
A Fast Runtime Visualization of a GPU-Based
3D-FDTD Electromagnetic Simulation

Kota Aoki, Keisuke Dohi, Yuichiro Shibata, Kiyoshi Oguri, Takafumi Fujimoto

Graduate School of Science and Thechnology, Nagasaki University, Japan
{aoki,dohi}@pca.cis.nagasaki-u.ac.jp
{shibata,oguri}@cis.nagasaki-u.ac.jp

takafumi@nagasaki-u.ac.jp

Abstract—In this paper, we present design and implementation
of a fast runtime visualizer for a GPU-based 3D-FDTD electro-
magnetic simulation. We focus on improving the productivity
of simulator development without compromising simulation per-
formance. In order to keep the portability, we implemented a
visualizer with the MVC model, where simulation kernels and
visualization process were completely separated. For high-speed
visualization, an interoperability mechanism between OpenGL
and CUDA was used in addition to efficient utilization of
programmable shaders. We also propose an asynchronous multi-
threaded execution with a triple-buffering technique so that de-
velopers can concentrate on developing their simulation kernels.
As a result of empirical visualization experiments of electromag-
netic simulations for practical antenna design, it was revealed
that our implementation achieved a rendering throughput of
90 FPS for a viewport of 512 × 512 pixels, which corresponds
to a 12.9 times speedup compared to when the OpenGL-CUDA
interoperability mechanism was not utilized. When a standard
visualization throughput of 60 FPS was selected, the performance
overhead imposed by the visualization process was 15.8 %, which
was reasonably low compared to a speedup of the simulation
kernel gained by the GPU acceleration.

I. INTRODUCTION

Finite-Difference Time-Domain (FDTD) method is a nu-
merical analysis technique using the Maxwell’s equation in
spatial and time domain and calculates the electric and mag-
netic potential at each point on spatial grids or lattices[1][2].
Although huge computational costs and memory usages are
required for practical size of simulation models, the method is
widely used since performance of computers has been rapidly
improved and the algorithm is simple and easy to understand.
Many researchers proposed various implementation and opti-
mization techniques for acceleration platforms of the FDTD
method[3]. We also implemented a 3D-FDTD electromagnetic
field simulation on GPU and proposed novel GPU-oriented
boundary conditions[4]. While GPU acceleration was shown to
be effective for the algorithm, it was also revealed that efficient
programming for GPUs often requires a deep understanding of
architectures and parallel processing. It is heavily restricting
the productivity of application development for GPGPU[5][6].

In this paper, we present design and implementation of
an efficient runtime visualization framework for GPGPU
scientific simulations, aiming at increasing the productivity
of application development on GPUs. With this visualizer,

developers will be able to easily understand behavior of the
entire simulation space and detect bugs in an early stage of
development.

In order to achieve real-time visualization of GPU simula-
tion results, data transfer between a host and the GPU needs to
be carefully reduced. A naive operation flow may first launches
a GPU kernel and transfers the results calculated by the kernel
from the GPU to the host. Then, the results are converted
to color information on the host CPU. Finally, the color
information is sent back again to video RAM (VRAM) in the
GPU and displayed. Iterating these three processes, simulation
behavior is visually displayed. However, data transfer via PCI-
Express occurs twice for a single simulation step, severely
degrading the simulation performance.

This problem can be solved by using OpenGL interoperabil-
ity APIs offered by CUDA, which allows us to directly store
execution results of GPU kernels to the VRAM on the GPU,
without ping-ponging the data on the PCI-Express. However,
programming code for simulation process and visualization
process are tightly unified in this approach. This means that
developing a new simulation program also requires rewrite of
visualization code to be adjusted for the new GPU kernel,
resulting in further deterioration of the productivity of appli-
cation development.

Therefore, we designed our framework based on a software
architecture pattern called the model-viewer-controller (MVC)
model. In this model, simulation code and visualization code
are definitely separated, to keep the portability. Multi-threading
is also introduced to enable concurrent processing between
the simulation kernel and the visualization process. These
performance-oriented techniques are hidden from an appli-
cation level; developers can easily visualize their simulation
results, without being aware of the graphics APIs and without
affecting the simulation performance.

