1	Wounds with complicated shapes tend to develop infection					
2	during negative pressure wound therapy					
3						
4	Masaki Fujioka, M.D., Ph.D.					
5	Kenji Hayashida, M.D.					
6	Chikako Senjyu, M.D.					
7	Dr. Fujioka is the Clinical Professor of the Department of Plastic and Reconstructive Surgery					
8	Nagasaki University, Nagasaki, Japan, and Director of the Department of Plastic and Reconstructive					
9	Surgery Clinical Research Center, National Hospital Organization Nagasaki Medical Center,					
10	Nagasaki, Japan.					
11	Drs. Murakami and Hayashida are staff surgeons of the Department of Plastic and Reconstructive					
12	Surgery, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan.					
13	Address correspondence to: Fujioka Masaki, M.D., Ph.D.					
14	Department of Plastic and Reconstructive Surgery,					
15	National Hospital Organization Nagasaki Medical Center.					
16	1001-1 Kubara 2 Ohmura City, Japan, postal code 856-8562					
17	Tel. +81-0957-52-3121 Fax. +81-0957-54-0292					
18	E-mail mfujioka@nmc.hosp.go.jp					
19						
20						

1	Abstract						
2	Introduction: While negative pressure wound therapy (NPWP) has been shown to be useful, we						
3	felt that patients with wounds of complicated shapes were likely to develop infection during						
4	performing NPWT. We conducted an investigation to determine the factors of wound shape						
5	responsible for the occurrence of infection. Materials and Methods: A total of 55 patients with						
6	wounds were treated using NPWT in our unit in 2011. Eight whose wounds formed a pocket, 7						
7	whose wounds were deep, and 40 whose wounds did not come under the above 2 types were						
8	eligible for this retrospective study. Results: Fifteen patients (27.3%) with NPWT showed a relapse						
9	of local infection. Six of the 8 patients (75.0%) in the wound with pocket group, 5 of the 7 (71.4%) in						
10	the deep wound group, and 4 of the 40 (10.0%) in the other wounds developed infection. The wound						
11	infection development ratio of the wound with pocket and deep wound groups was significantly						
12	higher than that of the other wound group. Conclusion: Wounds with complicated shapes are more						
13	likely to develop infectious complications during the management of NPWT. More careful						
14	observation is required when negative pressure therapy is used for wounds with a complicated						
15	shape.						
16							
17	Highlights: Wounds with complicated shapes are likely to develop infection during						
18	NPWT.						
19	Key words: Wounds with complicated shapes, wound infection, negative pressure wound therapy,						
20	vacuum-assisted closure therapy, wound geometry						

- 1 Abbreviations :
- 2 Negative pressure wound therapy, NPWT
- 3
- 4 Acknowlegments:none.
- $\mathbf{5}$
- 6 Running head: Complicated wound geometry develop infection during NPWT

 $\mathbf{7}$

1	Introduction
2	Negative pressure wound therapy (NPWT) of infected wounds has recently gained popularity
3	among various surgical specialties [1-3]. This system is based on the application of negative
4	pressure by controlled suction to the wound surface. The effectiveness of the NPWT for
5	microcirculation and the promotion of granulation tissue proliferation owing to removing
6	excessive exudates, increasing blood flow, and decreasing bacterial colonization has been
7	verified. Thus, it has allowed uncomplicated wounds to heal quickly [4]. However, it
8	sometimes leads to local wound infection, including: erythema, swelling, increased pain,
9	exudates or pus, and fever, which can cause long-term distress for the patient, increase the
10	hospitalization time, and, consequently, decrease the quality of life. In our experience, we
11	have seen an increased tendency of wounds with complicated shapes to develop infection
12	during NPWT.
13	The present study investigates this by comparing patients who underwent NPWT with deep
14	wounds, wounds with large pockets, and shallow wounds without pockets.
15	Patients and Methods
16	NPWT has been employed in our department since 2011 as a device to bridge the period between
17	debridement and definite surgical closure in full-thickness wounds. A total of 575 patients with
18	wounds (acute wounds: 345, chronic wounds: 230) were treated in the Department of Plastic and
19	Reconstructive Surgery, National Organization Nagasaki Medical Center, in 2011. Of these
20	patients, 55 underwent negative pressure wound therapy using the Vacume-Assisted Closure

