Molecular Cell, Volume 53

Supplemental Information

Largen: A Molecular Regulator

of Mammalian Cell Size Control

Kazuo Yamamoto, Valentina Gandin, Masato Sasaki, Susan McCracken, Wanda Li, Jennifer Liepa Silvester, Andrew J. Elia, Feng Wang, Yosuke Wakutani,
Roumiana Alexandrova, Yathor D Oo, Peter Mullen, Satoshi Inoue, Momoe Itsumi, Valentina Lapin, Jillian Haight, Andrew Wakeham, Arda Shahinian, Mitsuhiko Ikura, Ivan Topisirovic, Nahum Sonenberg, and Tak W. Mak

D

$\begin{array}{ll}-\operatorname{Rap}(-) / \operatorname{Dox}(-) & \text { — } \operatorname{Rap}(-) / \operatorname{Dox}(+) \\ — \operatorname{Rap}(+) / \operatorname{Dox}(-) \quad \text { Rap (+)/Dox (+) }\end{array}$

- Unsorted - Single cell clone
..... Unsorted + RAP
.... Single cell clone + RAP
- Single cell clone + DOX
- Single cell clone + RAP + DOX

E

Figure S1, related to Figure 1

(A) Rapamycin (RAP) induces cell size reduction. Jurkat cells were cultured in the presence of 20 nM RAP for 1, 2 or 3 days and cell size distribution was determined by flow cytometry. Inset numbers are the mean cell diameter for each group. Δ, calculated \% difference between RAP-treated and untreated cells. (B) Repeated sorting increases the "stay-large" population in bulk cell clones. Solid black lines represent the size distribution of unsorted control cells. Solid red lines in the $1^{\text {st }}$ Sort columns represent the size distribution of RAP-treated cells. The top $<2 \%$ largest cells were isolated ($1^{\text {st }}$ Sort) from among these RAP-treated cells and expanded in culture until they reached $>1 \times 10^{7}$. RAP treatment was repeated and the top $<2 \%$ largest cells were again recovered by flow cytometric sorting ($2^{\text {nd }}$ Sort). These steps were repeated two more times to generate the $3^{\text {rd }}$ and $4^{\text {th }}$ Sorts. (C) Flow cytometric measurement of the cell size distribution of bulk clones after the $4^{\text {th }}$ sorting cycle $\left(\right.$ RF2 $/ 4^{\text {th }}$) and culture in the absence $(-)$ or presence $(+)$ of RAP and/or DOX, as indicated. (D) Different single cell clones show different cell size responses to RAP. Solid and dashed grey lines represent size distributions of parental Jurkat cells in the absence or presence of RAP, respectively. Solid and dashed black lines represent size distributions of representative single cell clones in the absence or presence of RAP, respectively. Red and green lines indicate size distributions of single cell clones treated with DOX in the absence or presence of RAP, respectively. (E) Comparison of cell volumes of G1 phase-gated cells. Control and Largen-O/E cells were gated to detect cells in G1 phase, and cell volumes were measured electronically.

A
B

- Vector
_ Myc-PRR16

E

_ siCONTROL
siPRR16\#3
siPRR16\#3

G
siCONTROL

C

$$
\frac{R a p}{\text { Vec }} \frac{-\quad+}{\mathrm{L} 1} \frac{-\quad+}{\mathrm{L} 2}
$$

F

Figure S2, related to Figure 2

(A) Immunoblot of cell lysates prepared from Jurkat cells stably transformed by infection with retrovirus expressing GFP (lane 1) or GFP-Largen (PRR16) fusion protein (lane 2). The indicated proteins were detected using anti-GFP antibody. (B) Flow cytometric determination of cell size distribution of (top) HeLa cells transiently transfected with plasmid expressing Myc-tagged Largen or vector control, and (bottom) 293T cells stably transformed with Myc-tagged Largen or vector control. Inset numbers are the mean forward scatter (FSC) values for each group. (C) Cell volumes of two independent 293T cell clones overexpressing Prr16 (L1 and L2), as well as a control clone transformed with the empty vector (Vec), cultured with/without RAP. Numbers are the mean cell volume in picolitres \pm SD of 3 independent measurements using a Moxi Z cell counter. (${ }^{*} p<0.05$, ** $p<0.001$) (D) Semi-quantitative RT-PCR of total RNA prepared from untransfected U2-OS cells (-) or U2-OS cells transfected with non-targeting control siRNA (C), or one of 4 PRR16/Largen siRNAs, each of which targeted a different site in the PRR16/Largen mRNA (\#1-\#4). Unless otherwise noted, siRNA\#3 was used for all experiments described in the main text. (E) Flow cytometric measurement of cell size distribution of (top) HeLa and (bottom) 293T cells transiently transfected with siRNA against PRR16/Largen (\#3) or with non-targeting siControl. Inset numbers are the mean FSC values for each group. (F) Cell volumes of Jurkat cells transiently transfected with siRNA against PRR16/Largen (\#3) or with non-targeting siControl. Numbers are the mean cell volume in picolitres \pm SD of 4 independent measurements using a Moxi Z cell counter. (${ }^{*} p<0.05$) (G) Flow cytometric
determination of apoptosis of U2-OS cells transfected with siRNA\#3 against PRR16/Largen or with non-targeting siControl. Transfected cells were incubated with FITC-conjugated Annexin V followed by staining with propidium iodide (PI).

Figure S3, related to Figure 2

Comparison of the primary structures of Largen proteins among vertebrates. Amino acid sequences of human Largen and its orthologues from chimpanzee, rat, mouse, zebrafish, bovine, and chick are aligned. A dash ‘-‘ indicates that the orthologue has the same amino acid present in the same position as the human sequence. Differences in amino acids at a given position are shown for each orthologue. A gap indicates that there is no corresponding amino acid in the human sequence at the position where an orthologue has an extra amino acid or vice versa. Prolines are marked in red in the human sequence and in yellow in the orthologue sequences.

A

Figure S4, related to Figure 3

(A) Phosphorylation status of molecules in the mTOR signaling pathway. Jurkat and 2D10 cells were serum-starved overnight in the absence (-) or presence (+) of DOX. Cells were further treated for 1 hr with vehicle (-), RAP (Rap, 20 nM), or LY294002 (LY, $50 \mu \mathrm{M}$) prior to stimulation by serum. Lysates were prepared either before (0') or after 30 min incubation and immunoblotted as described above. α-tubulin, loading control. (B) Immunoblot of proteins eluted from anti-Myc Ab-conjugated beads that were incubated with lysates of 293T cells transfected with empty vector (Vector), or plasmid expressing Myc-tagged Largen (myc-LARGEN) or Myc-tagged PRAS40 (myc-PRAS40; control). Proteins in the input, and proteins eluted from the beads using Myc-peptides, are shown for each lysate. β-actin, loading control. Results are representative of 3 experiments.

Figure S5, related to Figure 4

(A) UV absorption profiles of ribosomes from control and Largen-O/E cells. Cytoplasmic extracts were fractionated by sucrose gradient sedimentation with continuous monitoring of absorbance at 254 nm . Fractions containing light polysomes (1-3 ribosomes per mRNA molecule) or heavy polysomes (>4 ribosomes per mRNA) were collected and applied to microarray analysis. Results are expressed as arbitrary units (AU) and are representative of multiple sedimentations. (B) Pie graph representation of 251 transcripts enriched in heavy polysome fractions of 2D10 cells as determined by differential microarray analysis of the fractions in (A). Transcripts are categorized by primary biological function. Numbers are the number of genes in each category. (C) Polysome profiles of control and Largen-O/E cells cultured in the presence of RAP. Measurement and analysis were performed as in (A). (D) The intensity of each band in the immunoblots in Figure 4C was quantitated by Image-J and the values were normalized against that of α-tubulin. Results are the mean \pm SD of values relative to untreated controls $(n>3) .\left({ }^{*} p<0.05,{ }^{* *} p<0.001\right)$. (E) Immunoblot of the indicated mitochondrial proteins in extracts of purified mitochondria from control or 2D10 cells with/without DOX. Results are representative of >3 trials.

A

B

C

D

Figure S6, related to Figure 7

(A) Growth rate in cultures of (left) Jurkat, 2D10 and 3B3 cells, and (right) 293T clones stably transformed with empty vector (V7) or plasmid expressing Myc-tagged Largen (L1 and L2). Cell density was measured daily. Data are the mean \pm SD of >3 independent measurements. (B) Cell volumes (left) and proliferation rates (right) of Jurkat and 2D10 cells cultured in glucose-depleted medium with/without DOX. Data are the mean \pm SD of 3 independent experiments. (**p<0.001). (C) Cell cycle analysis of Jurkat and 2D10 cells treated with/without DOX. Cells were seeded at $2.5 \times 10^{5} / \mathrm{ml}$ and cultured overnight in the presence (+) or absence (-) of $1 \mu \mathrm{~g} / \mathrm{ml}$ DOX. The percentages of the total cell population that were in the G0-G1, S or G2/M phases were determined by flow cytometry. Results are the mean percentage of two independent assays. (D) Protein degradation profiles of parental 293T cells, 293T cells stably transformed with control plasmid (V1), and three independent 293T clones stably transformed with Myc-tagged Largen (L1, L2, L3). Cells were cultured in labeling medium plus [${ }^{35}$ S]-methionine for 30 min as described in EXPERIMENTAL PROCEDURES. Labeled cells were washed and cultured in standard medium for the indicated times. Cell lysates were prepared and equal amounts of total protein were fractionated by SDS-PAGE followed by autoradiography. Relative amounts of [${ }^{35}$ S]-methionine-labeled proteins were quantitated by densitometric scanning with Image-J. The relative density of radiolabeled proteins in each lane was normalized to that of the initial (time 0) sample for each cell line.

