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Abstract

Inductively coupled plasma (ICP) assisted DC sputter-deposition was used for the deposition of
Al-doped ZnO (AZO or ZnO:Al) thin films. With increasing ICP RF power, film properties including
deposition rate, crystallinity, transparency and resistivity were improved. To understand the
plasma-surface interaction, several plasma diagnostics were performed. Heat fluxes to the substrate were
measured by thermal probes, number densities of sputtered metallic atom species were measured by
absorption spectroscopy using hollow cathode lamps (HCL) and light emitting diodes (LEDs), and neutral
gas temperatures were measured by external cavity diode laser (ECDL) absorption spectroscopy. As a
result, it was revealed that the high density ICP heated the substrate through a high heat flux to the
substrate, resulting in a high quality film deposition without the need for intentional substrate heating.
The heat flux to the substrate was predominantly contributed by the plasma charged species, not by the
neutral Ar atoms which were also significantly heated in the ICP. The substrate position where the highest
quality films were obtained was found to coincide with the position where the substrate heat flux took the

maximum value.



1. Introduction

Transparent conductive oxide (TCO) thin films with high transparency in the visible and near infrared
spectral region and low resistivity [1,2] have been widely used as transparent conducting electrodes for
various optoelectronic devices such as solar cells, flat panel displays, etc. Some TCO materials such as
Sn0, and In,O3 have already been put to practical use in industry. In particular, Sn-doped In,03 (ITO) has
been widely used so far due to its high transparency in the visible region, high chemical stability and low
resistivity. Metal-doped ZnO which first appeared around 1980 has recently received attention as one of
the alternatives to the ITO. Doped ZnO thin films with In (1ZO), Ga (GZO) and/or Al(AZO) have high
carrier densities of 10°~10%cm™ and low electric resistivity of 10%~10" Qcm. The origin of
conductivity, nonstoichiometry and coloration for TCOs has recently been gradually understood [3-5]. We
focus here AZO thin films, since the AZO has advantages over ITO and other doped ZnO in environment
resistance and resource cost. To actually replace the ITO with the AZO, however, reproducible and

highly-reliable fabrication processes of good quality polycrystalline AZO thin films have to be developed.

The polycrystalline AZO films have been prepared by a variety of techniques such as reactive and
nonreactive magnetron sputtering [6], high density plasma assisted (or superimposed) magnetron sputtering
[7-12], chemical vapor deposition [13], pulsed-laser deposition [14], evaporation [15], spray-pyrolysis [16],
Sol-gel preparation [17] and electrochemical deposition [18]. Among them, magnetron sputtering is one of
the dominant deposition techniques for the deposition of good quality, large area coating with relatively

low substrate temperature [6].

High density inductively coupled plasma (ICP) assisted magnetron sputtering [19-23] is also a
promising technique because it requires no intentional substrate heating due to high plasma density. The
advantages of ICP-assisted sputtering are summarized as follows: 1) the target is sputtered with low target

voltage and high target current, 2) the usage efficiency of the target is significantly improved due to the



expansion of erosion area, 3) ionization and excitation of the sputtered particles are enhanced in the ICP
and the enhanced ion fluxes to the substrate promote the crystallinity of thin films without intentional
substrate heating, 4) lateral homogeneity of the deposited film is greatly improved, and 5) abnormal
discharge (arcing) [24,25] is drastically suppressed . However, previous research showed the lowest
resistivity of AZO films prepared by the ICP assisted sputtering is limited around 10 Qcm [9-12]. To
understand the ICP assisted sputter-deposition mechanism and to improve the AZO film quality, we have

investigated AZO film deposition process by using ICP assisted DC magnetron sputtering [26-30].

This paper summarizes the experimental results on the basic discharge characteristics, heat flux to the
substrate, sputtered atom densities and the neutral gas temperatures in the bulk plasma, and the film
properties (deposition rate, resistivity, transparency, crystallinity, and elemental ratio) of prepared AZO
films in the ICP assisted sputter-deposition process. The effect of ICP superimposing on the bulk plasma

and the film properties is discussed.

2. Experimental Setup and Procedure of ICP assisted Magnetron Sputtering

Figure 1 shows the experimental setup for the ICP sputter-deposition of Al doped ZnO thin films
[26-30]. A 3 inch DC planar magnetron, an Ar gas supply system and a pumping system (turbo molecular
pump and rotary pump combination) were attached to the vacuum chamber (300 mm in diameter and
300mm in height). After the base pressure of around 10° Torr was attained, Ar was introduced by a mass
flow controller. Then, the working pressure was set at 4 Pa by tuning the conductance of the main valve. A
disk target of ZnO: Al,O; (2 wt%) of 60 mm diameter and 6mm thick was used as a target, and a glass
substrate was set on an earthed substrate holder with a gap length of 80mm. Between the target and the
substrate, a single turn coil antenna of 100 mm diameter was installed and used for producing 13.56 MHz
ICP. The antenna was covered with insulator and water-cooled. The distance from the target to the RF coil

(T-C distance) and the distance from the RF coil to the substrate (C-S distance) were both 40 mm. The



magnetron plasma was generated by applying negative DC voltage to the target electrode, and the ICP was
generated by applying 13.56 MHz RF power to the coil antenna through a matching circuit. After the thin
film deposition, the substrate was taken out from the vacuum chamber and cut to several pieces.
Characteristic of each thin film (film thickness, resistivity, transmission, crystallinity, and elemental ratio)

and their lateral distribution on the substrate were evaluated.