The rest of the paper is organized as follows. Section II
introduces related works and Section III describes the 3D-
FDTD method and implementation of 3D-FDTD method on
a GPU. Section IV describes the purpose and design policy
of the proposed framework. Section V shows implementation
details. Performance evaluation results are presented in Sec-
tion VI. Finally, Section VII concludes the paper.

II. RELATED WORK

Various visualization techniques for GPGPU have been
proposed so far. In[7], using OpenGL interoperability APIs
offered by CUDA a bottleneck of visualization process for
N-body simulations on a GPU was eliminated. As a result, a
rendering speed of 30.1 frame per second (FPS) was achieved
for 2,744 particles. In[8], GPU based algorithms for solving
and visualizing level-set computation with real-time volume
rendering was proposed. This method was shown to be 10
to 15 times faster than CPU-based implementation. A large-
scale volume rendering system for a PC cluster equipped with
GPUs has also been proposed[9]. Using a 16-node PC cluster,
a rendering speed of 5 FPS was achieved for 2048 × 1024 ×
1878 drawing data.

More flexible visualization frameworks have also been pro-
posed to improve visualization performance for specific appli-
cations. In[10], a framework for GPU-based volume rendering
that offers extensibility in terms of shader functionality has
been proposed. Users can easily modify or replace the shader
functionality on this framework. The Zippy is a scalable high-
performance computing framework with visualization for a
GPU cluster[11]. This framework was proposed to solve com-
plexity problem of a programming model for high performance
general purpose computation on GPU clusters. The Zippy
provides facilities for parallel programming and debugging
as well as a generalized visualization. In[12], an interactive
out-of-core technique was proposed and implemented as a
framework of a single-pass GPU ray-casting for rendering
massive scalar volumetric data sets.

However, as far as our knowledge goes, there have not been
any work on visualization frameworks that introduced multi-
threading and CUDA-OpenGL interoperability, focusing on
simultaneous realization of high-speed simulation and general
versatility.

III. FDTD

A. 3D-FDTD Method

Finite-difference time-domain (FDTD) method for elec-
tromagnetic simulation proposed by Yee discretizes the
Maxwell’s equation in spatial and time domain and calculates
behaviors of electric and magnetic fields at each point on
spatial grids[1][2]. In this implementation, we assumed that
a simulation target is isotropy and non-dispersive having the
conductivity of σ = 0. Let E, H and µ denote an electric field,
a magnetic field, and permeability, respectively. This yields
Maxwell’s curl equations:

∂E

∂t
=

1
ε
∇× H

∂H

∂t
= − 1

µ
∇× E

(1)

Considering a typical substitution of central differences for
the time and space derivatives, we got the following time-

stepping expression of Maxwell’s curl equations:

En
x

(
i +

1
2
, j, k

)
= En−1

x

(
i +

1
2
, j, k

)
+

∆t

ε∆y
δyH

n− 1
2

z

(
i +

1
2
, j +

1
2
, k

)
− ∆t

ε∆z
δzH

n− 1
2

y

(
i +

1
2
, j, k +

1
2

) (2)

where

δyH
n− 1

2
z

(
i +

1
2
, j +

1
2
, k

)
=

H
n− 1

2
z

(
i +

1
2
, j +

1
2
, k

)
− H

n− 1
2

z

(
i +

1
2
, j − 1

2
, k

)

δzH
n− 1

2
y

(
i +

1
2
, j, k +

1
2

)
=

H
n− 1

2
y

(
i +

1
2
, j, k +

1
2

)
− H

n− 1
2

y

(
i +

1
2
, j, k − 1

2

)
.

