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Abstract 

An appropriate trigger for BCR-ABL1 mutation analysis has not yet been established in unselected 

cohorts of chronic-phase chronic myelogenous leukemia patients. We examined 92 patients after 12 

months of tyrosine kinase inhibitor (TKI) treatment in Nagasaki Prefecture, Japan. Univariate analysis 

revealed that significant factors associated with not attaining a major molecular response (MMR) were 

the presence of the minor BCR-ABL1 fusion gene, a low daily dose of TKI, and the emergence of 

BCR-ABL1 kinase domain mutations conferring resistance to imatinib. Factors associated with the loss of 



sustained MMR were a low daily dose of TKI and the emergence of alternatively spliced BCR-ABL1 

mRNA with a 35-nucleotide insertion. Taken together, our results suggest that the search for BCR-ABL1 

mutations should be initiated if patients have not achieved MMR following 12 months of TKI treatment. 

 

Introduction 

 The introduction of BCR-ABL1 tyrosine kinase inhibitors (TKIs) has revolutionized the management 

of patients with chronic myelogenous leukemia (CML) [1-5]. A complete cytogenetic response (CCyR) 

rate of 60 to 67% and major molecular response (MMR) rate of 22 to 39% at 12 months have been 

reported for imatinib treatment [1-6]. A 6-year update of the IRIS study was recently presented, which 

revealed an event-free survival of 86% and overall survival of 88% [7]. Our previous cohort study with 

various patients (i.e. a group of patients in a practical setting) revealed that imatinib treatment could 

achieve excellent outcomes for CML patients, at both clinical and molecular levels [6].  

 The quantification of residual BCR-ABL1 transcripts by quantitative reverse transcription-PCR 

(QRT-PCR) is a sensitive tool to monitor minimal residual disease. Molecular response is assessed 

according to the International Scale as the ratio of BCR-ABL1 transcripts to ABL1 transcripts, and is 

expressed and reported as BCR-ABL1% on a log scale. A BCR-ABL1 expression of <0.1% corresponds 

to major molecular response (MMR). The IRIS study showed that achieving MMR within 12 months of 

imatinib therapy was associated with the best progression-free survival. Palandri F, et al. previously 



reported that the prognostic value of achieving MMR was greater if the response was stable [8]. 

An insufficient response to imatinib in CML has been attributed to several causes, of which point 

mutations in the BCR-ABL1 kinase domain (BCR-ABL1 KD mutations) appear to be the most common, 

occurring in 30% to 90% of patients who develop resistance to imatinib [9-15]. BCR-ABL1 KD 

mutations have previously been reported in 21 different amino acids, and were shown to confer differing 

levels of resistance to imatinib, which was confirmed by differences in the cellular 50% inhibitory 

concentration (IC50) of TKIs [16]. Several other mechanisms of resistance have been identified, including 

low plasma concentrations of TKIs, the overexpression of BCR-ABL1 transcripts, drug efflux/influx, and 

alternative signaling pathway activation [17-21]. 

 Second generation TKIs (2nd-TKIs), such as nilotinib and dasatinib, became widely available in Japan 

in 2009 [3, 4, 22, 23]. Responses to 2nd-TKIs were found to be rapid and durable, with a higher 

percentage of patients with chronic-phase CML (CML-CP) surviving at 12 months. Second-TKIs are 

generally well tolerated, with occurrence of grade 3/4 drug-related adverse events being less and 

hematological adverse event profiles being more favorable than those of imatinib. Second-TKIs also 

exhibit increased inhibitory potency against BCR-ABL1 kinase and efficacy in the treatment of patients 

with many BCR-ABL1 KD mutations that develop from imatinib use [16, 24]; the T315I mutation 

confers resistance to both imatinib and 2nd-TKIs. Although excellent results have been reported with 

2nd-TKIs, most of these were from prospective clinical trials, indicating that the data is from a selected 



group of patients. Whether the administration of 2nd-TKIs has improved the outcome of insufficient 

responders to imatinib in a practical setting remains unclear, and profiles related to insufficient responses 

need to be reevaluated. 