Caollnq
H Water
RF Source
9 Matchlng j \J
il Box Optlca1
Il Planar Chopper
Magnetrog/ ~{ . Prism Lens w7
Coatinge_ y \ 7 i ;:s‘_{{ {
Water™-___= = /l 04
h \ .-~} <’  Hollow Cathode Lamg
;‘ —— Substrate
(
Power 5.
Supply I~
ax/@) — <™ ﬂ
Oscilloscop

{ E 7 PMT ' /]
Fig. 1 Experimental Setup for ICP assisted DC magnetron sputter-deposition
and for hollow cathode absorption measurement.

The film thickness was measured by a stylus-profile meter (Mitsutoyo, SV-400). The electric
conductivity was measured by a four point probe and the film resistivity was evaluated by multiplying the
experimental surface resistance by a geometrical correction factor determined by the film thickness,
substrate shape and size and distance between the probe tips. The optical transmission was measured by a
spectral photometer consisting of a halogen lamp and an optical fiber-spectrometer (Ocean Optics,
HR4000CG). In this work, we evaluated the optical transmittance of AZO films by using “the overall
transmittance” that was averaged over visible wavelength range (380-780 nm) and further averaged over
lateral spatial distribution. However, since the overall transmittance mentioned above depends on the film
thickness, we judged the optical property utilizing the absorption coefficient « (absorbance per unit

thickness) by « =In(L/T)/d, where T is the overall averaged transmittance, d is the film thickness. For



example, let d =300 nm and T = 90 %; it gives & =0.4 um™. The crystallinity of thin films was investigated
by X-ray diffraction (RINGAKU, RINT2000). The elemental ratio in the film was measured by X-ray
photoemission spectroscopy (SHIMADZU-KRATOS, AXIS-HS). Details of the plasma diagnostics will be

explained in the section 4.

3. ICP Assisted Sputter-Deposition of Aluminum Doped Zinc Oxide Thin Films
3.1. Influence of Distance between Target, ICP Coil, and Substrate on Film Properties

First, the optimum geometry conditions concerning (a) target voltage, (b) target current, (c) deposition
rate, (d) resistivity, and (e) transmittance were investigated by varying the T-C distance from 10 to 50 mm
and the C-S distance from 30 to 70 mm, respectively. Figure 2 shows the results of the investigation for
the condition of 4 Pa Ar discharges with a DC target power of 40 W and ICP-RF power of 200 W. As can
be seen from (a) and (b) in Fig.2, the target voltage decreases and the target current increases with
increasing T-C distance; i.e., the impedance of the discharge increases with increasing the gap length
between the target and the ICP coil. This is predominantly explained by the fact that the diffusion loss of
charged particles in the plasma is enhanced by decreasing the T-C distance because the ground shield of
the magnetron target works as a sink of plasma particles. The T-C distance dependence of the target
discharge impedance shown in Fig. 2 (a) and (b) does not hold for the larger T-C distances. For the larger
T-C distances, the target discharge impedance will decrease and get closer to that for the planar
magnetron discharge because the magnetron plasma is isolated from the ICP. The C-S distance
dependence of the target voltage and the target current is minimal compared with the T-C distance
dependence. From a view point of thin film deposition, low discharge impedance is favorable because of
low bombarding damage of the films. Thus, longer T-C and C-S are favorable. As can be seen from Fig.2
(c), however, the deposition rate decreases with increasing T-C and C-S distances, i.e., the deposition rate

and the discharge impedance have a “trade-off” relationship. In addition, we can see there is a trade-off



between the film resistivity and the transmittance. Thus, as a result of compromise between the trade-offs,
we determined the optimal values for both the T-C distance and the C-S distance to be 4 cm. We
confirmed that the AZO film with a resistivity of 2 x 10 Qcm and a transmittance of more than 80 % can

be obtained with good reproducibility under this condition at ICP-RF power of 200-300 W.
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Fig. 2 (a) Target voltage, (b) target current, (c) deposition rate, (d) resistivity, and (e) transmittance

against the target-ICP coil distance and the ICP-coil and Substrate distance.



3.2. Effect of ICP-RF Assist Power

Figure 3 shows the ICP RF power dependence of the target discharge voltage and the target discharge
current for the constant target input power at 45 W. The target discharge voltage decreases and the
discharge current increases with increasing ICP RF power. Therefore, the impedance for the sputtering
discharge decreases with the increase in ICP RF power. This is because the plasma density near the planar
magnetron target is increased by the presence of ICP, whose density almost increases linearly with the ICP
RF power. The decrease in the target discharge impedance under the ICP assisted sputtering is extremely
effective because the low voltage sputtering is directly connected to the reduction of film damage on the
substrate. Moreover, the low voltage sputtering is very effective for suppressing arcing. ICP assisted
sputtering is effective for the improvement in the usage efficiency of the target and the uniformity of thin

film characteristics because the sputtering area expands to the whole target surface.
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Fig. 3 ICP RF power dependence of discharge voltage (circle) and discharge

current (triangle) during ICP assist magnetron sputtering at the working

pressure of 4 Pa and at a constant target power of 45 W.