Table S1 Identification and mapping of the candidate genes in single cell clones, related to Figure 1

Screen	ERM-tag	Clone ID	Intergenic integration ${ }^{*}$	Intragenic integration	CC ${ }^{\text {2 }}$
Pilot	RF2	$\begin{array}{\|l\|l\|} \hline 1 \mathrm{~A} 2 \\ 1 \mathrm{C} 2 \\ 2 \mathrm{~A} 1 \\ 2 \mathrm{~A} 2 \\ 2 \mathrm{~B} 1 \\ 2 \mathrm{~B} 4 \\ \hline \end{array}$	Myc proto-oncogene protein / Gasdermin-C Myc proto-oncogene protein / Gasdermin-C POU class 5 homeobox 1B/myc proto-oncogene protein Myc proto-oncogene protein / Gasdermin-C	C1orf186 Cellular nucleic acid-binding protein isoform 1	$\begin{aligned} & \hline 8 q 24.2 \\ & 1 q 32.1 \\ & 8 q 24.2 \\ & 8 q 24.21 \\ & 3 q 21 \\ & 8 q 24.2 \\ & \hline \end{aligned}$
		$\begin{aligned} & 2 C 1 \\ & 2 D 10 \\ & 3 B 2 \\ & 3 B 3 \\ & 3 B 4 \\ & \hline \end{aligned}$	Proline-rich protein 16 / Ferritin mitochondrial Prostaglandin D2 receptor 2 / Zona pellucida glycoprotein 1 Proline-rich protein 16 / Ferritin mitochondrial POU class 5 homeobox 1B / myc proto-oncogene protein	Triple functional domain protein	$\begin{array}{\|l} \hline 5 q 15.2 \\ 5 q 23.1 \\ 11 q 12.2 \\ 5 q 23.1 \\ 8 q 24.21 \\ \hline \end{array}$
Core	Normal1	$\begin{aligned} & \hline 1 \mathrm{C} 6 \\ & \text { 1D2 } \\ & \hline \end{aligned}$		Down syndrome critical region protein 3 GNPTAB	$\begin{array}{\|l\|} \hline 21 q 22.2 \\ 12 q 23.2 \\ \hline \end{array}$
	Normal2	$\begin{array}{\|l\|} \hline 1 \mathrm{~A} 1 \\ 1 \mathrm{~B} 6 \\ \text { 1C1 } \\ \text { 2B5 } \\ \hline \end{array}$	NACC family member 2 / C9orf69 Myc proto-oncogene protein / Gasdermin-C CD83 / Jumonji, AT rich interactive domain 2 protein	Adenylate cyclase activating polypeptide 1	$\begin{array}{\|l} 9 q 34.3 \\ 8 q 24.2 \\ 6 p 23 \\ 18 p 11 \\ \hline \end{array}$
	Normal3	$\begin{aligned} & 1 \mathrm{~A} 1 \\ & 1 \mathrm{~A} 3 \\ & 1 \mathrm{~B} 5 \\ & 1 \mathrm{C} 1 \\ & 1 \mathrm{C} 2 \\ & 1 \mathrm{D} 1 \\ & \hline \end{aligned}$	Methionine adenosyltransferase II, beta / Teneurin-2	Mucin 4 Myocyte-specific enhancer factor 2C isoform 1 PR domain containing 8 Metastasis-associated protein MTA1 Myocyte-specific enhancer factor 2C isoform 1	$\begin{aligned} & \hline 3 q 23 \\ & 5 q 14 \\ & 4 q 21 \\ & 5 q 34 \\ & 14 q 32.3 \\ & 5 q 14 \\ & \hline \end{aligned}$
	NLS1	$\begin{array}{\|l\|} \hline 1 \mathrm{~A} 6 \\ \text { 1D5 } \\ \text { 1B2 } \\ \text { 1D1 } \\ \text { 1D3 } \\ \text { 2A6 } \\ \hline \end{array}$	Rho GDP-dissociation inhibitor 2 / Phosphodiesterase 6H Rho GDP-dissociation inhibitor 2 / Phosphodiesterase 6H Gamma-glutamyltransferase light chain 1 / SYNDIG1 C12orf70 / Liprin-beta-1 isoform 4 C11orf96 / ACCSL	Cytohesin 1	$\begin{array}{\|l\|} \hline 12 \mathrm{p} 13 \\ 12 \mathrm{p} 13 \\ 17 \mathrm{q} 25 \\ 20 \mathrm{p} 11 \\ 12 \mathrm{p} 12 \\ 11 \mathrm{p} 11.2 \\ \hline \end{array}$
	NLS2	$\begin{array}{\|l\|} \hline \text { 1B6 } \\ \text { 1C4 } \\ \text { 1D1 } \\ \hline \end{array}$	MYCN/FAM49A Proline-rich protein 16 / Ferritin mitochondrial	Topoisomerase (DNA) II alpha 170kDa	$\begin{array}{\|l\|} \hline 2 q 24.2 \\ 5 q 23.1 \\ 17 q 21 \\ \hline \end{array}$
	NLS3	$\begin{aligned} & \hline \text { 1D1 } \\ & \text { 2A5 } \\ & \text { 2C1 } \\ & \hline \end{aligned}$	Myc proto-oncogene protein / Gasdermin-C	Nuclear receptor interacting protein 1 CDC28 protein kinase regulatory subunit 1B	$\begin{array}{\|l\|} \hline 21 q 11.2 \\ 1 q 21.2 \\ 8 q 24.2 \\ \hline \end{array}$
	MEM1	$\begin{array}{\|l} \hline 1 \mathrm{~A} 3 \\ 1 \mathrm{~A} 5 \\ 1 \mathrm{~A} 6 \\ 1 \mathrm{~B} 2 \\ \text { 2D6 } \\ \hline \end{array}$	C1orf229 / Zinc finger protein 124	Slingshot homolog 2 Cryptochrome 1 ELOVL fatty acid elongase 5 Keratin 1	$1 q 44$ $17 q 11.2$ $12 q 23$ $6 p 21.1$ $12 q 13.13$
	MEM2	$\begin{array}{\|l\|} \hline \text { 1C6 } \\ \text { 1D1 } \\ \text { 1D5 } \\ \hline \end{array}$		MOB kinase activator 3A Solute carrier family 43 , member 2 Hexamethylene bis-acetamide inducible 1	$\begin{array}{\|l\|} \hline 19 p 13.3 \\ 17 \mathrm{p} 13.3 \\ 17 \mathrm{q} 21.31 \\ \hline \end{array}$
	MEM3	$\begin{aligned} & 1 \mathrm{~A} 2 \\ & 1 \mathrm{~B} 3 \\ & 1 \mathrm{~B} 4 \\ & 1 \mathrm{~B} 5 \\ & 1 \mathrm{C} 1 \\ & 1 \mathrm{C} 2 \\ & 1 \mathrm{C} 6 \\ & \hline \end{aligned}$	FYN binding protein / Complement component 9 FYN binding protein / Complement component 9	Defensin, beta 4A FERM domain containing 4B FYN binding protein FYN binding protein FYN binding protein	8p23.1 3p14.1 5p13.1 5p13.1 5p13.1 5p13.1 5p13.1