1	System (V.A.C.ATS®, KCI Inc. San Antonio,TX, USA). Wound diagnoses of patients who								
2	received NPWT are shown in Figure 1. All participants received surgical debridement, as well as								
3	nutrition and hemodynamic support. After debridement, cleansing and wet-to-dry dressing or								
4	continuous irrigation were performed for several days. After recognizing symptoms of infection								
5	disappeared, subatmospheric pressure (125 mmHg below ambient) was applied and transmitted to								
6	the wound continuously using a pump. We used black foam. In cases wounds formed a pocket								
7	with over-hanging skin, the form was not inserted to the pocket, but laid over the area of ulcer to stick								
8	the inner wall of pocket firmly each other.								
9	The dressing foam was usually changed every 48 hours; however, this varied depending on the								
10	presence of infection. As no wounds showed inflammatory signs at the initiation of NPWT, no								
11	patients were administered antibiotics during NPWT use. The diagnosis of wound infection was								
12	based on the clinical signs and symptoms of the patient, including: erythema or skin discoloration,								
13	edema, warmth, induration, increased pain, purulent wound exudate, elevated temperature, and								
14	elevated white blood cell count.								
15	Of these patients, 8 whose wounds formed a pocket with more than 1 cm of over-hanging skin								
16	(wound with pocket group), 7 whose wounds were deep, extending to the bone or penetrating into								
17	the muscle (deep wound group), and 40 whose shallow wounds were without a pockets (other								
18	group) were eligible for this retrospective study (Figure 2). In this study, wound with pocket group								
19	was defined as having a more than 1 cm of over-hanging skin to differentiate wounds with pocket								

1	from those with thick rolled wound margin, but without undermining pocket. All information was							
2	obtained from patients' medical records, examination, and interview at the first examination.							
3	Results							
4	Fifteen of the 55 patients (27.3%) with NPWT showed a relapse of local infection. Patients							
5	developing infection ranged in age from 31 to 84 years (mean age, 57.5 years), and patients without							
6	infection ranged in age from 8 to 95 years (mean age, 51.5 years) (no significant difference,							
7	Wilcoxon rank sum test). The etiology of wounds in patients with and without wound infection is							
8	shown in Table 1. There was no significant difference between the groups for each cause of							
9	wound (p>0.05, Chi-square test). The locations of wounds in patients with and without wound							
10	infection are shown in Table 2. There was no significant difference between the groups in each							
11	wound location (p>0.05, Chi-square test). Complications which may influence the development of							
12	infection, such as diabetes mellitus, renal failure, collagen disease, cancer, and steroid usage, in							
13	patients with and without wound infection are shown in Table 3. There was no significant difference							
14	between the groups for each complication (p>0.05, Chi-square test).							
15	Six of the 8 patients (75.0%) in the wound with pocket group, 5 of the 7 (71.4%) in the deep wound							
16	group, and 4 of the 40 (10.0%) in the other group developed infection. The patients' sex, age,							
17	characters of wounds, location, and the interval between the start of NPWT and the development of							
18	infection are shown in the Table 4. The mean number of negative pressure wound therapy							
19	treatment days was 10 (range: 1 to 19). The wound infection development ratio of the wound with							

1	pocket and other group revealed a significant difference (p<0.01, chi-square test). That of the deep							
2	wound and other group also revealed a significant difference (p<0.05, chi-square test).							
3	Discussion							
4	NPWT has become a widely accepted device to assist in optimizing the management of open							
5	wounds [1-3, 5]. The application of controlled subatmospheric pressure promotes wound healing							
6	by removing excessive exudates, increasing blood flow, and decreasing bacterial colonization [4, 6].							
7	However, with the widespread use of this technique, some related complications after and during							
8	NPWT have been described, including: wound infection due to sponge retention, massive bleeding,							
9	infectious erosion of aorta, and severe soft tissue infection [17-10]. Our study showed that 27.3%							
10	of patients with NPWT had relapsed local infection. According to the wound shapes, wounds with							
11	complicated shapes were significantly more likely to develop infection compared to those with a							
12	simple shape.							
13	Generally, all open wounds have bacteria and many wounds involve colonization, and the amount of							
14	bacteria can be minimized through adequate cleaning of the wound, absorption of drainage, and							
15	debridement if necessary [11]. Mouës et al. performed a clinical trial to compare the efficacy of							
16	vacuum therapy with conventional moist gauze therapy, and concluded that vacuum therapy does							
17	not decrease the number of bacteria colonizing the wound. ⁴ When a bacterial colony develops in							
18	an open wound during NPWT, it can be controlled by the removal of exdate, improvement of blood							
19	supply, and stimulation of the cellular proliferation of reparative granulation tissue [12]. However,							
20	these benefits of NPWT may cause the growth of a bacterial colony, resulting in the wound infection							