The change in the plasma emission intensity with and without ICP superimposing was investigated. It
was found that predominant optical emission lines are only due to the electron impact excitation of

sputtered Zn atoms within the wavelength range from 200 to 400 nm without ICP assist. In the case of ICP



assisted magnetron discharges, optical emission intensities for the Zn | lines are significantly increased,
and additional optical emission lines from much higher excited states of Zn atoms and from excited states
of Al atoms were identified. Thus, the ICP assisted sputter-deposition with promoted excitation and

ionization is effective for enhancing the crystallinity of deposited AZO films.

Figure 4 shows the ICP RF power dependence of the spatial distribution of deposition rate. It is found
that the deposition rate increases by 20-30 % with increasing ICP RF power from 0 to 300 W. This
tendency can be explained by the increased sputtered particle flux due to self sputtering effect. With
increasing ICP RF power, ionized degree of sputtered Al and Zn atoms is increased and the Al and Zn ions
bombard the target as well as the substrate, resulting in self sputtering that enhances the sputtered flux.
However, since the increase in the deposition rate with increasing ICP RF power is much smaller than that
of sputtered Zn atom density that will be described in the section 4.2, we can consider that a re-evaporation

of Zn atoms from the substrate likely occurred during the deposition process.
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Fig. 4 ICP RF power dependence of deposition rate of AZO thin films.

Figure 5 shows the ICP RF power dependence of the spatial distribution of film resistivity. The
resistivity is very high about 2x10™ Qcm for the planar magnetron discharge without ICP at the pressure 4

Pa. However, the resistivity is drastically decreased and the uniformity is improved with increasing ICP RF



power. It is well known that for DC magnetron sputtering operating at below 1 Pa the resistivity of the film
is comparatively low at both the center and peripheries, while the resistivity is high at the substrate
positions facing the target erosion However, in the ICP assisted sputtering with operating pressures at
around 4 Pa, the spatial profile of resistivity is more uniform. The drastic decrease in the resistivity due to
the ICP assist is explained as follows. When the ICP RF power increases, the film damage decreases
because the target voltage decreases, and the energies of charged and neutral species incident to the
substrate decrease. In addition to this effect, total ion flux to the substrate with moderate energies of about
10-20 electron volts increases due to the increase in plasma density with increasing ICP RF power. The
increased energy flux to the substrate heats the substrate surface up to a temperature around 200 °C or more
and the film crystallinity is improved. In this research, conductive AZO films with resistivity of 2x107
Qcm were obtained with good spatial uniformity. Hall measurement result showed the carrier density and
carrier mobility were typically 5x10% cm™ and 6-7 cm?/(Vs) for the AZO films deposited at ICP RF
power of 300 W. To decrease more the resistivity of AZO films deposited in this scheme, further increase

in the mobility is needed.
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Assisting ICP RF power is effective for increasing film transparency. Figure 6 shows the ICP RF power
dependence of the absorption coefficient of deposited AZO films. The vertical axis of Fig. 6 is the
averaged absorption coefficient o as explained in the Section 2. We judged the films with absorption
coefficients less than 0.5 um™ have excellent optical transparency. Though the optical transmittance of
deposited films is satisfactory for any ICP RF power, the transparency is much improved for ICP RF

power more than 100 W as is shown in Fig. 6.
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Fig. 6 ICP RF power dependence of averaged absorption coefficient of AZO thin films.

Figure 7 shows the change in the X-ray diffraction pattern of AZO films with the same thickness of
about 300 nm obtained at 5.33 Pa for the ICP RF power of 0, 100, 200, and 300W. The strong (002)
diffraction peak indicates that the films are highly texturized with the c-axis perpendicular to the substrate
surface, which is well known structure for good quality polycrystalline ZnO [3]. The intensity and the
width of this peak indicate the fraction of crystallization and the grain size. From Fig.7, we find that the
intensity of (002) peak is enhanced with increasing ICP RF power, but the grain size depends weakly on
the ICP RF power. The crystallinity of film is promoted with increasing ICP RF power, since the sputtered
particles are more excited and ionized and ion fluxes to the substrate are increased in the ICP, resulting in
the elevation of substrate surface temperature. However, the number of initial nucleation is already

determined at the early deposition stage, resulting in a weak ICP RF power dependence of the grain size. It



suggests that the control of initial nucleation density is important to get large grain sizes that will be

effective for increasing carrier mobility.
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Fig. 7 ICP-RF power dependence of X-ray diffraction pattern.

