm(r), so the HB method needs to be applied in its discrete 

form. The discrete form of Eq. (14-2) at r=ri
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                       (15-1) 

Lk jj ><××≡ )10ln(1.0κ                                     (15-2)
 

where α0j and εj respectively denote α0 and ε at range bin j. The last factor of Eq. (15-1) appears as Zm does 

not linearly change with r in each range bin. This factor is close to 1 when attenuation is weak, but it becomes 

large and cannot be neglected for heavy precipitation. To calculate ζ(ri

 [1] <k>

), the following iterative procedure is 

applied. 

i

[2] ζ(r

 is assumed to be zero. 

i) is calculated by (15).  
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 can be calculated from the following equation, the second equality of which is derived from (14-1). 

                (16)
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 is calculated from (17), the third equality of which can 

be derived from (12) and (13). 

.                         (17)
 

The above process is applied from range bin 1 to N sequentially, therefore ζ(ri-1) is known in calculating 

(16). If ζ(ri

For KuPR, α

) becomes larger than 1, k-adjustment factors for all range bins are set smaller and the above 

process is applied again from range bin 1. 

0 and β are given according to the PR standard algorithm [11]. For KaPR, α0

 

 is set to be 10 

times as large as that for KuPR, and β is set to be the same as that for KuPR. 

B. DFR Method 

Once Ze

)(log10)(log10dBdBDFR 1010 m
u

m
au

e
a
e DFDFZZ −=−≡

’s are given at both frequencies, DFR defined in (18) can be calculated. 

                     (18) 

where superscript a (u) indicates that the value is for KaPR (KuPR). DFR as a function of Dm is shown in Fig. 

6 for the various nodes. At nodes A, B, and C (solid and melting phase; the physical properties are given in 

Section II and Table I), DFR is a monotonic decreasing function; therefore, Dm can be uniquely determined. 

When Dm is derived, Nw can be calculated by (3). In this way, DSD parameters (Dm and Nw) are retrieved by 

the DFR method. At node D (liquid phase, 0oC), DFR takes a local maximum, and the value of Dm at which 

DFR reaches the local maximum is denoted by Dm,s. In the case of µ=3, Dm,s = 1.01 mm. When a given DFR 

is larger than 0 dB, there are two possible Dm values. In this case, the larger Dm is selected. When a given 
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DFR is smaller than 0 dB, Dm

 

 is uniquely determined. 

IV. TESTING AND EVALUATION 

The HB-DFR algorithm is applied to the synthetic dataset. In this section, two experiments are conducted: 

the standard experiment (STD) and the ideal experiment (IDL). In these two experiments, to fully apply the 

HB-DFR algorithm as a dual-frequency algorithm, the minimum detection level of Zm (18 dBZ in normal 

scans of the DPR) is not considered; Zm

In the STD, the k-adjustment factor is initially set to be 1 at all range bins and at both frequencies. Steps (i) 

to (iv) are preformed 100 times. In the IDL, the true value of the k-adjustment factor is determined initially at 

all range bins and at both frequencies, and steps (i) to (iv) are performed once only. To see how errors in the 

k-adjustment factor affected the precipitation rate estimates, the IDL and STD results are compared. 

Precipitation rates at the lowest range bin of each profile are evaluated, because they are often used as near 

surface precipitation rates and are affected by accumulated errors in the upper range bins. Here and later in 

this paper, “precipitation rate” indicates the precipitation rate at the lowest range bin, unless the range bin 

number is otherwise specified. 

’s smaller than 18 dBZ are input as “measured” in the two 

experiments. 

 

A. IDL 

Fig. 7 shows the evaluation for the IDL. Precipitation rates estimated by the HB-DFR algorithm (called 

“estimates”) are compared with those directly calculated from the DSD of the synthetic dataset (called 

“truths”). In this figure, both axes are in logarithmic scale. The average of the estimates is shown for all pixels 

and for each category of the thickness [denoted by TOL (in kilometers)] of the liquid phase range bins; the 

categories are TOL = 0 km, 0 km < TOL <= 1 km, 1 km < TOL <= 2 km, 2 km < TOL <= 3 km, 3 km < TOL 

<= 4 km, 4 km < TOL <= 5 km, and 5 km < TOL. A two-dimensional histogram of the estimates and the 
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truths is also shown for all pixels. 