 To address these issues, we prospectively measured residual BCR-ABL1 transcripts and analyzed the 

BCR-ABL1 KD mutation status in 115 CML-CP patients who registered for the mutation analysis study 

between March 2010 and March 2012. This study demonstrated the ‘smaller than expected’ impact of 

BCR-ABL1 KD mutations, and also highlighted problems associated with a reduced dosage of 2nd-TKIs. 

 

Patients and Methods 

Patients and Eligibility Criteria of the Mutation Analysis Study 

 A total of 160 patients with CML-CP were confirmed, and 149 patients were either treated or had been 

treated with TKI at 11 hospitals in Nagasaki Prefecture, Japan between March 2010 and March 2012. 

CML-CP patients who had received TKI during this period and those who had a history of receiving TKI 

were eligible for this mutational analysis study. Of the 149 CML-CP patients, informed consent was 

obtained from 115 patients for the measurement of BCR-ABL1 fusion transcripts and analysis of 

BCR-ABL1 KD mutations (molecular study) (Figure 1). The results of these analyses were notified to 

each clinician and the selection of TKIs was left to their judgment. This study was approved by the 

Ethical Committees of each participating hospital. 



 

RNA Extraction, Complementary DNA Synthesis 

 Total leukocytes in the bone marrow and peripheral blood samples were isolated by centrifugation 

following red blood cell lysis, and total RNA was extracted using TRIzol reagent and the PureLink RNA 

Micro kit (Invitrogen, CA, USA). cDNA was synthesized using random hexamer primers and Super 

Script III Reverse Transcriptase (Invitrogen). 

 

Quantitative Reverse Transcription-Polymerase Chain Reaction Conditions 

 QRT-PCR for BCR-ABL1 transcripts levels was performed in 411 samples using LightCycler (Roche 

Diagnostics, Mannheim, Germany) and LightCycler TaqMan Master (Roche Diagnostics). Primers and 

TaqMan probe sequences published in the EAC network protocol were used for QRT-PCR [25]. When 

major BCR-ABL1 (ie. b2a2 and b3a2) was not detected, the presence of minor BCR-ABL1 (ie. e1a2) was 

examined. The amount of the fusion gene in the original sample was calculated by means of a standard 

curve (created with the BCR-ABL1 fusion gene or ABL1 gene cloned in plasmids) and expressed as the 

BCR-ABL1/ABL1 ratio. 

 

Direct Sequencing of the ABL1 kinase domain 

 After quantifying BCR-ABL1 transcripts in 411 samples, a detectable amount of the BCR-ABL1 



transcripts was amplified in 273 samples. A total of 264 of the 273 samples (96.7%) were used for the 

mutation analysis study. The nested PCR strategy was applied for direct sequencing, in which primers 

were used as previously described [26, 27]. After nested PCR, PCR products were sequenced in both 

directions with the following primers: ABL-1F, ABL-1R, ABL-2F, and ABL-2R as previously described 

[28], using the BigDye Terminator v3.1 Cycle Sequencing Kit and ABI Prism 3100xl Genetic Analyzer 

(Applied Biosystems, CA, USA). 

 

Categorization of BCR-ABL1 KD Mutations 

BCR-ABL1 KD mutations were categorized as “resistant to imatinib” and “unknown sensitivity” 

according to the IC50 of TKIs summarized in the recommendations from European LeukemiaNet [16]. 

Twenty-one BCR-ABL1 KD mutations categorized as “resistant to imatinib” were as follows; M244V, 

L248V, G250E, Q252H, Y253H, Y253F, E255K, E255V, E279K, V299L, F311L, T315I, F317L, M351T, 

F359V, V379I, L384M, L387M, H396R, H396P, and F486S. 

 BCR-ABL1 35INS, a retention of 35 intronic nucleotides at the splice junction of exon 8/9, which 

results in a stop codon after 10 intron-encoded residues, was not included in the BCR-ABL1 KD 

mutations because BCR-ABL1 35INS was considered to be an alternative spliced variant, and not a point 

mutation [29-32]. 