By taking a difference in the space domain, 1/2 offsets
arise in some dimensions for each component of E and H .
Similarly, due to taking a difference in a time domain, E
and H are stored in different time-steps. While E is aligned
at time-step n, H is aligned at time-step (n − 1/2), where
n is an integer value. En

x shows the component x of the
electric filed E at time steps n. H

n−(1/2)
y and H

n−(1/2)
z denote

components y and z of the magnetic field H at time-step
(n− 1/2), respectively. The time increment in the simulation
is denoted as ∆t and permittivity for each space grid point
is expressed as ε. ∆y and ∆z are the grid size in the y
and z coordinate directions. We use time-stepping expressions
for En

y , En
z , H

n− 1
2

x , H
n− 1

2
y , H

n− 1
2

z in the same manner.
Simulations of electromagnetic propagation are performed by
iteratively calculating these time-stepping expressions.

B. Implementation of 3D-FDTD on a GPU

Like a common approach of GPU implementation of sten-
cil computation[3][13], our implementation also divides the
whole simulation space of size (Sx, Sy, Sz) into small blocks
of size (Bx, By, Bz) and makes CUDA thread blocks process
each block. Data for E and H fields are stored in memory
as 3D-array so that dimension x has a unit-stride, dimension
y has a larger stride, and dimension z has the largest stride.
In Figure 1, the placement and processing direction of CUDA
threads within a block are shown. Bx × By CUDA threads
are placed on a 2D plane and each CUDA thread goes along
the line with z direction. That is, the CUDA thread on the
coordinate (x, y) calculates a total of Bz cells from (x, y, 0)
to (x, y,Bz − 1). As an absorbing boundary condition, a
modified version of split perfect matched layers (PML), which
we proposed for efficient GPU implantation, is utilized[4].

IV. DESIGN POLICY

In order to achieve a high degree of portability and expand-
ability of visualization process, our framework was designed

It
e
ra
ti
o
n

Fig. 1. Placement of CUDA threads and direction of process within a block.
The gray boxes show CUDA threads.

Controller

Viewer Model

Fig. 2. MVC model

with a software architecture pattern called the model-viewer-
controller (MVC) model. Figure 2 shows an overview of the
MVC model, which consists of three independent software
elements called “Model”, “Viewer”, and “Controller”. The
“Model” module performs GPU kernel functions for sim-
ulation which are implemented by application developers.
The “Viewer” module renders execution results calculated
by the “Model”. The “Controller” module handles the entire
behavior of the simulator. Our framework offers the latter two
modules. For the “Viewer” part, volume rendering process has
been implemented with programmable shaders using OpenGL
Shading Language (GLSL)[14] at this time. Since the “Model”
and the “Viewer” parts are completely separated in the MVC
model, application developers can implement their simulation
kernels and visualize simulation results without being aware
of detailed graphics APIs such as OpenGL.

As discussed in Section I, our framework supports the
interoperability mechanism with OpenGL offered by CUDA to
remove the bottleneck caused by heavy data transfer between
a host and a GPU. In OpenGL, a memory region on a GPU
called Buffer Object stores rendering data such as pixels
and vertices. The OpenGL interoperability APIs offered by
CUDA bind Buffer Objects and CUDA memory regions so
that execution results calculated by GPU kernels are directly
stored into the Buffer Object which is registered in advance.
In this way, the data transfer via PCI-Express is effectively

reduced.
A multi-threaded control flow is another important feature

of our framework. Since the “Viewer” module needs to handle
asynchronous inputs from users such as mouse operations
and window exposures, common OpenGL applications have a
simple control flow consisting of a single event loop. However,
when CUDA kernels are involved in such an event loop, the
“Viewer” and the “Model” mutually interfere each other’s
performance, resulting in a slowdown of the simulation. To
cope with this problem, we introduced a multi-threaded control
flow, which allows the “Viewer” and the “Model” to be con-
currently executed while being described under independent
control flows. This approach is advantageous in terms of both
performance and productivity.

However, since some of OpenGL functions are not thread-
safe, the “Model” is not able to write to the Buffer Object that
is being rendered by the “Viewer”. An intuitive solution to this
problem would be a double buffering technique illustrated in
Figure 3, where two Buffer Objects are provided. When the
“Model” is storing results to one Buffer Object, the “Viewer”
reads out the contents of the other Buffer Object. Then, after
finishing this process, the buffers are swapped. Since this swap
operation can be issued only by the “Viewer” in OpenGL,
the “Viewer” and the “Model” need to be synchronized. This
raises the problem of mutual performance interference again.