1	in cases involving complicated shapes. The proliferation of granulation and tight contact owing to
2	the negative pressure facilitate early wound adhesion, especially, in the inner wall of a pocket and
3	narrow fistulae of a deep wound. This phenomenon may confine the bacterial colony to the
4	granulation, which can represent a focus of infection, because an entrapped bacterial colony cannot
5	be cleansed and exudate cannot be drained. Consequently, wound infection develops as the
6	bacterial colony worsens to the critical colonization level (Figure 3). The same mechanism is
7	thought to be a cause of deep wound infection. When early closure of the superficial layer of a
8	deep wound occurs due to insufficient insertion of the sponge, the entrapped bacterial colony will
9	induce wound infection (Figure 4). Citak et al. reported a case of necrotizing fasciitis in a patient
10	who underwent NPWT for the treatment of a deep pressure ulcer, and concluded that the use of
11	NPWT for grade four sores may have deleterious consequences for the patient [10]. This
12	complication also developed in a case with a deep wound. The sponge should be inserted into the
13	pocket while not allowing the walls to adhere to reduce the risk of wound infection. Besides, if foam
14	removal is not performed properly, a retained piece of sponge may also result in a focus of wound
15	infection (Figure 4) [4]. Careful washing and observation are required at dressing change.
16	We believe that only careful inspection on dressing change and the clinical monitoring of patients'
17	conditions may prevent such local infection. We are not of the opinion that NPWT should never be

19 wet-to-dry dressing or irrigation, and surgical debridement if necessary should be performed

1	following discontinuation of NPWT. Negative pressure wound therapy with continuous irrigation							
2	should be recommended for the treatment of wounds with complicated shapes at first.							
3	Conclusion							
4	NPWT technique is a straightforward and effective means of wound management. However,							
5	complicated shapes of wound are more likely to develop infectious complications during the							
6	management of NPWT. More careful wound observation is required to discover the signs of infection							
7	in an early stage.							
8								
9	Disclosures: This manuscript has not benefited from any source of funding support or grant, and the							
10	authors have no conflicting financial interest.							
11	Ethical Considerations: The procedures were in accordance with the Ethical Standards and Internal							
12	Review Board of our institutional committee (National Hospital Organization Nagasaki Medical							
13	Center) on human experimentation in 2011.							

1		References
2	1) E	apat V, El-Muttardi N, Young C,et al. Experience with Vacuum-assisted closure of sternal
3	v	ound infections following cardiac surgery and evaluation of chronic complications associated
4	v	vith its use.J Card Surg. 23 (2008)227-233.
5	2)	Canavese F, Krajbich JI.Use of vacuum assisted closure in instrumented spinal deformities
6		for children with postoperative deep infections.Indian J Orthop. 44 (2010)177-183.
7	3)	Tamhankar AP, Ravi K, Everitt NJ.Vacuum assisted closure therapy in the treatment of mesh
8		infection after hemia repair.Surgeon. 7(2009)316-318.
9	4)	Moues CM, van den Bemd GJ, Heule F, Hovius SE. Comparing conventional gauze therapy to
10		vacuum-assisted closure wound therapy: a prospective randomised trial. J Plast Reconstr
11		Aesthet Surg. 60⊗2007)672–681.
12	5)	Argenta, L., & Morykwas, M. Vacuum-assisted closure: A new method for wound control and
13		treatment. Clinical experience. 38(1997)5 63-576.
14	6)	Greer SE, Duthie E, Cartolano B, et al. Techniques for applying subatmospheric pressure
15		dressing to wounds in difficult regions of anatomy.J Wound Ostomy Continence Nurs.
16		26(1999)250-253.
17	7)	Saeed MU, Kennedy DJ.A retained sponge is a complication of vacuum-assisted closure
18		therapy.Int J Low Extrem Wounds. 6(2007)153-154.

1	8)	Kiessling AH, Lehmann A, Isgro F, Moritz A. Tremendous bleeding complication after				
2		vacuum-assisted sternal closure. J Cardiothorac Surg. 6(2011)16.				
3	9) Grauhan O, Navarsadyan A, Hussmann J, Hetzer R.Infectious erosion of aorta ascender					
4		during vacuum-assisted therapy of mediastinitis. Interact Cardiovasc Thorac Surg.				
5		11(2010)493-494.				
6	10)	Citak M, Backhaus M, Meindl R, et al. Rare complication after VAC-therapy in the treatment				
7		of deep sore ulcers in a paraplegic patient. Arch Orthop Trauma Surg. 130(2010)1511-1514.				
8	11)	Schultz GS, Sibbald RG, Falanga V,et al. Wound bed preparation: a systematic approach to				
9		wound management.Wound Repair Regen. 11 Suppl 1(2003)S1-28.				
10	12)	Mehbod AA, Ogilvie JW, Pinto MR, et al.Postoperative deep wound infections in adults after				
11		spinal fusion: management with vacuum-assisted wound closure. J Spinal Disord Tech.				
12		18(2005)14-17.				