 



Definition of Clinical Parameters According to the Response 

 The criteria recommended by European LeukemiaNet were used to define responses [33]. CCyR was 

defined as the absence of Philadelphia chromosome-positive metaphases in the samples. Cytogenetic 

responses were based on the percentage of Philadelphia chromosome-positive cells among 20 or more 

cells in metaphase in each bone marrow sample. Fluorescence in situ hybridization on interphase cells 

was recommended if less than 20 metaphases were evaluable and was performed with BCR-ABL1 

extra-signal, dual-color, dual-fusion probes; CCyR was defined when the number of positive cell 

interphases was less than 2 in 200 (<1%). Major molecular response (MMR) was defined as a ratio 

BCR-ABL1/ABL1 level <0.042%, which corresponded to a 3-log reduction from the median baseline 

value calculated in our laboratory, using 30 samples from untreated CML-CP patients. Undetectable 

BCR-ABL1 transcripts levels were defined as a ratio BCR-ABL1/ABL1 level <0.0042%, which 

corresponded to the lowest level of detectability by the method (10-4). 

 The overall response to TKI was evaluated using criteria proposed by European LeukemiaNet [34]. The 

trajectory of the molecular response was categorized into four groups using the modified categorization 

originally described by Palandri F, et al. [8] as follows; QRT-PCR negative, BCR-ABL1 transcripts 

always undetectable; Stable MMR, BCR-ABL1 transcripts detectable, but always maintained MMR; 

Unstable MMR, achieved MMR at least once, but could not maintain it; Never MMR, never achieved 

MMR. 



 

Statistics 

Variables were analyzed by Fisher’s exact test to determine significantly associated factors for each 

group categorized by the trajectory of the molecular response. All tests were 2-sided and values of P<0.05 

were considered significant in all analyses. All statistical analyses were performed with Prism Version 5.0 

software (GraphPad). 

 

Results 

Patient characteristics  

Twenty-eight patients were newly diagnosed with CML-CP during the study period (between March 

2010 and March 2012). The other 87 patients included in this study had been diagnosed before this period. 

TKI was not the initial treatment for 19 patients. The characteristics of these patients are summarized in 

Table 1. Patients included 63 males and 52 females, with a median age at diagnosis of 55 years old (age 

range: 17–88). The median time from the start of TKI treatment to registration was 5.5 years (range 

0.0-11.6). The distribution of Sokal scores at diagnosis was as follows; 47 patients were at low risk, 42 at 

intermediate risk, and 24 at high risk. Imatinib was administered as an initial treatment in 83 patients, 

nilotinib in 6, dasatinib in 7, and bosutinib in 1. Two out of 115 patients received TKI as a treatment for 

molecular relapse following allogeneic hematopoietic stem cell transplantation. 



 

Direct sequencing of BCR-ABL1 KD at diagnosis and within 12 months of the TKI treatment 

 BCR-ABL1 KD mutations and 35INS were analyzed at diagnosis in 28 untreated CML-CP patients. 

Although no patient had BCR-ABL1 KD mutations at the time of diagnosis, mutations became detectable 

within 12 months of the TKI treatment in 3 out of 28 patients (10.7%). The mutations detected and 

patients were as follows; T315I, UPN-108; T406A, UPN-45; A433T, UPN-61 (Figure 2a).  

 In the case of UPN-108, the T315I mutation became detectable after 3 months of the dasatinib 

treatment, at the time the patient achieved MMR. MMR was lost three months later, and the mutation was 

still detectable. We previously reported the successful treatment of the T315I mutation by imatinib and 

interferon-α combination therapy [28]; therefore, we added interferon-α to dasatinib. After 5 months of 

the combination therapy, MMR was re-achieved and the T315I mutation became undetectable.  