Therefore, we employed a triple buffering approach as
shown in Figure 4. Having another additional Buffer Object,
there is always one buffer that is not accessed, so that both
the “Viewer” and the “Model” can switch buffers any time
without synchronizing each other. Still there is a possibility
that the “Viewer” and the “Model” switch to the same buffer
at the same time by chance, but simultaneous access to the
same Buffer Object can be prevented by a mutual exclusion
control mechanism. When the execution speed of the “Model”
is faster than that of the “Viewer”, frequent buffer switching
by the “Model” causes an overwrite of the Buffer Object that
has not been rendered by the “Viewer” yet. However, some
dropping frames will be acceptable if the “Viewer” provides a
sufficient rendering throughput such as 60 FPS. On the other
hand, when the execution speed of the “Model” is slower than
that of the “Viewer”, the “Viewer” simply continues to render
the same Buffer Object.

V. IMPLEMENTATION

A. Overview of the Framework

As illustrated in Figure 5, we implemented the framework
with four units: “Controller”, “Model”, “Viewer” and “Data
Storage”. Where application developers implement their own
simulation kernels is the “Model”. Inheriting and expanding
the template, developers can easily implement simulation
kernels without being aware of details of graphics APIs. The
“Viewer”, which was implemented by OpenGL APIs, renders
execution results calculated by the “Model”. Programmable
shader using GLSL was introduced in order to realize high-
speed and flexible volume rendering.

VRAM

Model Viewer

Buffer Object[2]

[0]

[1]

Fig. 3. Double buffering approach

VRAM

Buffer Object[3]

[0]

[1]

[2]

Model Viewer

Fig. 4. Triple buffering approach

The “Data Storage” is a module that holds and manages
drawing data which calculated by the “Model” with the triple
buffering approach described in the previous section. Using the
interoperability mechanism with OpenGL offered by CUDA,
efficient data transfer from the “Model” to the “Viewer” was
implemented. The “Controller” manages the entire behavior of
the framework and initializes of the other modules. The multi-
threaded execution model was introduced in order to provide
a view of a simple control flow to developers and to minimize
interference between the “Model” and the “Viewer” in terms
of performance. The mutual exclusion facilities required for
the “Data Storage” were implemented using the Boost C++
library.

Controller

Viewer Model

Data Storage

Buffer Object[3]

[0]

[1]

[2]

Fig. 5. Overview of the framework

B. Data Storage

In the “Data Storage” module, three buffer regions for
drawing data to perform the triple buffering are allocated when
this module is initialized by the “Controller”. This module
always monitors which buffer is used by which module as well
as which buffer has the latest simulation results that have not
been rendered yet. When the “Model” or the “Viewer” requests
buffer switching, the “Data Storage” provides an appropriate
buffer region. Thus, the “Data Storage” effectively absorbs the
speed gap between the “Viewer” and the “Model” preventing
mutual performance interference.

When the simulation kernel in the “Model” is implemented
in CUDA, the “Data Storage” also manages the data transfer
using the interoperability APIs between OpenGL and CUDA.
The detailed mechanisms such as the triple buffering and
OpenGL-CUDA interoperability are hidden from developers
of the “Model”. The “Model” gets a pointer to the appropriate
buffer from the “Data Storage” every time the buffers are
switched. What the “Model” needs to do is to write the
simulation results to the region the pointer indicates and to
request buffer switching.

C. Controller

The “Controller” is provided as a simple template-code
which developers can be easily modified if they need. Fig-
ure 6 shows example code of “Controller” which has a bare
minimum of works that “Controller” needs to do.

After instantiating the “Model” object (Line 6), the buffers
to store drawing data are allocated and initialized in “Data
Storage” (Line 8 to 12). Here, the “Controller” checks whether
the interoperability mechanism between CUDA and OpenGL
is used or not, and an appropriate type of buffer structure is
allocated by invoking the corresponding function.

Then, “Viewer” is initialized (Line 16) and executed as
another thread (Line 17). After the “Model” is initialized and
the same instance of “Data Storage” is shared (Line 19),
the simulation kernel in the “Model” is invoked from the
simulation loop constantly (Line 21 to 23).