The estimates are very close to the truths, except for “very heavy precipitation” (above 30 mm h-1) and for 

“light precipitation” (below 1 mm h-1). As shown in Fig. 8(a),(b), KuPR PIA is accurately retrieved but KaPR 

PIA is underestimated for very heavy precipitation. For very heavy precipitation, ζ(rN) is very close to 1 at 

KaPR, but we tend to use smaller k-adjustment factor in avoiding numerical divergence so that ζ(rN

For light precipitation, the HB method has no problems but the DFR method selects an incorrect D

) is likely 

to be underestimated. 

m. As 

shown in Fig. 8(c), Dm at the lowest range bin is overestimated because a Dm larger than Dm,s is always 

selected in the DFR method, whereas the average of the true Dm is smaller than Dm,s. As shown in Fig. 7, for 

the category of TOL = 0 km (the phase at the lowest range bin is solid or melting), the precipitation rate is not 

underestimated. This is because the DFR method has no multiple solutions for solid and melting phase range 

bins. As shown in Fig. 8(c), Dm is also overestimated for very heavy precipitation, but this is caused by the 

inappropriate KaPR Ze

Fig. 8(d) shows the KuPR k-adjustment factor at the lowest range bin. For light and very heavy precipitation, 

the k-adjustment factor estimated in step (iv) is different from that assumed in step (i). This suggests that the 

precipitation rate estimates are not reliable when the k-adjustment factor does not converge. 

 derived by the HB method, not by multiple solutions in the DFR method. 

 

B. STD 

Evaluations are also made for the STD. The precipitation rates that are evaluated are shown in Fig. 9. Fig. 

10 shows the PIAs for KuPR and KaPR, Dm at the lowest range bin, and the KuPR k-adjustment factor at the 

lowest range bin. Compared with the IDL, the STD generated larger errors in the precipitation rates (Fig. 9). 

For “heavy precipitation” (above 10 mm h-1), PIAs are underestimated at both frequencies [Fig. 10(a),(b)] and 

precipitation rates are more substantially underestimated than in the IDL. The underestimation for heavy 

precipitation is more severe when the TOL category is larger (Fig. 9). The reason for this is explained by the 
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examination of vertical profiles in Section VI. For light precipitation, an incorrect Dm is likely to be selected 

[Fig. 10(c)], and precipitation rates are underestimated as is in the IDL. For “medium precipitation” (between 

1 and 10 mm h-1

While errors in the IDL resulted from the use of the HB and DFR methods, errors in the STD are also 

caused by the k-adjustment factor. In the 100

), the estimates are generally close to the truths, although they are not as accurate as the IDL. 

In the synthetic dataset, nearly half of the total amount of precipitation occurred as medium precipitation. The 

result supports the potential of the HB-DFR algorithm for medium precipitation. 

th iteration of the STD, the assumed k-adjustment factor (the 

estimates after the 99th iteration) is different from the truth particularly for light and heavy precipitation [Fig. 

10(d)]. The k-adjustment factor after the 100th iteration is almost the same as after the 99th iteration. This 

indicates that the k-adjustment factor largely converges by the 100th

 

 iteration, but sometimes to an incorrect 

value. This can be explained by the fact that there are multiple solutions in the HB-DFR algorithm as will be 

shown in Section V. 

V. MULTIPLE SOLUTIONS 

 

A. Multiple Solutions in a Dual-frequency Forward Retrieval Algorithm 

Here, the theory of multiple solutions in a dual-frequency forward retrieval algorithm given in Seto and 

Iguchi [6] is summarized. A forward retrieval algorithm solves the DSD from range bin 1 to range bin N. 

Before the DSD at range bin i is solved, attenuation is corrected for range bins 1 to (i-1), or <Zf>i

∑
−

=

+≡
1

1
2dBdB

i

j
jimif LkZZ

 as defined 

in the following equation can be calculated at both frequencies. 

 .                                  (19)
 

<Zf>i is not equal to <Ze>i, as the internal attenuation is not corrected in <Zf>i

From (3), (4), (13), and (19), the following equation is derived. 