 BCR-ABL1 35INS was detected in 18 out of 28 patients (64.2%) during the course of the treatment by 

direct sequencing. BCR-ABL1 35INS was detected both before and after the TKI treatment in 8 patients, 

only at diagnosis in 2 patients, and only after the TKI treatment in 8 patients. 

 

Molecular response after receiving the TKI treatment for longer than 12 months 

 Ninety-one out of 115 patients were evaluable for their molecular response after receiving at least 12 

months of the TKI treatment (Figure 1). These patients included not only 6 newly diagnosed patients who 



had been treated with TKI for longer than 12 months, but also 85 patients who had been diagnosed prior 

to March 2010 and were already taking TKIs. Using the criteria proposed by European LeukemiaNet, 60 

out of 91 patients were judged to have achieved the optimal response (i.e. stable optimal response), 

whereas the remaining 31 patients had not (i.e. unstable optimal response). Based on the trajectory of the 

molecular response, patients with a stable optimal response were further divided into two groups, stable 

MMR (29 patients) and QRT-PCR negative (31 patients). Among those with an unstable optimal response, 

16 patients that had never achieved MMR were categorized into the “never MMR” group, and 15 patients 

that achieved MMR at least once were categorized into the “unstable MMR” group. 

 

BCR-ABL1 KD mutation in the “never MMR” group  

  Nine patients in the “never MMR” group were treated with imatinib and 7 patients were treated with 

2nd-TKIs. In this group, only 3 patients (33.3%) with imatinib and one patient (14.3%) with 2nd-TKI 

were taking daily doses of TKIs without any reduction (a standard dose indicated imatinib 400mg/day, 

nilotinib 600mg/day, and dasatinib 100mg/day). In terms of drug adherence, no significant difference was 

observed between the 3 groups taking different TKIs (33.3%, 25.0%, and 0.0% in patients treated with 

imatinib, nilotinib, and dasatinib, respectively). The most frequent reason for dose reduction was 

hematological toxicity in the 2nd-TKI group, and non-hematological toxicity in the imatinib group (Table 

2). BCR-ABL1 KD mutations categorized as resistant to imatinib were detected in 3 out of 16 patients 



(18.8%). The mutations detected and patients were as follows; E279K, UPN-24; T315I and E255V, 

UPN-40; G250E and L387M, UPN-48 (Figure 2b). The BCR-ABL1 KD mutation categorized as 

unknown sensitivity was not detected. In the case of UPN-24, TKI was switched from imatinib to 

nilotinib and a QRT-PCR negative status was obtained.  

  Direct sequencing detected BCR-ABL1 35INS in 12 out of 16 patients (75.0%) in the “never MMR” 

group. One patient (UPN-24) was found to have both the E279K mutation and BCR-ABL1 35INS. The 

minor BCR-ABL1 fusion gene was detected in 3 out of 16 patients instead of major BCR-ABL1 fusion 

gene. These 3 patients had BCR-ABL1 35INS in the transcriptional product of the minor BCR-ABL1 

fusion gene, but had no BCR-ABL1 KD mutations.  

  To determine the effect of long-term exposure of TKI on the occurrence of mutations, we compared the 

mutation rate of newly diagnosed patients with that of patients taking TKIs for longer than 24 months. In 

the “never MMR” group, 12 out of 16 patients had been receiving TKI treatment for longer than 24 

months. Of these 12 patients, the BCR-ABL1 KD mutation, minor BCR-ABL1 fusion gene, and 

BCR-ABL1 35INS were detected in 2 patients, 2 patients, and 8 patients, respectively. In 4 newly 

diagnosed patients, the E279K mutation became detectable in one patient after starting to take imatinib, 

whereas 35INS was not detected. Whether the length of the TKI treatment (12 to 24 months vs more than 

24 months) influenced the frequency of the BCR-ABL1 KD mutation or BCR-ABL 35INS was not clear 

due to the small number of patients. 