D. Model

Figure 7 shows the definition of the basic class of “Model”,
which is to be inherited and expanded by developers. As the
code shows, developers do not need to take care of OpenGL
APIs to visualize simulation results and can concentrate on
their simulation kernel, which is a major advantage in terms
of the productivity.

The actual simulation kernel is implemented into Process()
function which is shown in Figure 7. In this function, a method
provided by “Data Storage” is invoked in order to get a pointer
to an appropriate Buffer Object which simulation results
are written into. This pointer has the same as pointers the
cudaMalloc() function returns and the corresponding Buffer
Objects are allocated on memory of the GPU. Meanwhile,
a pointer to the “Data Storage” object is passed when the
“Controller” calls initialization function.

1 int main() {
2 IViewer *p_viewer = NULL;
3 IModel *p_model = NULL;
4 IVolumeDataFactory *p_data_factory =

NULL;
5
6 p_model = new fdtd::ModelFDTD();
7
8 if(p_model->IsCUDAGlBridgeEnable()) {
9 p_data_factory = new

VolumeDataCUDAFactory();
10 } else {
11 p_data_factory = new

VolumeDataCPUFactory();
12 }
13
14 p_viewer = new ViewerGl(p_data_factory);
15
16 p_viewer->Init();
17 p_viewer->Invoke();
18
19 p_model->Init(p_viewer->

GetCurrentStorage());
20
21 while(!p_model->IsQuit()) {
22 p_model->Process();
23 }
24
25 delete p_model;
26 delete p_viewer;
27
28 return 0;
29 }

Fig. 6. Sample code of Controller

The IsCUDAGlBridgeEnable() function can control the in-
teroperability mechanism between OpenGL and CUDA to be
used or not, depending on a Boolean return value. Thus, the
framework can be used to visualize simulation kernels that are
not implemented in CUDA.

Developers should write the termination conditions into
the IsQuit() function. When the simulation terminated, this
function returns true. “Controller” received return value, and
after that, visualizing simulation stopped.

E. Viewer

“Viewer” is a module where simulation results are rendered
and was implemented with OpenGL and GLUT libraries.
Multi-threading execution was carried out by introducing the
Boost::thread class in Boost C++ Libraries. Figure 8 shows
a display function of “Viewer”. This function is called from
glutDisplayFunc() which is registered in glutMainLoop(). The
pointer to the Buffer Object that should be rendered is passed
from “Data Storage”. Using GetLatestViewerData(), the latest
simulation results are obtained and displayed. Each voxel
has four data elements corresponding to RGBA. A type of
drawing data can be chosen from three options: “float”, “int”
and “unsigned int”. In this implementation, the size of each

1 class IModel {
2 public:
3 IModel() {}
4
5 virtual void Init(DataStorage *storage)

=0;
6
7 virtual void Process()= 0;
8
9 virtual void Quit() = 0;

10
11 virtual bool IsQuit() = 0;
12
13 virtual const std::string &GetName()

const = 0;
14
15 virtual const std::string &

GetArchitecture() const = 0;
16
17 virtual bool IsCUDAGlBridgeEnable() = 0;
18
19 virtual IModel() {}
20 }

Fig. 7. IModel.hpp

dimension “x”, “y” and “z” of the drawing space is confined
to power-of-two numbers.

“Viewer” calls glutPostRedisplay() in glutIdleFunc() to re-
display the simulation results calculated by “Model”. To con-
trol the visualization throughput, sleep() was inserted before
calling glutPostRedisplay(). The default target throughput is
60 FPS, while the value can be easily changed.

At present, the “Viewer” supports volume rendering, which
is a technique to generate 3-D images from brightnesses
and transparency rates of volume data. By controlling the
transparency rates, it is possible to display an specified cross-
section surface of a given target object and is also possible
to make the object translucent to effectively express internal
structure. Thus, the technique is widely used to visualize
computing results of scientific simulations.