Figure 8 shows the ICP RF power dependence of the elemental ratio of Al and resistivity in the AZO
films. The elemental ratio of Al was obtained from the XPS analysis of Al 2p signal. With increasing ICP
RF power, the elemental ratio of Al in the film increases and the resistivity decreases. Since the ZnO:
Al,O3 (2 Wt%) target contained 1.56 at % Al, it is found that the fraction of Al in the deposited AZO films
changed depending on the ICP RF power. The ICP RF power dependence of the elemental ratio of Al in
the film is in agreement with the ICP RF power dependence of the relative gas phase density of Al to Zn
atoms. This will be shown in the later section 4.2, which is understood by a large evaporation pressure of
Zn. The carrier density of AZO depends on the number densities of donor Al ions and O vacancies, while
the carrier mobility depends on the crystallinity of thin films. Thus, it is considered that a rapid decrease in
the resistivity is caused not only by the increase in carrier density due to the increase in content of Al atom,
but also by the increases in the number density of O vacancies and carrier mobility due to the promotion of
crystallinity of thin film as shown in Fig. 8. We have also investigated on an AZO target containing 4 wt%

Al,O; (or 3.1 at% Al), but the resistivity of AZO (4 wt% Al,O5) was several times larger than that of AZO



(2 wt% Al,O,) for the same ICP RF power range. It is reported that the excess Al fraction in the film

causes a decrease in mobility possibly due to the increase in ionized impurity scattering [3].
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Fig. 8 ICP RF power dependence of elemental ratio of Al in the film and resistivity.

3.3. Effect of Hydrogen Addition

In conventional RF sputtering, it is well known that the electric conductivity of the AZO film is
increased when hydrogen gas is added to Ar [31]. Thus, we have investigated the effect of hydrogen
addition on the electric conductivity, optical transmittance, and deposition rate of the AZO thin films
deposited by ICP assisted sputter-deposition. A small amount of hydrogen was mixed with Ar and the total
gas pressure was fixed at 4 Pa. The amount of hydrogen addition was changed by setting the preset partial
pressure of hydrogen before each deposition. The fraction of hydrogen defined by Cy (= [Ho])/([Ar]+[H.])
was varied in steps 0, 0.25, 0.5 and 1 %. The ultimate pressure in the chamber was 3x10° Torr or less. The
flow rate of Ar was adjusted to 50sccm. The sputtering power (target power) and the ICP RF power were

fixed at 44 W and 200 W, respectively. Deposition time was 30 minutes for all samples.

Figures 9 and 10 show the change in resistivity, transmittance and deposition rate of ZnO films against
the hydrogen mixture fraction. From Fig.9, it is found that the film conductivity is slightly improved; the
minimum resistivity of 1.8x10 °Q cm was obtained at C;=0.25 %. Excess addition of hydrogen over

than 0.5 %, however, decreased the film conductivity. The decrease in film resistivity at C,=0.25 % is



explained by the increase in the carrier density, i.e., free electron density due to the increased production
of oxygen vacancy. On the other hand, the increase in film resistivity at C4=0.5 and 1.0 % is explained by
the decrease in the carrier mobility due to the degraded crystallinity owing to the excess subtraction of
oxygen atoms by the hydrogen atoms. The dependence of the resistivity on hydrogen mixture ratio
directly correlates with those of the transmittance and the deposition rate shown in Fig. 9. A drastic
decrease in the optical transmittance and the deposition rate at C;=1.0 % is considered to be due to the

influence of the excess hydrogen atom density in the AZO thin films as well as in the plasma.
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Fig. 9 Hydrogen mixture ratio dependence of resistivity of AZO films .

It is reported that the lowest resistivity of 2.8x10™ Q cm, which is a half or a thirds of the value
without hydrogen addition, was obtained when the partial pressure ratio of hydrogen is Cy= 10 % [31].
In Ref. 31, a conventional 4 inch RF magnetron was used and the optimum working pressure and RF
power were 0.4 Pa and 100 W. However, our experimental condition is very different from that of Ref. 31
in that the sputter-deposition was done at much higher pressure around 4 Pa, with lower sputtering power
and with additional ICP RF power of 200W. In the ICP, hydrogen molecules are efficiently dissociated
and the flux ratio of atomic hydrogen atoms to the sputter-deposited species would be much higher
compared with the CCP case of Ref. 31. This is the reason why the effect of hydrogen addition appeared

at much smaller amount of hydrogen addition than that reported in Ref. 31.
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4. Diagnostics of ICP Assisted Sputter-Deposition Processes

As mentioned in the Section 3. 2, crystallization with high orientation along (002) is promoted without
intentional substrate heating in the ICP assisted sputter-deposition with increasing ICP RF power. To
understand the sputter-deposition mechanism and to improve the film quality further, it is important to
reveal the reactions in the gas phase and on the surface. Thus, we have developed several plasma
diagnostic systems and applied them as follows: (4.1) heat flux measurement by home-made thermal
probes (TPs), (4.2) density measurement of sputtered Al and Zn atoms by absorption spectroscopy with
hollow cathode lamps (HCLs) and LEDs, and (4.3) gas temperature measurement by absorption
spectroscopy with a tunable external cavity diode laser (ECDL). These are explained below.