1 Legends

- 2 Table 1: The cause of wounds in patients with and without wound infection
- 3 Table 2: The location of wounds in patients with and without wound infection
- 4 Table 3: The complications which influence on development of infection in patients with and without
- 5 wound infection
- 6 Table 4: Cases of wound infection development during NPWT
- 7 Figure 1: Wound diagnosis in patients who received NPWT (N=55)
- 8 Figure 2: Wound shape in patients who received NPWT
- 9 Figure 3: Mechanism of infection development in wounds with a pocket during NPWT
- 10 Figure 4: Mechanism of infection development in deep wounds during NPWT

Table 1.

The cause of wounds in patients with and without wound infection

	Pressure	Infection	Trauma	Ischemia	Chronic
	ulcer	meeten	Inddind	Isenemia	ulcer
Infection (15)	6	6	1	1	1
Non-infection (40)	9	14	11	3	3

Table 2.

The location of wounds in patients with and without wound infection

	Buttock	Extrimities	Trunk
Infection (15)	7	6	2
Non-infection (40)	7	26	6

Table 3.

The complications which influence on development of infection in patients with and without wound infection

	Diabetes	Renal	Collagen	Cancer	Steroid
	mellitus	failure	disease	Cancer	usage
Infection (15)	8	1	1	3	1
Non-infection (40)	17	2	4	8	4

Table 4.

Cases of wound infection development during NPWT

	Shape					NPWT
Case	of	Sex	Age	Wound	Location	duration
	wound					(days)
1	Pocket	М	75	Pressure ulcer	Sacrum	15
2	Pocket	М	31	Pressure ulcer	Ischial tuberosity	19
3	Pocket	М	57	Pressure ulcer	Ischial tuberosity	14
4	Pocket	F	78	Sacral pressure ulcer	Sacrum	11
5	Pocket	М	43	Abscess	lliopsoas	8
6	Pocket	М	54	Pressure ulcer	Sacrum	12
7	Deep	F	40	Oteomyelitis	Trochanter	10
8	Deep	F	72	Post-surgical wound infection	Abdomen	1
9	Deep	F	74	Oteomyelitis	Foot	11
10	Deep	М	61	Intra-muscular abscess	Thigh	10
11	Deep	F	54	Gas gangrene	Leg	3
12	Others	М	8	Laceration	Knee	14
13	Others	F	88	Ischemic necrosis	тое	11
14	Others	М	70	Chronic ulcer	Leg	8
15	Others	М	65	Pressure ulcer	Heel	12

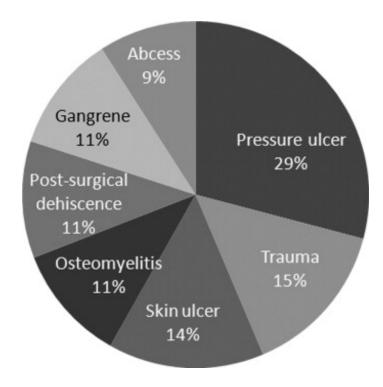
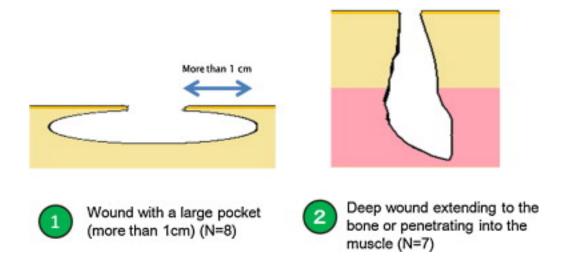
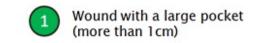
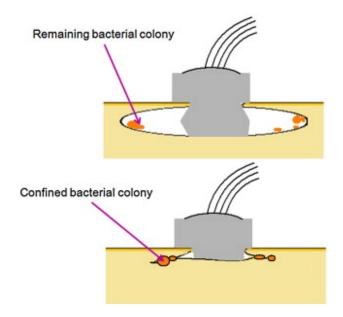
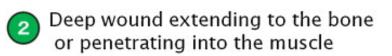





Figure 1: Wound diagnosis in patients who received NPWT (N=55)



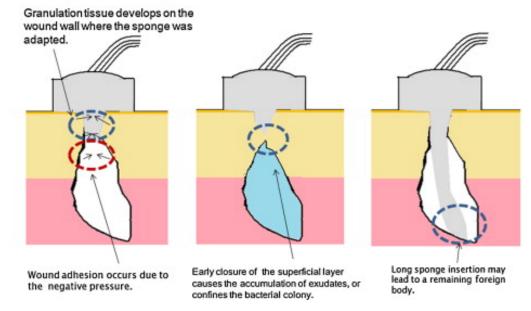

Figure 2: Wound shape in patients who received NPWT

Figure 3: Mechanism of infection development in wounds with a pocket during NPWT

Figure 4: Mechanism of infection development in deep wounds during NPWT