[^0]| Gene Symbol | EntrezGene ID | ProbeName | GenbankAccession | Description | FCAbsolute | p-value | logFC RNA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Histones | | | | | | | |
| H1FX | 8971 | A_23_P96087 | NM_006026 | H1 histone family, member X (H1FX), mRNA [NM_006026] | 3.87687 | 0.0047091 | 0.003404416 |
| H2AFJ | 55766 | A_24_P236003 | NM_177925 | H2A histone family, member J (H2AFJ), transcript variant 2, mRNA [NM_177925] | 4.7487535 | 0.002603759 | 78236 |
| нзғ3в | 3021 | A_23_P152516 | NM_005324 | H3 histone, family 3B (H3.3B) (H3F3B), mRNA [NM_005324] | 3.7573144 | 5.21E-05 | 0.092142511 |
| HIST1H1C | 3006 | A_23_P122443 | NM_005319 | histone cluster 1, H1c (HIST1H1C), mRNA [NM_005319] | 6.4905505 | 0.00348125 | 0.3 |
| HIST1H1D | 3007 | A_24_P260639 | NM_005320 | histone cluster 1, H1d (HIST1H1D), mRNA [NM_005320] | 4.631392 | 0.003491658 | 0.27904298 |
| HIST1H2AB | 8335 | A_24_P223384 | NM_003513 | histone cluster 1, H2ab (HIST1H2AB), mRNA [NM_003513] | 5.941576 | 016 | 0.307751065 |
| HIST1H2AC | 8334 | A_23_P372860 | NM_003512 | histone cluster 1, H2ac (HIST1H2AC), mRNA [NM_003512] | 9.26241 | 0.005724356 | 0.084224222 |
| HIST1H2AD | 3013 | A_23_P428184 | NM_021065 | histone cluster 1, H2ad (HIST1H2AD), mRNA [NM_021065] | 6.2743306 | 0.001889621 | -0.103736596 |
| HIST1H2AE | 2 | A_23_P59045 | NM_021052 | histone cluster 1, H2ae (HIST1H2AE), mRNA [NM_021052] | 4.3202634 | 0.005601537 | -0.017556739 |
| HIST1H2AH | 85235 | A_23_P81859 | NM_080596 | histone cluster 1, H2ah (HIST1H2AH), mRNA [NM_080596] | 5.948902 | 0.007667313 | 0.475197631 |
| HIST1H2AK | | A_24_P217848 | NM_003510 | histone cluster 1, H2ak (HIST1H2AK), mRNA [NM_003510] | 7.610374 | 0.003799502 | -0.012348964 |
| HIST1H2AM | 8336 | A_24_P86389 | NM_003514 | histone cluster 1, H2am (HIST1H2AM), mRNA [NM_003514] | 5.9595294 | 0.008196656 | 0.338437496 |
| HIST1H2BD | 3017 | A_24_P146211 | NM_021063 | histone cluster 1, H2bd (HIST1H2BD), transcript variant 1, mRNA [NM_021063] | 4.247539 | 0.011999182 | 0.019796474 |
| HIST1H2BE | 8344 | A_23_P40470 | NM_003523 | histone cluster 1, H2be (HIST1H2BE), mRNA [NM_003523] | 4.2729325 | 0.002672735 | 0.302068077 |
| HIST1H2BG | 339 | A_23_P167997 | NM_003518 | histone cluster 1, H2bg (HIST1H2BG), mRNA [NM_003518] | 4.501325 | 0.007847901 | -0.257993148 |
| HIST1H2BI | 8346 | A_23_P111041 | NM_003525 | histone cluster 1, H2bi (HIST1H2BI), mRNA [NM_003525] | 3.9637601 | 0.003272965 | -0.383257748 |
| HIST1H2BL | 8340 | A_23_P8013 | NM_003519 | histone cluster 1, H2bl (HIST1H2BL), mRNA [NM_003519] | 4.291472 | 0.009281887 | 0.044985383 |
| HIST1H2BM | 8342 | A_24_P3783 | NM_003521 | histone cluster 1, H2bm (HIST1H2BM), mRNA [NM_003521] | 3.988967 | 0.002465271 | -0.275218894 |
| HIST1H2BN | 8341 | A_23_P402081 | NM_003520 | histone cluster 1, H2bn (HIST1H2BN), mRNA [NM_003520] | 4.3840466 | 0.010517041 | -0.065151793 |
| HIST1H3B | 8358 | A_24_P174924 | NM_003537 | histone cluster 1, H3b (HIST1H3B), mRNA [NM_003537] | 9.451302 | 0.003595352 | -0.148710017 |
| HIST1H3C | 8352 | A_23_P133814 | NM_003531 | histone cluster 1, H3c (HIST1H3C), mRNA [NM_003531] | 4.7221613 | 0.004147666 | 0.06954691 |
| HIST1H3D | 8351 | A_24_P217834 | NM_003530 | histone cluster 1, H3d (HIST1H3D), mRNA [NM_003530] | 9.012119 | 0.008122187 | 0.127656124 |
| HIST1H3G | 8355 | A_23_P42198 | NM_003534 | histone cluster 1, H3g (HIST1H3G), mRNA [NM_003534] | 6.084677 | 0.011490446 | 0.172193562 |
| HIST1H31 | 8354 | A_24_P9321 | NM_003533 | histone cluster 1, H3i (HIST1H31), mRNA [NM_003533] | 4.908716 | 0.001970914 | 0.115697593 |
| HIST2H2AA3 | 8337 | A_23_P309381 | NM_003516 | histone cluster 2, H2aa3 (HIST2H2AA3), mRNA [NM_003516] | 7.234894 | 0.001999636 | 0.156047113 |
| HIST2H2AB | 317772 | A_24_P68631 | NM_175065 | histone cluster 2, H2ab (HIST2H2AB), mRNA [NM_175065] | 5.14886 | 0.009893297 | -0.230590403 |
| HIST2H2AC | 8338 | A_24_P8721 | NM_003517 | histone cluster 2, H2ac (HIST2H2AC), mRNA [NM_003517] | 8.251695 | 0.004336114 | -0.332275715 |
| HIST2H2BE | 8349 | A_24_P156911 | NM_003528 | histone cluster 2, H2be (HIST2H2BE), mRNA [NM_003528] | 4.568563 | 0.010834846 | -0.163684688 |
| HIST2H3A | 333932 | A_23_P115375 | NM_001005464 | histone cluster 2, H3a (HIST2H3A), mRNA [NM_001005464] | 13.457071 | 0.003003158 | N.I. |
| HIST3H2A | 2815 | A_23_P149301 | NM_033445 | histone cluster 3, H2a (HIST3H2A), mRNA [NM_033445] | 6.1659255 | 0.009170881 | -0.139142341 |
| HIST3H2BB | 128312 | A_23_P332992 | NM_175055 | histone cluster 3, H2bb (HIST3H2BB), mRNA [NM_175055] | 4.0308 | 0.003272943 | 0.943382169 |
| HIST3H3 | 8290 | A_23_P137909 | NM_003493 | histone cluster 3, H3 (HIST3H3), mRNA [NM_003493] | 7.293737 | $2.98 \mathrm{E}-04$ | -0.882899372 |
| HIST4H4 | 121504 | A_23_P388871 | NM_175054 | histone cluster 4, H4 (HIST4H4), mRNA [NM_175054] | 12.452248 | $8.03 \mathrm{E}-04$ | |
| LOC440093 | 440093 | A_32_P12214 | NM_001013699 | similar to H3 histone, family 3B (LOC440093), mRNA [NM_001013699] | 4.569646 | 1.84E-06 | 0.05925017 |
| Mitochondrial Proteins | | | | | | | |
| AFG3L2 | 10939 | A_32_P117338 | NM_006796 | AFG3 ATPase family gene 3 -like 2 (yeast) (AFG3L2), mRNA [NM _006796] | 3.7661774 | 0.00134532 | 0.925972262 |
| C12orf65 | 91574 | A_23_P339003 | NM_152269 | chromosome 12 open reading frame 65 (C12orf65), mRNA [NM_152269] | 3.9480476 | 3.13E-04 | -0.037543333 |
| CHCHD3 | 54927 | A_32_P159150 | NM_017812 | coiled-coil-helix-coiled-coil-helix domain containing 3 (CHCHD3), mRNA [NM_017812] | 3.5508165 | 0.012479872 | -0.044155526 |
| COQ4 | 51117 | A_24_P389491 | NM_016035 | coenzyme Q4 homolog (S. cerevisiae) (COQ4), mRNA [NM_016035] | 3.7592945 | 2.66E-04 | 0.150944543 |
| CYB5B | 80777 | A_23_P206697 | NM_030579 | cytochrome b5 type B (outer mitochondrial membrane) (CYB5B), mRNA [NM_030579] | 4.4442697 | 0.002271432 | -0.009484903 |
| DHRS4 | 10901 | A_23_P162982 | NM_021004 | dehydrogenase/reductase (SDR family) member 4 (DHRS4), mRNA [NM_021004] | 3.7148697 | 0.002045734 | 0.13558824 |
| ECH1 | 1891 | A_23_P153853 | NM_001398 | enoyl Coenzyme A hydratase 1, peroxisomal (ECH1), mRNA [NM_001398] | 4.5474977 | 0.00141372 | 0.179311318 |
| ENDOGL1 | 9941 | A_24_P24444 | NM_005107 | endonuclease G-like 1 (ENDOGL1), mRNA [${ }^{\text {a M }}$-005107] | 5.0326395 | 0.004892046 | 0.018150387 |
| ERAL1 | 26284 | A_23_P71981 | NM_005702 | Era G-protein-like 1 (E. coli) (ERAL1), mRNA [NM_005702] | 3.5932307 | 7.37E-04 | 0.002852379 |
| GRPEL1 | 80273 | A_24_P174563 | NM_025196 | Grpe-like 1, mitochondrial (E. coli) (GRPEL1), mRNA [NM_025196] | 4.5121446 | 2.95E-04 | 0.306687816 |
| MLYCD | 23417 | A_23_P88817 | NM_012213 | malonyl-CoA decarboxylase (MLYCD), mRNA [NM_012213] | 7.3015447 | 0.002779396 | -0.288203997 |
| MRPL3 | 11222 | A_23_P7030 | NM_007208 | mitochondrial ribosomal protein L3 (MRPL3), mRNA [NM_007208] | 5.576191 | 0.003042849 | 0.210408669 |
| MRPL38 | 64978 | A_23_P54963 | NM_032478 | mitochondrial ribosomal protein L38 (MRPL38), mRNA [NM_032478] | 3.774992 | 0.003000696 | -0.024578551 |
| MRPL49 | 740 | A_23_P138819 | NM_004927 | mitochondrial ribosomal protein L49 (MRPL49), mRNA [NM_004927] | 5.9330945 | 3.67E-04 | 0.241870942 |
| MRPS11 | 64963 | A_24_P935318 | NM_022839 | mitochondrial ribosomal protein S11 (MRPS11), mRNA [NM_022839] | 3.7820513 | 0.007972163 | -0.052741851 |
| NDUFS5 | 4725 | A_23_P10463 | NM_004552 | NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa, mRNA [NM_004552] | 5.196022 | 1.76E-04 | -0.094677741 |
| PDI | 5165 | A_23_P250478 | NM_005391 | pyruvate dehydrogenase kinase, isozyme 3 (PDK3), mRNA [${ }^{\text {a M _005391] }}$ | 4.045194 | 8.71E-04 | 0.244788039 |
| PECR | 5582 | A_23_P91140 | NM_018441 | peroxisomal trans-2-enoyl-CoA reductase (PECR), mRNA [NM_018441] | 3.5095732 | 1.20E-04 | -0.127270831 |
| SDHC | 6391 | A_24_P233850 | NM_003001 | succinate dehydrogenase complex, subunit C, 15kDa (SDHC), mRNA [NM_003001] | 3.9940686 | 0.001516132 | -0.237860906 |
| SH3BP5 | 9467 | A_24_P148750 | NM_004844 | SH3-domain binding protein 5 (BTK-associated) (SH3BP5),mRNA [NM_004844] | 4.2188463 | 0.003000793 | 0.42225273 |