4.1. Measurement of Spatial Distribution of Heat Flux to the Substrate

Energy flux to a substrate was measured by many researchers using variety of thermal probes (TPs) in the
past in the RF plasma [32-37], RF magnetron plasma [38, 39], and DC grow discharge plasma [40].
However, no measurement of the energy flux to the substrate during the ICP assisted sputtering has been
done to our knowledge. Thus, we have made several TPs with the help of many references [32-40] to
grasp the energy flux onto a substrate during the ICP assisted sputtering.

The energy flux (energy per unit area per second) J to a substrate can be measured with a TP via two



different ways: steady state operation or pulse operation depending on the “plasma on” time duration. In
the steady state operation, plasma is turned on much longer than the thermal relaxation time of the TP,
and the temperature gradient (AT/ Ax) on the TP is measured after the TP is thermally equilibrated. Then,
the equilibrium J is simply evaluated by the equation

AT

J=-k— , (1)

AX
where k[W/(m-K)] is thermal conductivity. Thus, absolute value of J is measured, even though it takes a
long time. Conversely, in the case of the pulse operation, plasma is turned on in a short period of time
(shorter than the thermal time constant) and then turned off. From a transient change of the probe tip
temperature, J is evaluated by the following equation [32-35]:

‘]:EKdTS] _(dTSJ } | @
S dt ). dt ) .

where mc is the thermal capacity (m: mass of probe head, c: specific heat), S is the probe surface area, and

[(dT/dt),n-(dTs/dt)os] is the difference in temperature gradient at common substrate temperature T during
heating and cooling period.
4.1.1. Development of a thermal probe for absolute energy flux measurement [41-43]

Figure 11 shows a schematic of a TP made in this work. The TP is composed of a Cu plate (10 mm in
diameter, 0.1 mm in thickness) facing to the plasma, a ceramics rod (6 mm in diameter, 10 mm in length)
producing temperature gradient, an Al rod (6 mm in diameter, 350 mm in length) connected to the outer
heat sink, and outer tubes (Teflon and stainless steel tubes) for thermal and electric insulation, which
prevents the energy flux from coming in from the side of the TP. The Cu plate, ceramic rod and Al rod
were tightly bonded. The first thermocouple was attached to the ceramic rod at the distance of 6mm from
the joint plane between the ceramic and the Al rod, and the second thermocouple was attached on the Al
rod with a distance of 10mm from the joint plane. The other end of the Al rod was water-cooled outside
the vacuum vessel. The outer stainless steel tube for heat insulation was grounded to cut the electrical

coupling between the TP and plasmas. The greatest thermal gradient appears on the ceramic rod that has a



thermal conductivity of 1.6 W/(m-K). The length of the ceramics rod was determined by the tradeoff
between the requirements of a smaller thermal time constant of the ceramic rod and a larger temperature
difference at the both ends of the ceramic rod. The thermal time constant is expressed as follows:
L pc
r=CR=pCVE=TLZ , (3)

where C is thermal capacity, R is thermal resistance, p[kg/m®] is mass density, ¢ [J/(kg-K)] is specific
heat, k[W/(m-K)] is thermal conductivity, V [m*] is volume, S [m?] is cross section area, L [m] is length
of the TP body. The shorter the length of ceramic rod, the smaller the thermal time constant. The copper
plate of TP was biased by connecting a lead wire. As a result of investigation of the influence of film
deposition on probe surface, we confirmed that the measured value decreased 4 % by a film deposition
thickness of 100 nm. To clean the copper plate surface, the bias voltage of -100V was applied for fifteen
minutes before each experiment.
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Fig. 11 Schematic of a TP for the absolute heat flux measurement.

The TP was set 8 cm from the target surface in the axial direction, and 3 cm from the center axis of
magnetron. Figure 12 shows a temporal change of difference in temperature measured by the two
thermocouples on the TP for the ICP RF power 100 and 200 W when plasma on period was 60 s (pulse
operation) and 700 s (steady state operation). The data shown in Fig. 12 indicates that the difference in
temperature is mostly saturated with a time constant T of 160 s and the thermal equilibrium condition is
reached at the time after 3-4 t seconds. In the steady state operation, the energy flux was evaluated by eq.
(1), however it should be considered that the time interval between each measurement took about 1-2

hours because the heating time of 3-4 t and the cooling time of several tens of T were required. In the



pulse operation, the energy flux was estimated by eq. (2) by calibrating mc/S with the absolute value of
energy flux measured in the steady state operation. Thus, the time interval between each measurement

was reduced by one order of magnitude.
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Fig. 12 Temporal change in temperature difference obtained by a thermal probe

during plasma on and off period for ICP RF power of 100 and 200 W.

To evaluate the validity of the energy flux measurement in the pulse operation, we compared the
variation of the term [(dTy/dt)o,-(dTs/dt)ss] against common substrate temperature difference T.. As a
result, it was found that the term [(dT¢/dt)o,-(dTs/dt)e] in €q, (2) was almost constant within the error of
+5% when the T was taken in the range of 30~100% of the maximum temperature difference. Thus, the
mc/S of the TP was correctly calibrated by dividing the absolute energy flux measured at the same
sampling point in the steady state operation by the constant value of [(dTy/dt)o,-(dT/dt)es].