. 
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LDGNDFNLkZZ imiwimiwiieif )()(dBdBdBdB ,,,, −+=−=
                   (20)

 

where Nw,i and Dm,i are Nw and Dm at range bin i, respectively. <Zf>i is a function of Nw,i and Dm,i and 

independent of other range bins, while <Zm>i depends not only on Nw,i and Dm,i but on DSD parameters at 

other range bins. Therefore, it is easier to derive Nw,i and Dm,i from <Zf>i than from <Zm>i. In the remainder 

of this subsection, the 0o

In Fig. 11, D

C liquid phase is assumed for range bin i, and the subscript i is omitted for simplicity. 

m is shown as the horizontal axis and the difference in dB<Zf> at the two frequencies (denoted 

by dB<Zf>δ

[ ])()()()(dBdBdB m
u

m
a

wm
u

m
au

f

a

ff DGDGLNDdBFDdBFZZZ −−−=−≡
δ

 as defined in the following equation) is shown by the vertical axis. 

      (21)
 

When a set of Dm and dB<Zf>δ is given, Nw is uniquely determined. Therefore, except for the gray region 

with negative Nw

 The contours in Fig. 11(a) represent dBN

, any point on this plane corresponds to a set of DSD parameters. 

w and the precipitation rates. Contours are also drawn for 

dB<Zf>u and dB<Zf>a in Fig. 11(b). There are two crossing points for a given set of dB<Zf>u and dB<Zf>a, 

which suggests that there are two possible solutions for the DSD per range bin in dual-frequency forward 

retrieval algorithms. According to Seto and Iguchi [6], the plane can be categorized into four types (except for 

the gray region), as shown by the four different background colors. If the DSD of one solution is in type-0 / 

type-1 / type-2 / type-3, the DSD of the other solution is in type-1 / type-0 / type-3 / type-2. In type-0, Dm is 

smaller than Dm,s. Dm in type-2 is larger than the corresponding Dm

 

 in type-3. Detailed explanation about the 

four types are given in [6]. 

B. Multiple Solutions in the HB-DFR Algorithm 

In the DFR method, no type-0 DSDs are selected. If the true solution is in type-0, it is never selected in the 

HB-DFR algorithm. Conversely, if the true solution is in type-1, it is easily selected. If the true solution is in 

type-2 or type-3, the initial assumption of the k-adjustment factor may determine whether the HB-DFR 
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algorithm selects the type-2 or type-3 DSD. In Fig. 11(c), contours are shown for the KuPR and KaPR 

k-adjustment factors in the case of stratiform precipitation. Fig. 11(d) is the same as Fig. 11(c), but in the case 

of convective precipitation. The initial k-adjustment factor assumed for the STD (ε=1 at both frequencies) 

corresponds to type-1 DSD or type-2 DSD with the exception of convective precipitation heavier than 50 mm 

h-1

Fig. 12 shows the evaluation of precipitation rates for pixels which do not have type-0 and type-3 DSDs. 

Nearly 30 % of all pixels satisfy this condition, or have only type-1 and type-2 DSDs. The underestimation for 

light precipitation disappears in both the IDL and STD, when type-0 DSDs are excluded. The underestimation 

for heavy precipitation is also alleviated as type-3 DSDs are excluded. Overall, the bias ratios for pixels 

without type-0 and type-3 DSDs are -2.525% in the IDL and -12.931% in the STD and are better than 

-6.315% and -35.229%, respectively, for all pixels. 

. This suggests that type-2 DSD is much more likely to be selected than type-3 DSD. 