Figure 9 shows an overview of the volume rendering
technique. For each pixel in the image plane, the voxel
data that cross with the lines of sight are summed up using
the ray casting algorithm. When the accumulated permeation
rate (alpha value) reaches a threshold defined in advance or
the ray falls out of the drawing space, the intensity of the
corresponding pixel on the image plane is calculated from the
accumulated voxel data at that point. Although the method was
not suited for runtime and interactive visualization due to its
high computing complexity in past days, high speed rendering
is now feasible using GPUs technologies[15].

In our implementation, vertex shaders and fragment shaders
on the GPU were utilized to implement high-speed ray casting.
While the vertex shaders set up insight vectors, the fragment
shaders are responsible for calculation of the voxel data. The
threshold alpha value of the accumulation was set to 0.95.

1 void ViewerGl::Pimpl::GLUTDisplay() {
2 gl::VolumeData *p_volume_data =

m_data_storage->GetLatestViewerData
();

3 ...
4 m_frame_buffer->Bind();
5 glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
6
7 static gl::Cube cube;
8 glEnable(GL_CULL_FACE);
9 glCullFace(GL_BACK);

10 cube.Draw();
11 glDisable(GL_CULL_FACE);
12
13 m_frame_buffer->Unbind();
14 glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
15
16 glUseProgram(m_shader->

GetShaderProgram());
17 glUniform1i(m_shader->

GetUniformLocation("RayEnd"), 0);
18 glUniform1i(m_shader->

GetUniformLocation("VolumeData"),
1);

19 glUniform3f(m_shader->
GetUniformLocation("TextureSize")
, p_volume_data->GetSizeX(),
p_volume_data->GetSizeY(),
p_volume_data->GetSizeZ());

20
21 glActiveTexture(GL_TEXTURE0);
22 glBindTexture(GL_TEXTURE_2D,

m_frame_buffer->GetColorBuffer())
;

23 glActiveTexture(GL_TEXTURE1);
24 glBindTexture(GL_TEXTURE_BUFFER,

p_volume_data->GetTexture());
25
26 glEnable(GL_CULL_FACE);
27 glCullFace(GL_FRONT);
28 cube.Draw();
29 glDisable(GL_CULL_FACE);
30
31 glUseProgram(0);
32 glutSwapBuffers();
33 }

Fig. 8. GLUTDisplay function

VI. EVALUATION AND DISCUSSION

A. Conditions for Evaluation

To evaluate the proposed framework, we used 3D finite-
difference time-domain (FDTD) electromagnetic simulation
kernel[4] as a simulation model. In this electromagnetic sim-
ulation, characteristics of a microstrip antenna for vehicles
are obtained. The simulated grid size is (224, 212, 96) and
single precision floating point arithmetic is used. The sizes
of a drawing space and a viewport for the volume rendering
were set to (256, 256, 256) and (512, 512), respectively. The

Eye point

VoxelFront

Back

Image plane

Volume data

Fig. 9. Overview of volume rendering

simulation time step was set to 15,000, which is enough to
calculate characteristics of the target antenna.

The implementations are carried out on a GeForce GTX
580, which has GF110 GPU core architecture with 512 CUDA
cores and 3-GB GDDR5 memory. We used 3.40-GHz Core
i7-2600K CPU with 16-GB DDRIII-1066 memory as the host
PC. The proposed framework was developed and executed in
software environment with CUDA 4.2, OpenGL 4.2.0, g++
4.6.2., and OpenSUSE 12.1. Figure 10 shows an example
screenshot of execution results for the evaluated simulator.

B. Evaluation of the Interoperability Mechanism

In order to evaluate the effect of the interoperability mech-
anism between CUDA and OpenGL on visualization perfor-
mance, we implemented the same framework without the in-
teroperability APIs and compared the performance. Figure 11
shows relationship between target FPS and measured FPS for
both of the implementations. Here, the target FPS means a
visualization speed set by the user and the measured FPS
shows the visualization speed that was actually achieved by
the framework. When we did not utilize the interoperability
mechanism for CUDA and OpenGL, measured FPS was
saturated at around 7.0 FPS. Meanwhile, the highest measured
FPS of 90 FPS was achieved by using the interoperability
APIs. This corresponds to a 12.9 times speedup.