 

BCR-ABL1 KD mutation in the “unstable MMR” group 

 In the “unstable MMR” group, 12 patients were treated with imatinib and 2 patients were treated with 

dasatinib. One patient had already stopped taking imatinib before the mutation analysis. In this group, 5 

patients (41.7%) with imatinib and one patient (50.0%) with dasatinib were taking daily doses of TKIs 

without any reduction. In terms of drug adherence, no significant difference was observed between 

groups taking imatinib and dasatinib. Similar to the “never MMR” group, the most frequent reason for the 

dose reduction was hematological toxicity in the 2nd-TKI group, and non-hematological toxicity in the 

imatinib group. BCR-ABL1 KD mutations known to confer resistance to imatinib were not detected in 

this group, whereas the KD mutation categorized as unknown sensitivity was detected in one patient 

(R457C mutation in UPN-30) (Figure 2c). BCR-ABL1 35INS was detected in 12 out of 15 patients 

(80.0%), including one patient (UPN-30) harboring both the R457C mutation and BCR-ABL1 35INS. No 

significant relationship was observed between the detection of BCR-ABL1 35INS and remission status. 

The timing of the detection and remission status was as follows; when MMR was achieved, 2 patients; 

only when MMR was lost, 3 patients; regardless of MMR status, 7 patients.  

  We compared the mutation rate of newly diagnosed patients with that of patients taking TKIs for longer 

than 24 months in the “unstable MMR” group. Twelve out of 15 patients had been receiving the TKI 

treatment for longer than 24 months. Of these 12 patients, BCR-ABL1 35INS was detected in 9 patients, 



while no BCR-ABL1 KD mutation was detected. Although no 35INS was detected in 3 newly diagnosed 

patients, one patient developed the R457C mutation after start taking dasatinib. The attempts to show the 

impact of the length of the TKI treatment (12 to 24 months vs longer than 24 months) on the frequency of 

the BCR-ABL1 KD mutation or BCR-ABL 35INS failed because the number of patients was too small.  

 

BCR-ABL1 KD mutation in the “stable MMR” group 

  In the group of patients with a stable MMR, 21 patients were treated with imatinib and 6 patients were 

treated with 2nd-TKIs. Two patients had already stopped receiving TKI treatment before the mutation 

analysis study. In this group, 14 patients (66.7%) with imatinib and 3 patients (50.0%) with 2nd-TKIs 

were taking daily doses of TKIs without any reduction. No significant difference was observed in terms 

of drug adherence among patients taking 3 different TKIs (66.7%, 50.0%, and 50.0% in patients treated 

with imatinib, nilotinib, and dasatinib, respectively). BCR-ABL1 KD mutations known to confer 

resistance to imatinib were not detected in this group, whereas the KD mutation categorized as unknown 

sensitivity was detected in one patient (Q252R mutation in UPN-76) (Figure 2d). BCR-ABL1 35INS was 

detected in 10 out of 29 patients (34.5%) with stable MMR. In the case of UPN-76, the patient had 

BCR-ABL1 35INS, but this disappeared when the Q252R mutation became detectable.   

 The mutation rate of newly diagnosed patients with that of patients taking TKIs for longer than 24 

months was compared to seek for a possible difference, in the “stable MMR” group. Twenty-two out of 



29 patients had been receiving TKI treatment for longer than 24 months. Of these 22 patients, 

BCR-ABL1 35INS was detected in 6 patients, while no BCR-ABL1 KD mutation was detected. In 7 

newly diagnosed patients, although no 35INS was detected, one patient developed the Q252R mutation 

after starting to take dasatinib. The statistical analysis could not show significant effects of the 

TKI-treatment duration on the mutation rate (12 to 24 months vs longer than 24 months). 

 

BCR-ABL1 KD mutation in the “QRT-PCR negative” group 

  All 31 patients in the QRT-PCR negative group were receiving the TKI treatment during the molecular 

study. In this group, 25 patients were treated with imatinib and 6 patients were treated with 2nd-TKIs. 

Sixteen patients (64.0%) with imatinib and 4 patients (66.7%) with 2nd-TKI were taking daily doses of 

TKIs without any reduction. No significant difference was observed in terms of drug adherence among 

patients taking 3 different TKIs (64.0%, 75.0%, and 50.0% in patients treated with imatinib, nilotinib, and 

dasatinib, respectively).  