Figure 13 shows ICP RF power dependence of energy flux for different target (sputtering) power of 0
W (only ICP discharge) and 40 W (ICP assisted magnetron discharge). The energy flux to the TP for the
40 W planar magnetron discharge (ICP RF power 0 W) is only 70 W/m?. The energy flux increases with
increasing ICP RF power, and it reaches 3000 W/m? for the ICP RF power 200 W and target power 40W.
The contribution of the target (sputtering) power to the total heat flux to the substrate is less than 5 %; i.e.,

the energy flux in the ICP assisted sputtering is predominantly determined by the ICP RF power.
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Fig. 13 ICP RF power dependence of energy flux (ICP assisted sputtering).

The change in energy flux against substrate bias was investigated experimentally and theoretically. The
experimental values for the ICP RF power 200W are plotted with white circles in Fig. 14. According to
Kersten et al. [35], the total energy influx to a substrate J is the sum of the fluxes due to electrons (J),
ions (J;), neutrals (J,), and photons (Jp). In our case, the contributions due to the neutrals and photons
were ignored because of high density ICP at 4 Pa. Thus, the total energy influx to a substrate J was simply
assumed as the sum of J; due to the kinetic energy of positive ions, J. due to the kinetic energy of
electrons, and J.. due to the recombination of positive ions and electrons at the substrate surface as
shown in equation (4). Here, the contribution of hot neutral species is considered to be negligible. Each
contribution is expressed in eqns. (5), (6) and (7).

J=J+J.+J,. . (4)

. . kT
Ji=E = jie(V, —V,)=n, me exp(-0.5)e, (V, —V;)» ®)

J.=n, KT, exp — BV 2kT, (6)
2z m, KT,

‘]rec = jiErec = ji(Eionization _¢) ) (7)

Here, n.is the electron density, kT, the electron temperature, m; the mass of ion, m, the mass of electron,
go the base of natural logarithm, j; the particle flux of ions, V the plasma space potential, V; the substrate

potential, Vyias (= Vpi- Vs ) the potential fall from plasma to the substrate that also equals the ion kinetic



energy Ei, Erec (FEionization - ¢ ) the recombination energy of a positive ion, Ejsnization the ionization energy
of Ar ions, and ¢ the work function of the substrate material.

Theoretical energy flux onto a substrate J was calculated for the pure ICP by using the experimental
data on ne, kT, and V. Electron temperature, electronic density, floating potential and plasma potential
were measured by a Langmuir probe respectively 2.5 eV, 2.58x10"" m?, 4.2 eV and 16.8 V for the
condition of ICP RF power 200 W at 4 Pa. Thus, we obtained J by substituting the measured values and
the physical constants such as me, m;, E,.. (=15.7 eV for argon ion) into eqns. (5), (6), and (7). Thus, the
theoretical energy fluxes of J;, Je, Jiec @and the total J for 200 W ICP were calculated against Vy;,s, Which
are shown by colored four curves in Fig. 14. The experimental substrate bias dependence of the energy
flux shown by open circles is in good agreement with the calculated total J. The result indicates that J;, Je,
and J,.. dominantly contribute to the energy flux onto the substrate. It is noted that the heat flux has a

minimum of 2800 W/m? at a floating potential of 4 V.
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Fig. 14 Substrate bias dependence of calculated and measured energy fluxes.

4.1.2. Spatial distribution of heat flux to the substrate in ICP assisted sputter-deposition

To enable space resolved measurements of a directional energy flux in a short time, a new TP was
developed. The new TP had a compact and simple structure of a small sampling Cu plate directly soldered
to a small K type thermocouple wire with a stainless steel crank tube (6.35 mm diameter) behind it. The

lead wire of the thermocouple was covered with alumina tubes for the radial thermal insulation in the



crank tube, and connected to a digital multi-meter to monitor temperature. The TP with crank tube was
inserted from the substrate side, and the collecting electrode surface was directed to the target and ICP.
Spatial distributions of directional heat fluxes were measured with the TP by rotating and transferring the
crank tube. Figure 15 shows a time response of this TP during plasma on (ICP RF power 200W for 10 s)
and off then after. The decay curve is composed of fast and slow components. Although the slow decay

indicates that the thermal protection of the TP is imperfect, it doesn’t affect the determination of the heat

flux.
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Fig. 15 Temporal change in temperature obtained by a compact thermal probe during
plasma on (ICP RF power 200W for 10 s) and off.

The experimental results for the spatial profile of the directional heat flux in the ICP are shown in Fig.
16. Here, the target and ICP coil are located in the left at x=-5 and 0 cm. The Fig. 16 shows that the high
heat flux region is at distances 3-5 cm from the coil, which is the same as the empirically optimized
substrate positions to get high transparent and high conductive AZO films. Spatial distributions of plasma
parameters such as electron density, electron temperature, plasma and floating potentials were also
measured by a movable Langmuir probe. As a result, it was confirmed that the spatial profile of heat flux

is similar to that of ion saturation current, and agrees rather well with the calculated heat flux profile by

using these plasma parameters.
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Fig.16 Spatial distribution of the directional heat flux measured by the movable TP.