SBP1	6742	A_23_P31536	\|NM_003143	single-stranded DNA binding protein 1 (SSBP1), mRNA [NM_003143]	3.5105083	3.05E-04	-0.331059187
TFAM	19	A_24_P134727	NM_003201	transcription factor A, mitochondrial (TFAM), mRNA [NM_003201]	3.647071	51E-0	-0.157639354
томм 34	10953	A_23_P57033	NM_006809	translocase of outer mitochondrial membrane 34 (TOMM34), mRNA [NM_006809]	6.9714594	3.74E-04	. 33241783
Mm40	10452	A_24_P178093	NM_006114	translocase of outer mitochondrial membrane 40 homolog, mRNA [NM_006114]	4.6797104	0.004695755	186
TTC19	02	A_24_P126393	NM_017775	tetratricopeptide repeat domain 19 (TC19), mRNA [NM_017775]	4.35522	0.002828887	-0.050970013
Vesicular Transport							
AP2M1	1173	A_23_P155624	NM_004068	adaptor-related protein complex 2, mu 1 subunit (AP2M1), mRNA [NM_004068]	3.5457442	0.01031662	-0.100125098
ARF	377	A_23_P36521	NM_001659	ADP-ribosylation factor 3 (ARF3), mRNA [NM_001659]	4.039595	2.22	. 092200104
ATP6V1D	51382	A_23_P140115	NM_015994	ATPase, $\mathrm{H}+$ transporting, lysosomal 34kDa, V1 subunit D (ATP6V1D), mRNA [NM_015994]	3.6205635	$5.20 \mathrm{E}-05$	-0.1
CHMP7	91782	A_32_P70220	NM_152272	CHMP family, member 7 (CHMP7), mRNA [NM_152272]	36	$5.32 \mathrm{E}-04$	0.2
COPE	11316	A_24_P399622	NM_199444	coatomer protein complex, subunit epsilon (COPE), transcript variant 3, mRNA [NM_199444]	5.664686	3.12E-04	0.056479237
DENND1B	163486	A_23_P201605	NM_144977	DENN/MADD domain containing 1B (DENND1B), mRNA [NM_144977]	4.927893	5.23E-04	0.585976807
GOLGA3	2802	A_23_P98864	NM_005895	golgi autoantigen, golgin subfamily a, 3 (GOLGA3), mRNA [NM_005895]	4.899892	0.001383066	-0.07094354
GOLPH2	51280	A_24_P394865	NM_016548	golgi phosphoprotein 2 (GOLPH2), transcript variant 1, mRNA [NM_016548]	4.9918213	8.62E-04	0.051037511
GORASP2	26003	A_24_P328320	NM_015530	golgi reassembly stacking protein $2,55 \mathrm{kDa}$ (GORASP2), mRNA [NM_015530]	4.6763873	2.44-04	0.371436299
LAPTM4B	55353	A_24_P414999	NM_018407	Iysosomal associated protein transmembrane 4 beta (LAPTM4B), mRNA [NM_018407]	4.750426	0.001584326	-0.228927305
NAP	8775	A_23_P55990	NM_003827	N-ethylmaleimide-sensitive factor attachment protein, alpha (NAPA), mRNA [NM_003827]	5.545775	4.41E-04	0.126750582
RAB1B	876	A_23_P64090	NM_030981	RAB1B, member RAS oncogene family (RAB1B), mRNA [NM_030981]	7.8021164	. 07477358	-0.750527084
RAB21	1	A_24_P247749	NM_014999	RAB21, member RAS oncogene family (RAB21), mRNA [NM_014999]	7.293949	0.002303502	0.295678876
RAB5C	5878	A_23_P107211	NM_201434	RAB5C, member RAS oncogene family (RAB5C), transcript variant 1, mRNA [NM_201434]	4.1075897	0.001544687	0.146006932
RAB7A	789	A_24_P234572	NM_004637	RAB7A, member RAS oncogene family (RAB7A), mRNA [NM_004637]	5.5856795	$5.86 \mathrm{E}-04$	-0.069336447
SCAMP2	0066	A_23_P385081	NM_005697	secretory carrier membrane protein 2 (SCAMP2), mRNA [NM_005697]	3.9955194	$5.63 \mathrm{E}-04$	-0.18358624
SCAMP3	0067	A_23_P97274	NM_052837	secretory carrier membrane protein 3 (SCAMP3), transcript variant 2, mRNA [NM_052837]	3.5104465	2.30E-04	0.122917478
SFT2D2	375035	A_23_P148785	NM_199344	SFT2 domain containing 2 (SFT2D2), mRNA [NM_199344]	3.840829	05326902	-0.126058272
SNX17	9784	A_23_P28238	NM_014748	sorting nexin 17 (SNX17), mRNA [NM_014748]	549111	0.012332906	-0.191836146
STX18	3407	A_24_P388622	NM_016930	syntaxin 18 (STX18), mRNA [NM_016930]	3.641451	7.37E-04	-0.274393366
TRAPPC6A	7909	A_24_P390928	NM_024108	trafficking protein particle complex 6A (TRAPPC6A), mRNA [NM_024108]	3.7415912	3.54E-05	0.587678106
VAPA	9218	A_23_P382199	NM_003574	VAMP (vesicle-associated membrane protein)-associated protein A, 33kDa, mRNA [NM_003574]	3.5910416	0.002880531	-0.148040567
vPS39	23339	A_23_P100103	NM_015289	vacuolar protein sorting 39 homolog (S. cerevisiae) (VPS39), mRNA [NM_015289]	4489408	0.006613969	0.770155558
Cell Cycle							
CBX5	23468	A_23_P2355	NM_012117	chromobox homolog 5 (HP1 alpha homolog, Drosophila) (CBX5), mRNA [NM_012117]	4.150486	2.95E-05	-0.033699817
CDK6	1	A_23_P168651	NM_001259	cyclin-dependent kinase 6 (CDK6), mRNA [NM_001259]	7.8250427	0.001233212	-0.002011879
MAPK1	94	A_23_P257895	NM_138957	mitogen-activated protein kinase 1 (MAPK1), transcript variant 2, mRNA [NM_138957]	3.5353088	2.61E-04	-0.247222475
MAPK14	1432	A_24_P397566	NM_139013	mitogen-activated protein kinase 14 (MAPK14), transcript variant 3, mRNA [NM_139013]	3.903526	0.002112991	-0.203185847
PTMA	5757	A_24_P264207	NM_002823	prothymosin, alpha (gene sequence 28) (PTMA), mRNA [NM_002823]	10.714185	3.79E-04	-0.251064844
Ran	5901	A_32_P506600	NM_006325	RAN, member RAS oncogene family (RAN), mRNA [NM_006325]	4.397727	1.53E-04	-0.092000636
RHOA	387	A_24_P174550	NM_001664	ras homolog gene family, member A (RHOA), mRNA [NM_001664]	5.449942	0.002297695	0.103015448
RUVBL1	8607	A_32_P30693	NM_003707	RuvB-like 1 (E. coli) (RUVBL1), mRNA [NM_003707]	3.947765	0.009505489	0.106850576
SCAND1	51282	A_23_P6196	NM_016558	SCAN domain containing 1 (SCAND1), transcript variant 1, mRNA [NM_016558]	3.852981	4.39E-04	0.003989829
SEPT2	4735	A_24_P43092	NM_001008491	septin 2 (SEPT2), transcript variant 1, mRNA [NM_001008491]	4.463853	0.00208986	0.271663537
SMEK1	55671	A_24_P369691	NM_032560	SMEK homolog 1, suppressor of mek1 (Dictyostelium) (SMEK1), mRNA [NM_032560]	3.9156673	0.002503073	-0.213158833
STK4	6789	A_23_P143199	NM_006282	serine/threonine kinase 4 (STK4), mRNA [NM_006282]	3.5498006	7.61E-04	-0.240837343
TIMELESS	8914	A_24_P231004	NM_003920	timeless homolog (Drosophila) (TIMELESS), mRNA [NM_003920]	4.95406	0.002980027	0.325204334
YWHAB	7529	A_23_P500251	NM_003404	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta polypeptide, mRNA [NM_003404]	3.8492427	4.76E-05	0.124945406
Transcription							
AFF4	27125	A_24_P394408	NM_014423	AF4/FMR2 family, member 4 (AFF4), mRNA [NM_014423]	5.251953	0.002908462	-0.275774495
LCOR	444	A_23_P328836	NM_032440	ligand dependent nuclear receptor corepressor (LCOR), mRNA [NM_032440]	3.5043979	0.0040297	-0.08703071
MGC29891	126626	A_24_P191207	NM_144618	hypothetical protein MGC29891 (MGC29891), mRNA [NM_144618]	4.77659	0.001411601	0.15723534
NR1H2	7376	A_23_P55926	NM_007121	nuclear receptor subfamily 1, group H, member 2 (NR1H2), mRNA [NM_007121]	3.866714	0.001633707	0.024037451
NXN	64359	A_23_P61778	NM_022463	nucleoredoxin (NXN), mRNA [NM_022463]	4.837317	7.17E-04	0.438540439
REXO4	5710	A_23_P157861	NM_020385	REX4, RNA exonuclease 4 homolog (S. cerevisiae) (REXO4), mRNA [NM_020385]	4.2764845	7.08E-04	0.136332191
SCYI	57410	A_23_P75470	NM_020680	SCY1-like 1 (S. cerevisiae) (SCYL1), transcript variant A, mRNA [NM_020680]	3.5090451	0.004178692	0.070811768
SETD7	80854	A_23_P80966	NM_030648	SET domain containing (lysine methyltransferase) 7 (SETD7), mRNA [NM_030648]	8.036785	0.011688318	-0.231608287
SMARCD1	6602	A_23_P204745	NM_139071	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, mRNA [NM_139071]	4.0041122	0.007162517	-0.159161725
SSBP3	236	A_24_P375453	NM_001009955	single stranded DNA binding protein 3 (SSBP3), transcript variant 3, mRNA [NM_001009955]	3.734599	0.011738982	-0.280069375
TMEM113	80335	A_24_P388536	NM_025222	transmembrane protein 113 (TMEM113), mRNA [NM_025222]	3.783626	0.005087834	-0.187407351
ZXDC	80292	A_24_P922397		ZXD family zinc finger C (ZXDC), transcript variant 2, mRNA [NM_001040653] Agilent	4.018627	1.49E-04	-0.198037002
Cytosckeleton Organization							
AAMP		A_23_P56529	\|NM_001087	angio-associated, migratory cell protein (AAMP), mRNA [NM_001087]	3.6952455	0.001701752	-0.497122693