 

Factors related to the trajectory of the molecular response after 12 months of the TKI treatment 

To assess significant factors related to the molecular responses, we tested for correlations between 

factors such as the baseline features of patients, TKI regimen, and results of the KD mutation analysis 

with the trajectory of the molecular response (the “never MMR”, “unstable MMR”, and “stable MMR” 



groups) (Table 3). Three significant factors for not achieving MMR were identified by comparing the 

“never MMR” group with the other two groups (“unstable MMR” and “stable MMR” groups); the type of 

BCR-ABL1 fusion gene, low daily dose of TKI, and presence of a BCR-ABL1 KD mutation resistant to 

imatinib. Furthermore, 2 factors were identified as significant factors for not maintaining stable MMR. By 

comparing the “stable MMR” group with two other groups, low daily dose of TKI and the presence of 

35INS were identified as factors associated with the loss of sustained MMR (Table 3). Patient 

characteristics, such as sex, median age at the beginning of the TKI treatment, or Sokal risk category were 

not significant factors for achieving or maintaining MMR. The type of TKI was also not a factor. 

  To compare the stable optimal response group (“stable MMR” and QRT-PCR negative groups) and 

unstable optimal response group (“never MMR” and “unstable MMR” groups), we analyzed the 

following 3 variables; patient characteristics, type of TKI, and daily dose of TKI. The presence of KD 

mutations, the 35INS, and the type of BCR-ABL1 fusion gene were not included as variables in the 

analysis because BCR-ABL1 transcripts were absent in the “QRT-PCR negative” group. Two factors 

negatively correlated with maintaining an optimal response; TKI treatment started at a higher median age 

(p=0.0480) and a lower daily dose of TKI (p=0.0348). The type of TKI, sex, and Sokal score category did 

not correlate with the response. 

 

Discussion 



  We demonstrated that three factors were significantly related to molecular responses in CML-CP 

patients following TKI treatment in this study. First, adherence to TKI therapy was an important factor 

for both achieving and maintaining MMR. Second, the presence of BCR-ABL1 KD mutations, especially 

mutations that confer resistance to imatinib, was a significant predictor for not achieving MMR. Third, 

the emergence of 35INS, which was detected in 43% of patients, was significantly related to the loss of 

MMR.  

  We observed a relatively low optimal stable response rate on a molecular level in this registration study 

by the Nagasaki CML study group. Thirty-one out of 91 patients (34.1%) lost MMR after 12 months of 

the treatment. Considering the similar rate of insufficient molecular responses reported in other studies [5, 

8], the management of CML-CP patients with an insufficient molecular response is a problem that 

remains even after the introduction of 2nd-TKIs into practice. These findings prompted us to analyze the 

clinical and molecular factors useful for predicting molecular responses to TKI. We confirmed the 

importance of adhering to TKI therapy for an optimal response, which we found to be the only significant 

factor for both achieving and maintaining MMR. In the case of UPN-48 harboring the G250E and L387M 

mutations in BCR-ABL1 KD, MMR was not achieved with dasatinib in spite of these mutations being 

sensitive to dasatinib. This treatment failure may have been due to the standard dose of dasatinib not 

being tolerated. Some studies, including ours, reported that the amount of TKI administered in practice 

was often less than the standard dose [17, 18, 35-37]. Therefore, tolerability for a standard dose must be 



considered when selecting a TKI. A pharmacological assessment may help in this decision. 

 Information regarding the BCR-ABL1 KD mutation status is invaluable for the decision algorithm 

when tailoring therapeutic strategies. A switch to effective TKI resulted in MMR being achieved in two 

patients (UPN-23 and -108), with the elimination of the mutations. However, in the case receiving the 

TKI treatment for longer than 12 months, BCR-ABL1 KD mutations categorized as resistance to imatinib 

were detected in the “never MMR” group only. This finding indicated that sequence analysis of 

BCR-ABL1 KD should only be considered for this group of patients. In the case of UPN-108, the T315I 

mutation became detectable after the patient achieved MMR after 3 months of the dasatinib treatment. 