C. Impact of Visualization Process on Simulation Performance

Next, we evaluated how the visualization process affected
the execution time of the simulation by changing the target
FPS. Figure 12 shows the measured results. In this figure,
the execution time of the simulator without the visualization
is also illustrated as “Without visualization”. Without the
interoperability APIs, a severe slowdown was shown when

the target FPS exceeded 5 FPS. Meanwhile, the simulation
performance was not largely affected by the target FPS when
the interoperability APIs were utilized. Interestingly, unlike
the visualization performance in the case of Figure 11, we did
not find any radical changes in the simulation performance
around 90 FPS. These results suggest that our multi-threading
approach was successfully introduced to prevent the simula-
tion performance from being interfered by the visualization
performance.

D. Effect of Visualization Process

Compared to the performance of the simulation without the
visualization process, the simulation time on our framework
was degraded by 15.8 % for 60 FPS, which is a common
visualization speed most people feel smooth. The main reason
of this overhead is that computing resources on the GPU
are allocated not only to the simulation kernel but also to
the visualization process. Actually, the overhead was slightly
increased as the target FPS increases as shown in Figure 12.
The effect of the interoperability APIs were remarkable also
for the simulation performance, showing an approximately 6
times speedup.

E. Effect of GPU Acceleration

We also compared the performance of the 3D-FDTD sim-
ulation with a CPU-based implementation, in order to reveal
the effect of GPU acceleration. The same simulation algorithm
was implemented on the PC system described in Section VI-A
without using the GPU. While parallel processing with multi-
core, multi-thread and SIMD instructions were not used in this
implementation, the code was optimized considering the cache
structure. Figure 13 shows the comparison results. Even with
the use of visualization facilities, still 28.8 times speedup was
obtained by the GPU acceleration. In this context, we think
the visualization overhead of 15.8 % is reasonably acceptable
in compensation for increased productivity of application
development.

F. Memory Usage

Our framework introduced the triple-buffering technique
which needs a relatively large memory space on the GPU.
The total memory requirement MTotal for the triple-buffering
can be shown as:

MTotal = Nv × Nc × St × Nb

where Nv , Nc, St and Nb are the number of voxels in
the drawing space, the number of color channels for each
voxel, the size of drawing data type in bytes, the number of
buffers, respectively. In this implementation, Nv = 2563 and
Nc = 4 since the RGBA color channel format was used. In
this implementation, St = 4 since the single precision floating
point arithmetic was used and Nb = 3 because of the triple-
buffering, the total required size is 768 MB. On the other
hand, the size of device memory on the GPU required by the
FDTD kernel for this experimentation was 205.1 MB. Since
the evaluated GPU has a 3 GB GDDR5 memory capacity, the

Fig. 10. Visualized execution results of 3D-FDTD electromagnetic simulation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

M
ea

su
re

d
F

P
S

 Target FPS

With interoperability APIs
Without interoperability APIs

Fig. 11. Target FPS and measured FPS

usage rate is about 31 %. Therefore, also in terms of the device
memory capacity, the triple-buffering technique was shown to
be effective for practical simulation tasks.

VII. CONCLUSION

In this paper, we presented design and implementation of
a fast runtime visualizer for a GPU-based 3D-FDTD electro-
magnetic simulation in order to increase the productivity of
simulation development without compromising on simulation
performance. The visualizer was designed with a software
architecture pattern called the MVC model, so that general ver-
satility was retained. By introducing the interoperability mech-
anism between OpenGL and CUDA, simulation results calcu-
lated by CUDA kernels are efficiently passed to programmable
shaders, making high-throughput volume rendering possible.
Multi-threading execution model was also introduced to offer
a simple control flow to application developers and to prevent
mutual performance interference between simulation kernels
and visualization process.