\|ARHGDIB	397	A_23_P151075	NM_001175	Rho GDP dissociation inhibitor (GDI) beta (ARHGDIB), mRNA [NM_001175]	6.1358	5.05E-05	-0.156837872
ARPC4	10093	A_23_P29566	NM_005718	actin related protein $2 / 3$ complex, subunit 4, 20kDa (ARPC4), transcript variant 1, mRNA [NM_005718]	5.1617007	0.001829339	0.00080338
C6orf206	221421	A_24_P52189	AK055407	cDNA FU30845 fis, clone FEBRA2002727. [AK055407]	6.330771	0.003550302	-0.130088224
MAPRE2	0982	A_24_P193911	NM_014268	microtubule-associated protein, RP/EB family, member 2 (MAPRE2), mRNA [NM_014268]	8.343991	5.92E-04	-0.129261351
MYL6	4637	A_23_P344973	NM_079423	myosin, light chain 6, alkali, smooth muscle and non-muscle (MYL6), transcript variant 2, mRNA [NM_079423]	3.6509323	$1.55 \mathrm{E}-04$	-0.038605236
муо9в	4650	A_24_P922921	NM_004145	myosin IXB (MYO9B), mRNA [NM_004145]	5.3462934	4.27E-04	-0.165941073
PDPK1	5170	A_24_P830690	NM_002613	3 -phosphoinositide dependent protein kinase-1 (PDPK1), transcript variant 1, mRNA [NM_002613]	5.129891	1.32E-04	-0.367326597
PIP5K1A	8394	A_23_P23572	NM_003557	phosphatidylinositol-4-phosphate 5 -kinase, type I, alpha (PIP5K1A), mRNA [NM_003557]	4.061195	0.007036914	-0.094774677
TRIO	7204	A_24_P42603	NM_007118	triple functional domain (PTPRF interacting) (TRIO), mRNA [NM_007118]	3.5016432	0.001180741	108991931
TUBGCP2	10844	A_23_P127150	NM_006659	tubulin, gamma complex associated protein 2 (TUBGCP2), mRNA [NM_006659]	3.7539735	$2.49 \mathrm{E}-04$	0.127277631
RNA Processing							
ADAT1	23536	A_24_P48139	NM_012091	adenosine deaminase, tRNA-specific 1 (ADAT1), mRNA [NM_012091]	3.633133	0.00853758	-0.022681704
DCP2	167227	A_23_P256868	NM_152624	DCP2 decapping enzyme homolog (S. cerevisiae) (DCP2), mRNA [NM_152624]	4.8735456	$6.77 \mathrm{E}-04$	-0.121276001
EXOSC5	56915	A_24_P211151	NM_020158	exosome component 5 (EXOSC5), mRNA [NM_020158]	. 06311	04	- 18149941
HNRPAB	3182	A_23_P19084	NM_004499	heterogeneous nuclear ribonucleoprotein A/B (HNRPAB), transcript variant 2, mRNA [NM_004499]	5.0968943	0.002330112	N.I.
RNPS1	21	A_24_P725630	NM_006711	RNA binding protein S1, serine-rich domain (RNPS1), transcript variant 1, mRNA [NM_006711]	3.7806795	0.008888845	0.360513499
RPUSD3	285367	A_23_P255916	NM_173659	RNA pseudouridylate synthase domain containing 3 (RPUSD3), mRNA [NM_173659]	3.5483909	5.25E-04	0.299408828
SNRP	6628	A_23_P154675	NM_198216	small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB), transcript variant 1, mRNA [NM_198216]	3.792452	0.005617595	0.35746232
TNRC	23112	A_24_P786172	NM_015088	trinucleotide repeat containing 6B (TNRC6B), transcript variant 1, mRNA [NM_015088]	3.6123264	0.006184844	0.011847781
TSR2	121	A_23_P414269	NM_058163	TSR2, 20S rRNA accumulation, homolog (S. cerevisiae) (TSR2), mRNA [NM_058163]	3.9734452	0.001964119	-0.143831849
DR55	5485	A_24_P200549	NM_017706	WD repeat domain 55 (WDR55), mRNA [NM_017706]	4.4930825	0.001128758	-0.261034191
ZMATS	55954	A_23_P132248	NM_019103	zinc finger, matrin type 5 (ZMAT5), transcript variant 1, mRNA [NM_019103]	6.9478564	7.52E-04	-0.392138986
Tumorigenesis							
ABL1	25	A_24_P393711	NM_005157	v-abl Abelson murine leukemia viral oncogene homolog 1 (ABL1), transcript variant a, mRNA [NM_005157]	4.5879054	9.47E-04	9.47E-04
ANP32A	8125	A_32_P133670	NM_006305	acidic (leucine-rich) nuclear phosphoprotein 32 family, member A (ANP32A), mRNA [NM_006305]	61744	0.010472801	0.010472801
ANP32C	23520	A_23_P92520	NM_012403	acidic (leucine-rich) nuclear phosphoprotein 32 family, member C (ANP32C), mRNA [NM_012403]	6.3007956	0.005655	0.005655026
C6orf173	387103	A_32_P143245	NM_001012507	chromosome 6 open reading frame 173 (C6orf173), mRNA [NM_001012507]	5.9531865	71E-05	5
ENOX2	10495	A_24_P391468	NM_182314	cytosolic ovarian carcinoma antigen 1 (COVA1), transcript variant 2, mRNA [NM_182314]	3.8306012	01708381	01708381
PPP1CA	5499	A_23_P434710	NM_001008709	protein phosphatase 1, catalytic subunit, alpha isoform (PPP1CA), transcript variant 3, mRNA [NM_001008709]	. 696	0.00333480	0.098455499
PTOV1	53635	A_23_P325080	NM_017432	prostate tumor overexpressed gene 1 (PTOV1), mRNA [NM_017432]	4.7075696	4.43	-0.21950973
RAB8A	4218	A_23_P164752	NM_005370	RAB8A, member RAS oncogene family (RAB8A), mRNA [NM_005370]	4.5002646	0.00229918	-0.267841813
SELENBP1	8991	A_23_P74619	NM_003944	selenium binding protein 1 (SELENBP1), mRNA [NM_003944]	. 007956	5.61E-04	0.319437728
SKI	6497	A_24_P338603	NM_003036	V-ski sarcoma viral oncogene homolog (avian) (SK1), mRNA [NM_003036]	5.084857	0.008819896	0.407098105
Development							
CVR2B	93	A_23_P109950	NM_001106	activin A receptor, type IIB (ACVR2B), mRNA [NM_001106]	5561876	4.69E-04	4.69E-04
ADAMTS7	173	A_23_P37624	AF140675	zinc metalloprotease ADAMTS7 (ADAMTS7) mRNA, complete cds. [AF140675]	3.8011234	0.001162121	0.001162121
BBS5	2988	A_23_P5785	NM_152384	Bardet-Biedl syndrome 5 (BBS5), mRNA [NM_152384]	4.0974236	0.007936392	0.007936392
CREBB	1387	A_24_P342279	NM_004380	CREB binding protein (Rubinstein-Taybi syndrome) (CREBBP), transcript variant 1, mRNA [NM_004380]	4.289346	0.008835916	0.008835916
FGFR1	2260	A_24_P4171	NM_023111	fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, Pfeiffer syndrome), mRNA [NM_023111]	5.3067718	0.011039325	0.011039325
H0XA10	3206	A_24_P914411	S69027	HOX C6=class I homeodomain \{fragment M13, homeodomain\} [S69027]	3.803851	0.007220427	
TAOK1	57551	A_23_P38457	NM_020791	TAO kinase 1 (TAOK1), mRNA [NM_020791]	4.648342	3.21E-04	0.096721255
THRAP2	23389	A_24_P911508	NM_015335	thyroid hormone receptor associated protein 2 (THRAP2), mRNA [NM_015335]	5.411525	0.003208764	-0.001601489
TRIM44	54765	A_24_P192821	NM_017583	tripartite motif-containing 44 (TRIM44), mRNA [NM_017583]	3.55853	3.02E-04	-0.072582369
Apoptosis							
BOK	666	A_23_P61112	AF089746	Bcl-2 related ovarian killer (BOK) mRNA, complete cds. [AF089746]	3.7052493	0.00432121	0.00432121
C1D	10438	A_23_P56590	NM_006333	nuclear DNA-binding protein (C1D), transcript variant 1, mRNA [NM_006333]	3.5132194	1.311-04	1.311-04
DAD1	1603	A_23_P106056	NM_001344	defender against cell death 1 (DAD1), mRNA [NM_001344]	3.635886	3.32E-04	3.32E-04
DFFB	677	A_24_P370626	NM_001004285	DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated DNase), mRNA [NM_001004285]	5.925662	0.003967213	0.003967213
FAM82C	55177	A_24_P296280	NM_018145	family with sequence similarity 82, member C (FAM82C), mRNA [NM_018145]	4.3146267	0.005278487	0.005278487
MAP2K6	5608	A_24_P416489		Dual specificity mitogen-activated protein kinase kinase 6 (EC 2.7.12.2) (MAP kinase kinase 6) [ENST00000359094]	5.6349616	0.004105873	-0.293578389
MAP4K4	9448	A_23_P102192	NM_145686	mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), transcript variant 2, mRNA [NM_145686]	3.610419	0.008489762	-0.173558829
PDCL3	79031	A_32_P157531	NM_024065	phosducin-like 3 (PDCL3), mRNA [NM_024065]	3.736076	0.002133665	-0.067209927
Protein Degradation							
FBX036	130888	A_24_P254702	NM_174899	F-box protein 36 (FBXO36), mRNA [NM_174899]	3.8612113	7.82E-04	7.82E-04
HERC2	8924	A_23_P48973	NM_004667	hect domain and RLD 2 (HERC2), mRNA [NM_004667]	6.202575	0.003272481	0.003272481
HUWE1	10075	A_24_P932016	NM_031407	HECT, UBA and WWE domain containing 1 (HUWE1), mRNA [NM_031407]	3.765481	0.001565655	0.647979861
PSMD13	5719	A_23_P75889	NM_175932	proteasome (prosome, macropain) 265 subunit, non-ATPase, 13 (PSMD13), transcript variant 2, mRNA [NM_175932]	4.1500163	0.003752919	-0.125131845
PSME3	10197	A_24_P352864	NM_005789	proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; Ki), transcript variant 1, mRNA [NM_005789]	3.8185866	7.01E-04	0.210002213
SERPINB8	5271	A_24_P147461	NM_198833	serpin peptidase inhibitor, clade B (ovalbumin), member 8 (SERPINB8), transcript variant 2, mRNA [NM_198833]	4.107185	$8.53 \mathrm{E}-04$	-0.190785216