 

VI. VERTICAL PROFILE 

In a forward retrieval algorithm, errors transfer and expand in going forward (downward). Vertical profiles 

are examined to see how errors transfer to lower range bins in the STD. In Fig. 13, “averaged” vertical 

profiles are shown for Zm (truths), Ze

 At solid and melting phase range bins, almost no errors are seen in Z

 (truths and estimates from the STD), and precipitation rates (truths and 

estimates from the STD). Fig. 13(a)-(c) represent vertical profiles with a bright band. The vertical axis 

indicates the particle temperature for solid phase range bins, relative location in a bright band for melting 

phase range bins, and the distance from the bottom of the bright band for liquid phase range bins. At each 

level of the vertical axis, data are averaged except for non-precipitating range bins; therefore, the number of 

samples can be different at different levels. Fig. 13(d)-(f) represent vertical profiles without bright bands. The 

vertical axis indicates the particle temperature for solid phase range bins and the distance from the top of the 

liquid phase (not necessarily equal to the freezing level) for liquid phase range bins. 

e and precipitation rates, because the 
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DFR method generally does not have multiple solutions at these range bins. However, it should be noted that 

F(Dm) and G(Dm) are set accurately in this study. The inappropriate setting of F(Dm) and G(Dm) may cause 

errors at these range bins. At liquid phase range bins, errors are observed in Ze

 

 and precipitation rates, which 

expand in going downward. This is likely the reason why the precipitation rate is more substantially 

underestimated when the TOL is larger. 

VII. APPLICATION TO PARTIAL SINGLE-FREQUENCY PROFILES 

In previous sections, the HB-DFR algorithm is applied fully as a dual-frequency algorithm. In this section, 

we explain the modification of the HB-DFR algorithm to be applied fully or partially as a single-frequency 

algorithm. 

For KuPR single-frequency measurement [pixel type (A)], a simplified version of the HB-DFR algorithm 

can be applied. The framework of the KuPR algorithm is shown in Fig. 14(a). Compared with the HB-DFR 

algorithm fully as a dual-frequency algorithm (Fig. 5), the HB method for KaPR [step (ii)] and the update of 

k-adjustment factor [step (iv)] are omitted. Instead of the DFR method [step (iii)], DSD parameters are 

retrieved from the ratio of k and Ze

Even for dual-frequency measurement [pixel type (C)], the HB-DFR algorithm cannot be always applied 

fully as a dual-frequency algorithm, because Z

 as applied in producing the synthetic dataset [step (iii’)]. Similarly, the 

framework of an algorithm for KaPR single-frequency measurement [pixel type (B)] is shown in Fig. 14(b); 

Steps (ii) and (iii’) are applied. 

m’s smaller than 18 dBZ is not available in actual DPR 

measurements. KaPR measurement is subject to precipitation attenuation and often lacks echoes at lower 

range bins. Below, we explain the procedure how the HB-DFR algorithm is applied when some Zm’s are 

masked, and test the HB-DFR algorithm with the synthetic dataset by masking Zm

 

’s smaller than 18 dBZ. 
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A. The Procedure of the HB-DFR Algorithm partially as a single-frequency algorithm 

Even if some Zm’s are masked, the HB-DFR algorithm is performed basically in the same way as explained 

in section 3, but there are some exceptions. In the HB method, if Zm is smaller than 18 dBZ at range bin i, Ze 

is assumed to be equal to Ze of range bin (i-1). However, if all Zm’s are smaller than 18 dBZ between range 

bins 1 to i, Ze

 The k-adjustment factor is updated by the DFR method only at range bins where the Z

 at range bin i cannot be assumed. 

m’s are larger than 

18 dBZ at both frequencies. As shown in Table II, an index is selected from which the DSD is retrieved at 

range bin i depending on the conditions in Zm (Zm is larger than 18 dBZ at range bin i, Zm is smaller than 18 

dBZ at range bin i but some Zm’s are larger than 18 dBZ at range bins 1 to i-1, Zm’s are smaller than 18dBZ at 

all range bins 1 to i). In some cases, the DSD is retrieved from k/Ze at either frequency as in the fully 

single-frequency algorithm. As k/Ze is not a monotonic function of Dm for KaPR (figures not shown),the 

smaller Dm is selected, if there are two possible solutions of Dm. If all Zm’s are smaller than 18dBZ at range 

bins 1 to i at both frequencies, the DSD and precipitation rates cannot be retrieved at range bin i and above. If 

all Zm

 

’s are masked from range bin 1 to N at either frequency, the algorithm reduces to a fully 

single-frequency algorithm. Here, the dual-frequency algorithm, the fully single-frequency algorithms, and 

the partial single-frequency algorithm are given in common framework. 