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
]

 Target FPS

With interoperability APIs
Without interoperability APIs

Without visualization

Fig. 12. Target FPS and execution time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
]

 Target FPS

With interoperability APIs
Without visualization
CPU implementation

Fig. 13. Comparison of execution time

As a result of visualization experiments of a 3D-FDTD
electromagnetic simulation for practical antenna characteriza-
tion analysis, it was demonstrated that the maximum rendering
throughput of 90 FPS was achieved for a viewport of 512×512
pixels. This result was a 12.9 times speedup compared to
when the OpenGL-CUDA interoperability mechanism was not
utilized. For the common visualization throughput of 60 FPS,
the overhead of execution time imposed by the visualization
process was 15.8 %. Since a 28.8 times speedup was obtained
by GPU acceleration compared to a CPU-based implemen-
tation still in this case, this visualization overhead would be
justified in terms of productivity.

Our challenging future work includes evaluation of the
visualizer in terms productivity. Although it is difficult to
evaluate the productivity in a quantitative way, some indirect
assessments would be possible and worthy to try. Adding
further visualization options and schemes is also important
to increase the versatility of the visualizer.

REFERENCES

[1] K. Yee, “Numerical solution of initial boundary value problems involv-
ing Maxwell’s equations in isotropic media,” IEEE Trans. on antennas

and propagation, vol. 14, no. 3, pp. 302–307, 1966.
[2] A. Taflove and M. E. Brodwin, “Numerical solution of steady-state

electromagnetic scattering problems using the time-dependent Maxwell’s
equations,” IEEE Trans. on Microwave Theory and Techniques, vol. 23,
no. 8, pp. 623–630, 1975.

[3] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick, “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 4:1–4:12.

[4] D. Keisuke, Y. Shibata, K. Oguri, and T. Fujimoto, “Implementation
of a gpu-oriented absorbing boundary condition for 3d-fdtd electromag-
netic simulation,” IEICE TRANSACTIONS on Information and Systems,
vol. 95, no. 12, pp. 2787–2795, 2012.

[5] A. Sidelnik, S. Maleki, B. Chamberlain, M. Garzaran, and D. Padua,
“Performance portability with the chapel language,” in Proc. of IEEE
International Parallel & Distributed Processing Symposium (IPDPS),
2012, pp. 582–594.

[6] Y. Liu, E. Z. Zhang, and X. Shen, “A cross-input adaptive framework
for gpu program optimizations,” in Proc. of IEEE International Parallel
& Distributed Processing Symposium (IPDPS), 2009, pp. 1–10.

[7] E. J. M. NORIEGA and T. NARUMI, “High performance n-body
simulation and visualization through cuda architecture,” Bulletin of the
University of Electro-Communications, vol. 24, no. 1, pp. 59 – 64, 2012.

[8] A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker, “A streaming narrow-
band algorithm: interactive computation and visualization of level sets,”
vol. 10, no. 4, 2004, pp. 422–433.

[9] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, and T. Ertl, “Hier-
archical visualization and compression of large volume datasets using
gpu clusters,” in Proc. of Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV), 2004, pp. 41–48.

[10] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A simple and flexible
volume rendering framework for graphics-hardware-based raycasting,”
in Proc. of the Fourth Eurographics / IEEE VGTC Conference on Volume
Graphics (VG), 2005, pp. 187–195.

[11] Z. Fan, F. Qiu, and A. E. Kaufman, “Zippy: A framework for compu-
tation and visualization on a gpu cluster,” vol. 27, no. 2, pp. 341–350,
2008.

[12] E. Gobbetti, F. Marton, and J. A. Iglesias Guitian, “A single-pass gpu
ray casting framework for interactive out-of-core rendering of massive
volumetric datasets,” The Visual Computer, vol. 24, no. 7, pp. 797–806,
2008.

[13] P. Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in Proceedings of 2nd Workshop on General Purpose Pro-
cessing on Graphics Processing Units, ser. GPGPU-2. New York, NY,
USA: ACM, 2009, pp. 79–84.

[14] D. Shreiner, M. W. J. Neider, and T. Davis, “OpenGL programming
guide: The official guide to learning OpenGL version2 (5th Edition),”
2006.

[15] Y. Kanamori, Z. Szego, and T. Nishita, “Gpu-based fast ray casting for
a large number of metaballs,” in Computer Graphics Forum, vol. 27,
no. 2. Wiley Online Library, 2008, pp. 351–360.