UBE2NL	389898	A_23_P350234	\|nm_001012989	\| ubiquitin-conjugating enzyme E2N-like (UBE2NL), mRNA [NM_001012989]	4.8517766	1.55E-05	-0.425252929
USP22	23326	A_23_P207068	BC110499	ubiquitin specific peptidase 22, mRNA (CDNA clone IMAGE:40027756), partial cds. [BC110499]	9.620007	0.001757989	0.239943214
Protein Folding							
AHSA1	10598	A_23_P117599	NM_012111	AHA1, activator of heat shock 90kDa protein ATPase homolog 1 (yeast) (AHSA1), mRNA [NM_012111]	4.744326	0.001122977	0.001122977
ASF1B	55723	A_23_P119254	NM_018154	ASF1 anti-silencing function 1 homolog B (S. cerevisiae) (ASF1B), mRNA [NM_018154]	3.5671954	$9.48 \mathrm{E}-05$	$9.48 \mathrm{E}-05$
dNajcs	22826	A_32_P157192	NM_014280	Dnaj (Hsp40) homolog, subfamily C, member 8 (DNAJC8), mRNA [NM_014280]	3.5431235	0.00625256	0.00625256
pfon 1	5201	A_32_P41127	NM_002622	prefoldin subunit 1 (PFDN1), mRNA [NM_002622]	4.1542726	0.005784741	0.096757483
PPIA	5478	A_32_P68459	NM_021130	peptidylprolyl isomerase A (cyclophilin A) (PPIA), mRNA [[M_021130]	4.4811387	1.95E-05	-0.515456986
PPIAL4	164022	A_32_P61061	NM_178230	peptidylprolyl isomerase A (cyclophilin A)-like 4 (PPIAL4), mRNA [NM_178230]	4.524395	1.31E-04	-0.359406777
Oxidative Stress							
GSTM4	2948	A_24_P396660	NM_147148	glutathione S-transferase M4 (GSTM4), transcript variant 2, mRNA [NM_147148]	4.5142026	0.001594553	0.001594553
PRDX1	5052	A_23_P11995	NM_002574	peroxiredoxin 1 (PRDX1), transcript variant 1, mRNA [NM_002574]	4.0355334	0.00231451	-0.053466491
PRDX2	7001	A_23_P142045	NM_005809	peroxiredoxin 2 (PRDX2), nuclear gene encoding mitochondrial protein, transcript variant 1, mRNA [NM_005809]	4.4623494	$8.69 \mathrm{E}-05$	0.251570318
SOD1	6647	A_23_P154840	NM_000454	superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult)) (SOD1), mRNA [NM_000454]	5.698108	4.87E-05	-0.020962833
TXNRD3	114112	A_32_P170925		Thioredoxin reductase 3 (Thioredoxin reductase TR2) (Fragment). [ENST00000360201]	4.0982194	0.007455865	
Translation							
DHPS	1725	A_23_P501887	NM_013407	deoxyhypusine synthase (DHPS), transcript variant 3, mRNA [NM_013407]	3.9081845	0.003835373	0.003835373
оонн	83475	A_23_P125408	NM_031304	deoxyhypusine hydroxylase/monooxygenase (DOHH), mRNA [NM_031304]	3.8361614	0.001960568	0.001960568
EIF1	10209	A_32_P53049	NM_005801	eukaryotic translation initiation factor 1 (EIF1), mRNA [NM_005801]	4.1642256	3.83E-04	3.83E-04
EIF4H	7458	A_24_P149390	NM_031992	eukaryotic translation initiation factor 4H (EIF4H), transcript variant 2, mRNA [NM_031992]	4.375157	0.007858049	0.007858049
PAIP2B	400961	A_24_P860797		CDNA FL37016 fis, clone BRACE2010632. [AK094335]	4.1392784	$2.67 \mathrm{E}-04$	N.I.
DNA Repair							
CINP	51550	A_23_P88134	NM_032630	cyclin-dependent kinase 2-interacting protein (CINP), mRNA [NM_032630]	5.064411	5.98E-05	5.98E-05
MGMT	4255	A_23_P104323	NM_002412	O-6-methylguanine-DNA methyltransferase (MGMT), mRNA [NM_002412]	3.5433805	2.48E-05	-0.042636253
NSMCE1	197370	A_23_P95823	NM_145080	non-SMC element 1 homolog (S. cerevisiae) (NSMCE1), mRNA [NM_145080]	3.512327	0.006473885	-0.28311469
TYMS	7298	A_23_P50096	NM_001071	thymidylate synthetase (TYMS), mRNA [NM_001071]	5.172912	6.59E-05	-0.029334326
Immune Function							
BST1	683	A_23_P7325	NM_004334	bone marrow stromal cell antigen 1 (BST1), mRNA [NM_004334]	4.3530526	0.009666925	0.009666925
DBNL	28988	A_24_P43681	NM_014063	drebrin-like (DBNL), transcript variant 1, mRNA [NM_014063]	4.0787334	0.001101922	0.001101922
TNIP1	10318	A_23_P19036	NM_006058	TNFAIP3 interacting protein 1 (TNIP1), mRNA [NM_006058]	4.310057	3.49E-04	-0.110491034
TYK2	7297	A_23_P141917	NM_003331	tyrosine kinase 2 (TYK2), mRNA [NM_003331]	4.161575	0.001457419	0.029139847
Cell Adhesion							
JAM3	83700	A_23_P217998	NM_032801	junctional adhesion molecule 3 (JAM3), mRNA [NM_032801]	3.6390152	0.01173648	-0.145035888
SH3PXD2A	9644	A_23_P345220	NM_014631	SH3 and PX domains 2A (SH3PXD2A), mRNA [NM_014631]	7.402252	0.005191974	-0.569549557
SPA17	53340	A_23_P104876	NM_017425	sperm autoantigenic protein 17 (SPA17), mRNA [NM_017425]	3.538727	0.001317423	0.49505745
Other Biological Processes							
ABHD11	83451	A_23_P362712	\|NM_148912	abhydrolase domain containing 11 (ABHD11), mRNA [NM_148912]	4.131526	3.22E-04	3.22E-04
ACOT8	10005	A_23_P143218	NM_005469	acyl-CoA thioesterase 8 (ACOT8), transcript variant 1, mRNA [NM_005469]	3.720359	$2.13 \mathrm{E}-06$	2.13E-06
ADA	100	A_23_P210482	NM_000022	adenosine deaminase (ADA), mRNA [NM _000022]	4.4052896	3.22E-04	3.22E-04
ADPRHL2	54936	A_23_P34568	NM_017825	ADP-ribosylhydrolase like 2 (ADPRHL2), mRNA [NM_017825]	3.6460505	0.009126779	0.009126779
aKR7A3	22977	A_23_P103968	NM_012067	aldo-keto reductase family 7 , member A3 (aflatoxin aldehyde reductase) (AKR7A3), mRNA [NM_012067]	3.9732635	$2.38 \mathrm{E}-04$	$2.38 \mathrm{E}-04$
ALDH3A2	4	A_23_P129896	NM_000382	aldehyde dehydrogenase 3 family, member A2 (ALDH3A2), transcript variant 2, mRNA [NM_000382]	4.423245	0.003354911	0.003354911
ATP6V1C2	245973	A_24_P276932	NM_144583	ATPase, $\mathrm{H}+$ transporting, lysosomal 42kDa, V1 subunit C2 (ATP6V1C2), transcript variant 2, mRNA [NM_144583]	3.7277849	0.009451731	0.009451731
C11orf60	56912	A_23_P116207	NM_020153	chromosome 11 open reading frame 60 (C11orf60), mRNA [NM_020153]	3.678062	0.003257254	0.003257254
CA8	7	A_23_P83838	NM_004056	carbonic anhydrase VIII (CA8), mRNA [NM_004056]	3.502614	0.00188713	0.00188713
CYB5R3	727	A_24_P100277	NM_007326	cytochrome b5 reductase 3 (CYB5R3), transcript variant S, mRNA [NM_007326]	3.940876	0.001437201	0.001437201
DHDH	27294	A_23_P67367	NM_014475	dihydrodiol dehydrogenase (dimeric) (DHDH), mRNA [NM_014475]	4.744879	2.37E-04	2.37E-04
GK5	256356	A_23_P347562	NM_001039547	glycerol kinase 5 (putative) (GK5), mRNA [NM_001039547]	3.8566892	0.008392108	0.008392108
GMPPB	29925	A_23_P92202	NM_021971	GDP-mannose pyrophosphorylase B (GMPPB), transcript variant 2, mRNA [NM_021971]	3.882554	0.002558592	0.002558592
GRAP	10750	A_23_P49638	NM_006613	GRB2-related adaptor protein (GRAP), mRNA [NM_006613]	4.054854	2.94E-05	2.94E-05
GRB2	2885	A_24_P39654	NM_002086	growth factor receptor-bound protein 2 (GRB2), transcript variant 1, mRNA [NM_002086]	4.5788116	0.003430953	0.003430953
IMPAD1	54928	A_24_P240732	NM_017813	inositol monophosphatase domain containing 1 (IMPAD1), mRNA [NM_017813]	6.9755464	$6.40 \mathrm{E}-04$	0.135935915
LYPLA2	11313	A_24_P276490	NM_007260	lysophospholipase II (LYPLA2), mRNA [NM_007260]	5.225022	0.008499536	-0.078183226
NECAP2	55707	A_24_P302332	NM_018090	NECAP endocytosis associated 2 (NECAP2), mRNA [NM _018090]	3.9905655	0.002929441	0.499318836
NUDT11	55190	A_24_P345002	NM_018159	nudix (nucleoside diphosphate linked moiety X)-type motif 11 (NUDT11), mRNA [NM_018159]	3.8240397	0.009355441	-0.06435149
ORST2	219464	A_24_P307785	AK098491	cDNA FL25625 fis, clone STM02974. [AK098491]	4.545266	$5.03 \mathrm{E}-05$	-0.140089893
PEBP1	5037	A_23_P13604	NM_002567	phosphatidylethanolamine binding protein 1 (PEBP1), mRNA [NM_002567]	5.396274	1.09E-04	0.241636996
PKD2	5311	A_23_P167324	NM_000297	polycystic kidney disease 2 (autosomal dominant) (PKD2), mRNA [NM_000297]	4.252228	0.001213257	-0.304167678
PNPO	55163	A_23_P89708	NM_018129	pyridoxamine 5'-phosphate oxidase (PNPO), mRNA [NM_018129]	6.484336	5.48E-05	-0.360310981