B. Test and Results 

The HB-DFR algorithm is applied to the synthetic dataset with masking Zm’s smaller than 18 dBZ. This 

experiment is called the Minimum Detection Level experiment (MDL). If all Zm

Precipitation rates estimated by the MDL are evaluated (Fig. 15). The lowest range bin and the TOL are 

defined by including masked range bins, and hence they are the same for the MDL and STD. The ratio of bias 

’s at both frequencies are 

masked in a pixel, the pixel cannot be used in the MDL. For this reason almost 10% of all the pixels used in 

the STD are not used in the MDL. 



> SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING < 
 

19 

is -19.344 % in the MDL, and is better than -35.229 % in the STD (-35.111 % in the STD for the pixels which 

are used in the MDL). In the MDL, substantial underestimation of heavy precipitation is alleviated. Whereas 

larger biases are found for larger TOL in the STD, this is not true for the MDL. Some precipitation rates are 

overestimated in the MDL particularly for light precipitation, as shown in the two-dimensional histogram, 

while such overestimates are rarely seen in the STD. These differences between the MDL and STD are 

discussed by examining vertical profiles. 

 

C. Vertical Profiles 

“Averaged” vertical profiles of Ze and precipitation rates estimated from the MDL are shown in Fig. 16. 

Vertical profiles of Zm, true Ze, and true precipitation rates are also shown, but are slightly different from 

those shown in Fig. 13 because some profiles are not used in the MDL. At lower liquid phase range bins, the 

KaPR Zm sometimes becomes smaller than 18 dBZ due to attenuation. Whereas errors in Ze become larger at 

lower range bins in the STD, this is not evident in the MDL. This is likely because a vertically constant Ze is 

assumed when Zm’s are masked. Consequently, underestimation in Ze is alleviated in the MDL. By avoiding 

the use of underestimated Ze

 At solid phase range bins, Z

, the precipitation rates are better estimated in the MDL than in the STD. 

e is slightly overestimated in the MDL. At the -20oC level (node A and above), 

the KaPR true Ze tends to be higher than that at lower solid phase range bins for this synthetic dataset. In this 

case, by assuming vertical constancy in Ze, Ze is overestimated at lower solid phase range bins. Similar 

phenomenon may occur at liquid phase range bins when the precipitation rate is light. If true Ze decreases 

with depth and Zm is masked, Ze

 

 is overestimated. This may cause an overestimation for light precipitation. 

VIII. SUMMARY AND CONCLUSIONS 

This study proposes the HB-DFR algorithm for the GPM/DPR. When the HB-DFR algorithm is applied as 
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a fully dual-frequency algorithm, it has multiple solutions in a similar manner to other dual-frequency 

forward retrieval algorithms. The HB-DFR algorithm is likely to select a solution with a smaller precipitation 

rate, so the performance is satisfactory for medium precipitation but is not good for heavy precipitation. As 

with other forward retrieval algorithms, errors transfer and expand in the downward direction. Vertical 

profiles suggest that these errors are largely caused by liquid phase range bins rather than solid and melting 

phase range bins. Therefore, biases in precipitation rates at the lowest range bin are larger when liquid phase 

range bins are thicker. 

The HB-DFR algorithm can be easily switched to a single-frequency retrieval algorithm at a range bin 

where a measurement at one of the two frequencies is not available. This is an advantage over dual-frequency 

algorithms proposed previously and we believe that the HB-DFR algorithm is suitable for use as part of the 

DPR standard algorithm. At a range bin where the KaPR Zm

 Throughout this study, no measurement errors in Z

 is smaller than the minimum detection level of 

18 dBZ because of strong attenuation, information from KuPR only is used, which avoided the substantial 

underestimation inherent in dual-frequency forward retrieval algorithms. 

m are considered, and F(Dm) and G(Dm) are provided 

accurately. However, these ideal conditions cannot be expected under real operation. An operational retrieval 

algorithm for the DPR should be more robust so that it does not cause large errors even if Zm has some 

measurement errors and the tables are not provided accurately. SRT is necessary to make retrieval algorithms 

more robust. We are going to develop an HB-DFR-SRT algorithm in future work. 
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TABLE I 
SETTINGS OF PHASE AND PARAMETERS AT THE NODES. NODES A, B, C, AND D ARE DESIGNATED BY THE PR 