4.2. Measurement of Al and Zn Atom Density Using a Hollow Cathode Lamp and UV-LEDs

The behavior of sputtered particles in the gas phase was investigated via optical emission spectroscopy
and absorption spectroscopy [44]. The optical emission spectra from the excited species were monitored
by employing an optical fiber spectrometer (Ocean Optics, HR4000CG-UV-NIR). For the purpose of
estimating the sputtered neutral particle flux to the substrate, sputtered Al and Zn atom densities were
investigated by the absorption spectroscopy using two different absorption systems: one consisting of a
hollow cathode lamp (HCL)[45-49], monochromator and photomultiplier tube (HCL-M-PMT) and the
other of a light emitting diode (LED) [50,51], spectrometer, and a multichannel CCD detector
(LED-S-CCD).

4.2.1. Measurement of sputtered atom density with HCL-M-PMT system

Ground state densities of Al and Zn atoms sputtered from the AZO target were measured by the
absorption spectroscopy using HCL-M-PMT [47-49]. Optical emission from a HCL (Hamamatsu
Photonics, L233-30NQ (Zn) or L233-13NB (Al)) was passed through an optical chopper (NF, 5584A),

and guided to a monochromator (JASCO, CT25) through the ICP-assisted sputtering chamber by lens,



prism and optical fiber optics. The time modulated output signal from the PMT was monitored and
averaged for 1024 times on a digital oscilloscope. By comparing the difference in the modulated
amplitude of PMT output between plasma ON and OFF phases, absorbance was measured. The sputtered
atom density was obtained by comparing the experimental absorbance and the theoretical absorbance that
was calculated using assumed gas temperatures (400K) in light source and plasma reactor and assumed
optical path length (0.3m). The absorption measurements were done for Zn with 307.6 nm (4s®*So-4s4p
*P.%) and for Al with 396.15 nm (3s?3p 2P3,°-35°4s %Sy),), respectively. It is noted here that the Zn 307.6
nm line used in the experiment is a forbidden line. The use of absorption at the resonant line of Zn
(213.856 nm, 4s?*Sy-4s4p 'P;°) was impossible in this experiment due to too strong an absorption.

Fig. 17 shows the ICP RF power dependence of metal atom densities in gas phase. Both Zn and Al
atom densities increase with increasing ICP RF power, but there is a difference in the ICP RF power
dependence between Zn and Al atom densities. Al atom density linearly increases with increasing ICP RF
power, while Zn atom density increases 4 times with increasing ICP RF power from 0 to 100W, then
saturates for ICP RF power more than 100 W. The ICP RF power dependence of the ratio of Al to Zn
density in the gas phase correlates well with that of the elemental ratio in the AZO films. The measured
Al density is reliable, because the Al atom flux to the substrate was estimated 3~5< 10*3cm?s™ from the
measured Ar density and these values were very close to those calculated from the deposition rate of AZO.
Conversely, the measured Zn density was at least two orders of magnitude greater than the expected one;
i.e, the Zn atom flux of 2~8 X 10'" cm™s™ was deduced from the measured Zn density and the Zn atom
flux of ~10™ cm™s™ was estimated from the deposition rate. We have not yet identified the cause of this
behavior, but we believe that it is due to the large evaporation pressure of Zn, re-evaporation of ZnO due
to small formation energy compared to Al,O3 [52], blending of absorption by another species such as OH

with Zn absorption, or another unknown factor.
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the AZO target in ICP assisted sputtering.

4.2.2. Measurement of sputtered atom density with LED-S-CCD system [51]

Absorption measurement of Al atoms was also performed using a LED-S-CCD in a DC planar magnetron
discharge with Al target. An example of the result is shown in Fig.18, indicating clear absorption lines at
394.40nm and 396.15nm of Al. The experimental absorbance using LED-S-CCD was two orders of
magnitude smaller than that using HCL-M-PMT under the same conditions as expected from the
theoretical estimation, but absorption limit of 2 X 10 could be detected owing to the stable operation of
LED and CCD. Fig. 19 shows the discharge power dependence of sputtered Al atom density measured by
HCL-M-PMT and LED-S-CCD during magnetron sputtering. Both Al densities agreed well, indicating

the Al density was measured with high reliability.
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Fig. 18 Absorption spectrum of Al atom measured with LED-S-CCD

in a DC planar magnetron discharge.
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Fig.19 Discharge power dependence of sputtered Al atom density using
HCL-M-PMT and LED-S-CCD during magnetron sputtering at 2Pa.