\|RBks	64080	A_23_P9523	\|NM_022128	\|ribokinase (RBKS), mRNA [NM_022128]	3.617256	0.001252149	0.286431955
SLC39A3	29985	A_24_P160460	NM_144564	solute carrier family 39 (zinc transporter), member 3 (SLC39A3), transcript variant 1, mRNA [NM_144564]	3.5092661	0.011392389	0.272708367
SNX8	29886	A_23_P414252	NM_013321	sorting nexin 8 (SNX8), mRNA [NM_013321]	3.5666678	$1.25 \mathrm{E}-04$	-0.30038026
TP11	7167	A_32_P95739	NM_000365	triosephosphate isomerase 1 (TP11), mRNA [NM _000365]	4.4984965	$1.42 \mathrm{E}-04$	0.445172593
WBSCR22	114049	A_23_P71014	NM_017528	Williams Beuren syndrome chromosome region 22 (WBSCR22), mRNA [NM_017528]	3.6100235	0.002973945	0.019936947
Function Unknown							
C17orf85	55421	A_24_P176572	NM_018553	chromosome 17 open reading frame 85 (C17orf85), mRNA [NM_018553]	4.0953345	8.10E-04	$8.10 \mathrm{E}-04$
C20orf196	149840	A_23_P401709	NM_152504	chromosome 20 open reading frame 196 (C20orf196), mRNA [NM_152504]	4.465778	8.07E-04	8.07E-04
C20orf199	441951	A_32_P157385	AK124175	cDNA FL42181 fis, clone THYMU2031368. [AK124175]	5.4482255	0.003258362	0.003258362
C20orf43	51507	A_24_P914590	BC002769	chromosome 20 open reading frame 43, mRNA (cDNA clone IMAGE:3615348), complete cds. [BC002769]	3.571246	6.65E-04	6.65E-04
C20orf77	490	A_23_P91207	NM_021215	chromosome 20 open reading frame 77 (C20orf77), mRNA [NM_021215]	6.0635233	0.009970715	0.009970715
C21orf56	84221	A_23_P371765	NM_032261	chromosome 21 open reading frame 56 (C21orf56), mRNA [NM_032261]	3.5951922	$2.55 \mathrm{E}-04$	$2.55 \mathrm{E}-04$
C3orf37	56941	A_23_P251377	NM_001006109	chromosome 3 open reading frame 37 (C3orf37), transcript variant 1, mRNA [NM_001006109]	3.54688	0.011563594	0.011563594
C9orf40	55071	A_24_P43876	NM_017998	chromosome 9 open reading frame 40 (C9orf40), mRNA [NM_017998]	4.304017	3.97E-04	3.97E-04
C9orf64	84267	A_23_P60339	NM_032307	chromosome 9 open reading frame 64 (C9orf64), mRNA [NM_032307]	4.6827483	0.001417922	0.001417922
CCDC32	416	A_32_P98975	NM_052849	coiled-coil domain containing 32 (CCDC32), transcript variant 2, mRNA [NM_052849]	3.7351253	0.002678538	0.002678538
СОMMD4	4939	A_23_P117767	NM_017828	COMM domain containing 4 (COMMD4), mRNA [NM_017828]	4.6958866	0.001497977	0.001497977
CTA-126B4.3	27341	A_23_P29303	NM_015703	CGI-96 protein (CGI-96), mRNA [NM_015703]	4.122841	5.37E-04	5.37E-04
DHRS4L1	728635	A_24_P903378		isolate 1261292 dehydrogenase/reductase SDR family member 4-like 1 mRNA, [GQ871922] Agilent	3.5196078	0.003623696	0.003623696
FAM102B	284611	A_24_P237927	NM_001010883	family with sequence similarity 102, member B (FAM102B), mRNA [NM_001010883]	3.6320534	0.003446399	0.003446399
FAM103A1	40	A_23_P65712	NM_031452	family with sequence similarity 103, member A1 (FAM103A1), mRNA [NM_031452]	4.145468	6.72E-06	6.72E-06
FAM63B	54629	A_24_P392333	NM_001040453	family with sequence similarity 63, member B (FAM63B), transcript variant 2, mRNA [NM_001040453]	4.2302322	6.88E-04	6.88E-04
FU32658	147872	A_23_P431284	NM_144688	hypothetical protein FU32658 (FU32658), mRNA [NM_144688]	3.6755083	0.001644313	0.001644313
HN1	51155	A_23_P100632	NM_001002033	hematological and neurological expressed 1 (HN1), transcript variant 3, mRNA [NM_001002033]	3.6078517	6.04E-04	N.I.
KIAA0241	3080	A_24_P272967	NM_015060	KIAA0241 (KIAA0241), mRNA [NM_015060]	4.4414825	0.001038222	-0.074528231
LXX1L	128077	A_23_P342744	NM_153713	Lix1 homolog (mouse)-like (LXX1L), mRNA [NM_153713]	3.5574625	0.00178892	0.347932557
LRRC37A2	474170	A_24_P666482	NM_001006607	leucine rich repeat containing 37, member A2 (LRRC37A2), mRNA [NM_001006607]	3.6066716	0.005008937	0.095475878
MIAT	440823	A_24_P595223	NR_003491	myocardial infarction associated transcript (non-protein coding) (MIAT) on chromosome 22 [NR_003491]	3.890917	1.20E-04	
NBPF15	284565	A_32_P171181	NM_173638	neuroblastoma breakpoint family, member 15 (NBPF15), mRNA [NM_173638]	3.9074104	0.00402691	-0.066741306
NOL7	51406	A_23_P82068	NM_016167	nucleolar protein 7, 27kDa (NOL7), mRNA [NM_016167]	4.034611	$2.54 \mathrm{E}-04$	0.05051315
OTUD3	23252	A_24_P8575	AB007928	mRNA for KIAA0459 protein, partial cds. [AB007928]	5.1292386	0.00425537	-0.140089893
PNMA6A	84968	A_23_P84892	NM_032882	paraneoplastic antigen like 6A (PNMA6A), mRNA [NM_032882]	3.7837152	0.002480922	0.198139089
STOX2	56977	A_23_P251364	NM_020225	storkhead box 2 (STOX2), mRNA [NM_020225]	3.699861	0.002620557	0.356154185
TAGLN2	A	A_32_P194848	NM_003564	transgelin 2 (TAGLN2), mRNA [NM_003564]	3.7862806	0.001943818	0.030681935
TPD52L2	165	A_23_P131771	NM_199360	tumor protein D52-like 2 (TPD52L2), transcript variant 1, mRNA [NM_199360]	5.294338	0.001024691	-0.020674294
YIPF4	84272	A_23_P424080	NM_032312	Yip1 domain family, member 4 (YIPF4), mRNA [NM_032312]	4.895983	0.001400962	0.043654987
ZMAT2	153527	A_24_P226248	NM_144723	zinc finger, matrin type 2 (ZMAT2), mRNA [NM_144723]	4.33067	0.006994322	0.009221831