STANDARD ALGORITHM (ILLUSTRATED IN FIG. 3). α0

 

 AND β ARE DEPENDENT ON PRECIPITATION TYPES: 
STRATIFORM INDICATED BY [S] AND CONVECTIVE INDICATED BY [C]. 

node phase T 
[o

P
C] 

Pw ρi 
[g cm

s 
-3

U 
] 

α0
[x 10

 for KuPR 
-4

β 
] 

node A solid -20 0.000 0.109 0.100 2.0 0.3124 [S] 
0.4814 [C] 

0.78069 [S] 
0.75889 [C] 

node B melting 0 0.017 0.123 0.130 3.4 1.2651 [S] 
(between  
B and C) 

melting 0 0.044 0.180 0.210 8.7 3.1409 [S] 

node C melting 0 0.170 0.263 0.412 140 5.0167 [S] 
(between  
C and D) 

melting 0 0.380 0.257 0.616 140 4.0639 [S] 

node D liquid 0 1.000 0.000 1.000  3.1110 [S] 
4.2864 [C] 

 

 

TABLE II 
INDICES FROM WHICH THE DSD IS RETRIEVED AT RANGE BIN I DEPENDING ON THE CONDITIONS OF THE HB 

METHOD  
 

KaPR 
KuPR 

Zm Z > 18 dBZ at range bin 
i 

m < 18 dBZ at range bin i 
but some Zm

Z
’s are larger 

than 18dBZ above range 
bin i. 

m

 

 < 18 dBZ at range bin i 
and above 

Zm DFR  > 18 dBZ at range 
bin i 

k/Ze k/Z at KuPR e

Z

 at KuPR 

m < 18 dBZ at range 
bin i, but some Zm

k/Z
’s are 

larger than 18 dBZ 
above range bin i 

e DFR  at KaPR k/Ze

Z

 at KuPR 

m

 

 < 18 dBZ at range 
bin i and above 

k/Ze k/Z at KaPR e None  at KaPR 
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Figure Captions 

Fig. 1 Schematic figure of footprints observed by DPR. Blue pixels are type (A), red pixels are 

type (B), and purple pixels are type (C). 

Fig. 2 Schematic figure of a DPR measurement of precipitation assumed in the synthetic dataset. 

Fig. 3 The definition of nodes A to D for profile with a bright band and for profile without bright 

bands. In the former case, node A is defined by referring air temperature. In the latter case, 

nodes B and C are not defined. 

Fig. 4 k/Ze at 13.8 GHz as a function of Dm

Fig. 5 Framework of the HB-DFR algorithm. 

 at nodes A, B, C, and D (the nodes are defined in 

Table I). 

Fig. 6  DFR as a function of Dm

Fig. 7 Evaluation of precipitation rates estimated by the HB-DFR algorithm in the IDL. Colored 

lines indicate the average of estimates for each category of TOL. The solid black line 

indicates the average of estimates for all pixels. Gray shading shows a two-dimensional 

histogram of truths and estimates for all pixels, whereas the darker color is used for higher 

populations. 

 at nodes A, B, C, and D. 

Fig. 8 Evaluation of some precipitation-related variables estimated by the HB-DFR algorithm in 

the IDL: (a) KuPR PIA, (b) KaPR PIA, (c) Dm

Fig. 9 The same as Fig. 7, but for the STD. 

 at the lowest range bin, and (d) KuPR 

k-adjustment factor at the lowest range bin. 

Fig. 10 Evaluation of some precipitation related variables estimated by the HB-DFR algorithm in 

the STD: (a) KuPR PIA, (b) KaPR PIA, (c) Dm at the lowest range bin, and (d) KuPR 

k-adjustment factor at the lowest range bin (estimates after the 99th iteration and those 

after the 100th iteration are shown, but are mostly overlapped). 



> SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING < 
 

27 

Fig. 11 Contours of DSD-related variables on the (Dm, dB<Zf>δ) plane: (a) dBNw and 

precipitation rate, (b) dB<Zf>u and dB<Zf>a

Fig. 12 Evaluation of precipitation rates estimated by the HB-DFR algorithm for pixels only with 

type-1 and type-2 range bins: (a) in the IDL and (b) in the STD. 