T315I mutation analysis at diagnosis is often considered important because the presence of T315I 

mutation at diagnosis could affect the whole treatment strategy. Minami Y, et al. reported that monitoring 

gene mutations in fractionated hematopoietic stem cells and progenitors at diagnosis may help detect the 

T315I mutation earlier [38]. Standard methods to detect the T315I mutation and the standard management 

of patients with this mutation in practice need to be established [28, 39, 40]. 

In our study, the proportion of patients with BCR-ABL1 KD mutations was only 7% (8 out of 115 

patients), which appeared to be less than that of previous studies. Since previous studies have suggested 

that 2nd-TKIs inhibit the proliferation of CML cells with BCR-ABL1 KD mutations [41], it is possible 

that the introduction of 2nd-TKIs actually led, at least in part, to the lower frequency of BCR-ABL1 KD 

mutations in our study.  



  The presence of BCR-ABL1 35INS significantly correlated with an unstable optimal response in our 

study. BCR-ABL1 35INS itself was found to not contribute to TKI resistance because the BCR-ABL1 

protein derived from the mRNA of BCR-ABL1 35INS lacked the kinase domain necessary for 

BCR-ABL1 kinase activity [32]. We detected BCR-ABL1 35INS in 34 out of 60 patients (56.7%) by 

direct sequencing. The emergence of BCR-ABL1 35INS, one of the alternative splicing variants, may 

reflect the confounding effect of other factors causing TKI resistance rather than directly providing TKI 

resistance because the precise regulation of RNA splicing is indispensable for maintaining cellular 

homeostasis [42]. Further assessments regarding BCR-ABL1 35INS in the treatment of CML are needed. 

 The Sokal scoring system has been utilized to stratify patients by risk in many clinical TKI trials. 

Although the score was shown to predict the possibility of CCyR and MMR [1, 2], it did not correlate 

with the trajectory of the molecular response in our study. Marin D, et al. previously reported that 

adherence to imatinib was the only independent predictor for complete molecular response, while the 

Sokal score was not [43]. Second-TKIs were also found to improve the outcomes of high-risk patients [3, 

4]. Collectively, it is possible that the low adherence to TKIs and introduction of more potent 2nd-TKIs 

lowered the power of the Sokal score in the statistical analysis performed in our study. A larger analysis 

may help to confirm the impact of the Sokal score in a practical setting. 

 The results obtained in our study emphasized the necessity of further searches for clinical and 

molecular factors that predict clinical responses to TKIs. With more appropriate predicting factors, a new 



treatment strategy may be developed in the future to maximize the number of patients achieving an 

optimal response.  
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Figure 1  Patient flow diagram 
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Figure 2  Clinical course of BCR-ABL1 fusion transcripts and the kinase domain mutation 1 
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Figure 1  Patient flow diagram 1 

The trajectory of the molecular response was evaluated in 6 out of 28 patients who were 2 

diagnosed with chronic phase chronic myelogenous leukemia (CML-CP) between March 2010 and 3 

March 2012, and in 85 out of 87 patients who started tyrosine kinase inhibitor (TKI) treatment 4 

before March 2010. 5 

 6 

Figure 2  Clinical course of BCR-ABL1 fusion transcripts and KD mutations 7 

(a) Three patients harbored BCR-ABL1 KD mutations from diagnosis to 12 months of the TKI treatment. 8 

The clinical courses of patients harboring BCR-ABL1 KD mutations after over 12 months of the TKI 9 

treatment are follows; (b) three patients in the “never MMR” group, (c) one in the “unstable MMR” group, 10 

and (d) one in the “stable MMR” group. 11 

Aberrations; IM, indicates imatinib; D, dasatinib; N, nilotinib. Numbers following these abbreviations 12 

indicate the dose of each TKI. 13 

 14 

 15 

 16 

 17 

 18 
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Table 1  Patient characteristics  1 