4.3. Measurement of Gas Temperature Using an Extra Cavity Diode Laser Absorption
High resolution diode laser absorption spectroscopy is a powerful tool to diagnose particle density and
temperature in plasmas [44, 53]. With the progress in diode laser technology, inexpensive tunable single
mode diode lasers with external cavity which are also called as external cavity diode lasers (ECDLS)
[54-58] have recently been applied for the measurements of velocity distributions of In [59], He [60], Ar
[61], Al [62], and O [63] etc. To grasp the neutral Ar gas temperature in the ICP assisted sputtering, we
have measured the distribution functions of metastable Ar by using a home-made ECDL with Littrow
configuration. The ECDL was composed of a diode laser (Opnext HL6738MG), a grating (1800
grooves/mm) for rough tuning and a piezo element for fine tuning. The ECDL delivered a single mode
output power of ~5 mW at 696.735nm of the metastable Ar absorption transition (4s°[3/2],° — 4p[1/2],).
The wavelength was monitored by a 25 cm spectrometer and the spectral scanning was monitored by a
scanning Fabry Perot interferometer (THORLABS SA200-6A). The power of the diode laser beam was
attenuated below 10 W to avoid saturation. The spectral bandwidth of the laser was less than 25 MHz.
The laser beam path was set at a position of 3 from the target.

Space average gas temperature (Ta,) and metastable Ar density (Na™) were obtained by a curve fitting

of the experimental data with the theoretically calculated absorption line profile function taking into



account the saturation of absorption. It is noted that the temperature of metastable Ar (TA™) is the same as
that of the ground state Ar (T ;) because the translational motion is the same in both species. An example
of the experimental absorption line profile (obtained at a pressure of 10 mTorr, at a sputtering power of 40
W and ICP RF power of 300 W) is shown in Fig. 20 with a calculated fitting line profile, where T, and
Na™ were estimated to be 410K and 4.7 X 10" cm™ respectively. The Ta, was in proportion to ICP RF
power, and the the T, and Na™ were 320 K and 4.5 X 10° cm’® respectively for the 10 mTorr Ar ICP

without the magnetron discharge. The detection limit of Na™ was about 10° cm™.
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Fig.20 Absorption line profile of the 4s%[3/2],° — 4p°[1/2]; transition of Ar observed in ICP
assisted sputtering at ICP RF power of 300 W, magnetron power of 40 W, at 10 mTorr.

Figure 21 shows the ICP RF power dependence of Ar gas temperature measured by the homemade
ECDL using the 4s[3/2],° — 4p?[1/2]; transition of metastable Ar at a pressure of 30 mTorr with a
magnetron power of 0 W (closed triangle) and 40 W (closed circle). For the 30 mTorr magnetron
discharge with the AZO target at a sputtering power of 40 W, Ta, and Na™ were measured to be 440 K
and 4x10° cm™. With superimposing the ICP RF power from 0 to 300 W on the magnetron discharge, Tar
monotonically increased from 440 to 620 K with increasing ICP RF power as shown in Fig. 21; however,
Na™ increased from 4x10%m™ to 8x10%m for increasing ICP RF power from 0 to 100 W then
saturated for the further increase in ICP RF power. The increase in Ty, is due to the gas heating effect in

high density plasmas [64, 65]. ICP RF power dependence of T, for the sole ICP without magnetron



discharge is also shown in Fig. 21 for comparison. We find that T, is increased by 80 K with the mixing
of sputtered metal atoms. Since the T, and N ™ in the ICP assisted sputter-deposition were considerably
larger than those in a conventional planar magnetron discharge, the heat fluxes to the substrate due to
neutral Ar atoms in the ICP assisted sputter-deposition were estimated by taking into account thermal
accommodation of gases. As a result, the contribution of the ground state Ar atoms to the total heat flux to

the substrate was estimated about 10 %, and that of metastable Ar atoms less than 1 %.
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Fig.21 ICP RF power dependence of Ar gas temperature measured by the homemade
ECDL using the 4s%[3/2],° — 4p?[1/2] transition of metastable Ar at a pressure of 30

mTorr with the magnetron power of 0 W (closed triangle) and 40 W (closed circle).

As described above, our understanding of the ICP assisted sputter-deposition has been gradually
increasing. For the moment, however, the film resistivity of our AZO films deposited with ICP assisted
sputter-deposition is several times higher than those obtained with other deposition techniques. However,
novel ideas to improve film quality such as the solid-phase crystallization from amorphous phase [66]
have been reported. By employing and combining these new ideas with ICP assisted sputtering, we expect
to further improve the film conductivity of AZO, as the ionized sputter-deposition has not been fully

cultivated.



5. Summary
Inductively coupled plasma (ICP) assisted DC sputter-deposition was used for the deposition of Al-doped
ZnO (AZO or ZnO:Al) thin films. With increasing ICP RF power, film properties such as deposition rate,
crystallinity, transparency and resistivity were improved. To understand the plasma-surface interaction,
several electrical and optical plasma diagnostics were carried out. It was revealed that the high density
ICP heated the substrate through a high heat flux to the substrate, resulting in a high quality film
deposition without the need for intentional substrate heating. The heat flux to the substrate was
predominantly contributed by the plasma ions and electrons, not by the neutral Ar atoms which were also
significantly heated up in the ICP. The substrate position where the highest quality films were obtained
was found to coincide with the position where the substrate heat flux took the maximum of about 3000
wm?,
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