, (c) KuPR and KaPR k-adjustment factors for 

stratiform precipitation, and (d) KuPR and KaPR k-adjustment factors for convective 

precipitation. The DSD type categorizations are shown by background colors. 

Fig. 13 Averaged vertical profiles in the STD: (a) to (c) are for profiles with a bright band, and (d) 

to (f) are for profiles without bright bands. KuPR Zm (truths) and Ze (truths and estimates) 

are shown in (a) and (d), KaPR Zm (truths) and Ze

Fig. 14 The framework of single-frequency algorithms as special cases of the HB-DFR 

algorithm; (a) KuPR algorithm and (b) KaPR algorithm. 

 (truths and estimates) are shown in (b) 

and (e), and precipitation rates (truths and estimates) are shown in (c) and (f). 

Fig. 15 The same as Fig. 7, but for the MDL. 

Fig. 16 The same as Fig. 13, but for the MDL. 
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Fig. 1 Schematic figure of footprints observed by DPR. Blue pixels are type (A), red pixels are type (B), 

and purple pixels are type (C). 
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Fig. 2 Schematic figure of a DPR measurement of precipitation assumed in the synthetic dataset. 



> SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING < 
 

30 

 
 
Fig. 3 The definition of nodes A to D for profile with a bright band and for profile without bright 

bands. In the former case, node A is defined by referring air temperature. In the latter case, 

nodes B and C are not defined. 
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Fig. 4 k/Ze at 13.8 GHz as a function of Dm at nodes A, B, C, and D (the nodes are defined in Table I). 
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Fig. 5 Framework of the HB-DFR algorithm. 
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Fig. 6 DFR as a function of Dm at nodes A, B, C, and D. 
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Fig. 7 Evaluation of precipitation rates estimated by the HB-DFR algorithm in the IDL. Colored lines 

indicate the average of estimates for each category of TOL. The solid black line indicates the 

average of estimates for all pixels. Gray shading shows a two-dimensional histogram of truths and 

estimates for all pixels, whereas the darker color is used for higher populations. 
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Fig. 8 Evaluation of some precipitation-related variables estimated by the HB-DFR algorithm in the IDL: 

(a) KuPR PIA, (b) KaPR PIA, (c) Dm at the lowest range bin, and (d) KuPR k-adjustment factor at 

the lowest range bin. 
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Fig. 9 The same as Fig. 7, but for the STD. 
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Fig. 10 Evaluation of some precipitation related variables estimated by the HB-DFR algorithm in the STD: 

(a) KuPR PIA, (b) KaPR PIA, (c) Dm at the lowest range bin, and (d) KuPR k-adjustment factor at 

the lowest range bin (estimates after the 99th iteration and those after the 100th iteration are shown, 

but are mostly overlapped). 
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Fig. 11 Contours of DSD-related variables on the (Dm, dB<Zf>δ) plane: (a) dBNw and precipitation rate, (b) 

dB<Zf>u and dB<Zf>a, (c) KuPR and KaPR k-adjustment factors for stratiform precipitation, and 

(d) KuPR and KaPR k-adjustment factors for convective precipitation. The DSD type 

categorizations are shown by background colors. 
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Fig. 12 Evaluation of precipitation rates estimated by the HB-DFR algorithm for pixels only with type-1 

and type-2 range bins: (a) in the IDL and (b) in the STD. 
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Fig. 13 Averaged vertical profiles in the STD: (a) to (c) are for profiles with a bright band, and (d) to (f) are 

for profiles without bright bands. KuPR Zm (truths) and Ze (truths and estimates) are shown in (a) 

and (d), KaPR Zm (truths) and Ze (truths and estimates) are shown in (b) and (e), and precipitation 

rates (truths and estimates) are shown in (c) and (f). 
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Fig. 14 The framework of single-frequency algorithms as special cases of the HB-DFR 

algorithm; (a) KuPR algorithm and (b) KaPR algorithm. 
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Fig. 15 The same as Fig. 7, but for the MDL. 
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Fig. 16 The same as Fig. 13, but for the MDL. 
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