 

CML-CP patients (2010-2012) 

Registrant of molecular analysis 

Total, n 115 

Sex (male/female) 63 / 52 

Age at diagnosis (median), y 17 - 88 (55) 

Clinical phase at diagnosis, n  

    CP 111 

    AP 4 

    BC 0 

Time after the TKI treatment (median), y 0.1 - 11.6 (5.5) 

Sokal score at diagnosis, n  

    Low 47 

    Intermediate 42 

    High 24 

    Uncertain or Missing 2 

Initial treatment  

    Imatinib 83 

    2nd-TKIs 14 

    Others 18 

Allogeneic hematopoietic stem cell 

transplantation at any time 
 

    Yes 2 

    No 113 

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
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Table 2 Events related to reductions in the TKI dosage  1 
 Patients with 

Never MMR 
Patients with 

Unstable MMR 
Patients with 
Stable MMR 

Patients with 
QRT-PCR negative Total, n 

 IM 2nd-TKI  IM 2nd-TKI  IM 2nd-TKI  IM 2nd-TKI 

Hematological toxicity, n 1 4  2 1  2 1  3 0 14 
Non-hematological toxicity, n 3 2  5 0  5 2  6 2 25 
Economic reasons, n 2 0  0 0  0 0  0 0 2 
Total, n 6 6  7 1  7 3  9 2  

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
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Table 3  Factors evaluated for their influence on the trajectory of the molecular response 1 

 
Patients with 
Never MMR 

Patients with 
Unstable MMR 

Patients with 
Stable MMR  

Never MMR 
vs Unstable MMR/Stable MMR  

Never MMR/Unstable MMR 
vs Stable MMR 

 P value  P value 
Total, n 16 15 29     Sex, n            Male 9 7 17  >0.999  0.614  
    Female 7 8 12     Age when the TKI treatment 
started, n        
    < 55 years 4 6 16  0.140   0.117  
    ≥ 55 years 12 9 13     Sokal score*, n            Low and intermediate risk 12 12 22  >0.999  >0.999 
    High risk 3 3 6     Type of BCR-ABL fusion gene, n            major BCR-ABL 13 15 29  0.016   0.238  
    minor BCR-ABL 3 0 0     Daily dosage of TKI†, n            Standard dosage or more 4 6 17  0.043   0.035  
    Less than standard dosage 12 8 10     Type of TKI¶, n            Imatinib 9 12 21  0.094  0.560 
    2nd-TKIs 7 2 6     BCR-ABL KD mutation,  
resistance to TKI, n        
    Yes 3 0 0  0.016   0.243  
    No 13 15 29     BCR-ABL KD mutation, 
unknown sensitivity, n        
    Yes 0 1 1  >0.999  >0.999 
    No 16 14 28     BCR-ABL 35INS, n            Yes 12 12 10  0.140   0.002  
    No 4 3 19     

 2 
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Table 1  

CP, indicates Chronic phase; AP, accelerated phase; BC, blastic crisis; TKI, tyrosine kinase inhibitors 

(i.e. imatinib, nilotinib, dasatinib, and bosutinib). Second-TKIs include nilotinib, dasatinib, and 

bosutinib. 

 

Table 2 

Non-hematological toxicity was mainly observed in patients treated with imatinib. Of 25 patients 

with non-hematological toxicity, muscle cramps (n=7, 28.0%), water retention (n=6, 24.0%), and 

elevations in liver enzymes (n=5, 20.0%) were frequently reported. Hematological toxicity was 

mainly observed in patients receiving 2nd-TKIs without a stable optimal response. 

Thrombocytopenia was the most frequent adverse event as hematological toxicity (9 out of 14 

patients, 64.3%). 

 

Table 3 

* One patient with Never MMR and one patient with Stable MMR were excluded because data for 

the Sokal score at diagnosis was missing. 

†¶ One patient with Unstable MMR and two patients with Stable MMR were excluded because they 

stopped the TKI treatment before the molecular study.  