Table S3 Oligonucleotides used in this study, related to Experimental Procedures

Primers for RT-PCR screening		
Primer name		Sequence 5'-3'
RT-1		GCTAAATACGACTCACTATAGGGATCCNNNNSACG ($\mathrm{N}=\mathrm{A}, \mathrm{C}, \mathrm{G}$, or $\mathrm{T}, \mathrm{S}=\mathrm{C}$ or G)
HA-specific		TATCCGTACGACGTCCCAGACTAC
RT-0		GCTAAATACGACTCACTATAGGG
Primers for qRT-PCR of polysomal RNAs		
Primer name		Sequence 5'-3'
GUSB	Forward Reverse	TGCCATCGTGTGGGTGAATG CCCTCATGCTCTAGCGTGTC
HIST2H3A	Forward Reverse	CAAGGCCCCGAGGAAGCAGCTG AGGGCAGCTTGCGGATCAGCAG
MRPL49	Forward Reverse	CCACCCAACCTGCCTTACTTT TGTCCTTGTAGACGGGGATGT
NDUFS5	Forward Reverse	TGCACATGGAATCGGTTATACTC CCTTCCTTTATCAGCTTATCCCG
Primers for qRT-PCR of mtDNA quantitation		
Primer name		Sequence 5'-3'
Human ND1	Forward Reverse	CCCTAAAACCCGCCACATCT GAGCGATGGTGAGAGCTAAGGT
Human hemoglobin	Forward Reverse	GTGCACCTGACTCCTGAGGAGA CCTTGATACCAACCTGCCCAG
Mouse COX2	Forward Reverse	GCCGACTAAATCAAGCAACA CAATGGGCATAAAGCTATGG
Mouse β-globin	Forward Reverse	GAAGCGATTCTAGGGAGCAG GGAGCAGCGATTCTGAGTAGA
Primers for qRT-PCR of luciferase mRNA quantitation		
Primer name		Sequence 5'-3'
FFluc	Forward Reverse	AGGTGGCTCCCGCTGAAT CATCGTCTTTCCGTGCTCCA
18S rRNA	Forward Reverse	CGGCGACGACCCATTCGAAC GAATCGAACCCTGATTCCCCGTC

Table S4. Antibodies used in this study, related to Experimental Procedures

Supplier	Antigen	Species	Cat. No
Aviva Systems Biology	ATP5G2	rabbit polyclonal	ARP40228_P050
Bioworld Technology	NDUFA8	rabbit polyclonal	BS3336
Bethyl Laboratories	4E-BP1	rabbit polyclonal	BL895
	elF4B	rabbit polyclonal	A301-767A
	rictor	goat polyclonal	A300-506A
Cell Signaling Technology	eIF4A	rabbit monoclonal	2013
	elF4E	rabbit polyclonal	9742
	Lats1	rabbit monoclonal	3477
	Mst1	rabbit polyclonal	3682
	Mst2	rabbit polyclonal	3952
	Myc-tag	mouse monoclonal	2273
	phospho-4E-BP1 (S65)	rabbit polyclonal	9451
	phospho-4E-BP1 (T37/T46)	rabbit monoclonal	2855
	phospho-mTOR (S2448)	rabbit polyclonal	2971
	phospho-mTOR (S2481)	rabbit polyclonal	2974
	phospho-S6 ribosomal protein (S235/S236)	rabbit monoclonal	4857
	phospho-S6 ribosomal protein (S240/S244)	rabbit monoclonal	2215
	raptor	rabbit monoclonal	2280
	S6 ribosomal protein	rabbit monoclonal	2217
GeneTex	NDUFS5	rabbit polyclonal	101829
Proteintech	MRPL49	rabbit polyclonal	15542-1-AP
Santa Cruz Biotechnology	elF3b	goat polyclonal	sc-16377
	elF4G	goat polyclonal	sc-9602
	FRAP/mTOR	goat polyclonal	sc-1549

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Cell Culture and Plasmid Transfection

Plasmids expressing Myc-tagged or EGFP-tagged Largen or other proteins were constructed in the pcDNA3 and/or pIRES2-EGFP vectors according to standard subcloning procedures. Jurkat cells were cultured in RPMI1640 medium supplemented with 10% FBS and antibiotics. HeLa, U2-OS, and 293T cells were cultured in DMEM supplemented with 10% FBS and antibiotics. All cells were incubated in a humidified chamber at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. Transfection of plasmids or siRNA into the above cells was performed using Lipofectamine 2000 (Invitrogen) in Opti-MEM supplemented with 10\% FBS without antibiotics and according to the manufacturer's instructions. Unless otherwise noted, cells were cultured for 2 days after transfection before use in reporter assays or for protein extractions. Stable 293T transformants were selected by culture in the presence of Geneticin (Gibco) at $0.6 \mathrm{mg} / \mathrm{ml}$. To ensure a higher frequency of cells expressing the transgene, GFP-positive cells among stable transformants were isolated by FACS.

Preparation of Cell Lysates and Immunoblotting

Cells $\left(\sim 10^{7}\right)$ were washed twice with PBS(-), transferred into a microtube, and resuspended in CHAPS Lysis Buffer containing 40 mM HEPES (pH 7.5), $120 \mathrm{mM} \mathrm{NaCl}, 1$ mM EDTA, 0.3% CHAPS, $50 \mathrm{mM} \mathrm{NaF}, 1.5 \mathrm{mM} \mathrm{Na}{ }_{3} \mathrm{VO}_{4}, 10 \mathrm{mM}$ glycerophosphate, 10 mM pyrophosphate, and 1 mM PMSF. Tubes were rocked at $4^{\circ} \mathrm{C}$ for 10 min and centrifuged at
$10,000 \mathrm{Xg}$ for 10 min at $4^{\circ} \mathrm{C}$. Supernatants were recovered as the cell lysates, which were snap-frozen on dry ice and stored at $-80^{\circ} \mathrm{C}$ until used in experiments.

For immunoblotting, equal amounts of protein ($\sim 20-40 \mu \mathrm{~g}$) were fractionated on SDS-PAGE under reducing conditions and transferred onto a PVDF membrane. Proteins of interest were identified using the primary antibodies listed in Table S4. Primary antibodies were then visualized by incubation for 1 hr with the appropriate secondary antibodies, which were: horseradish peroxidase-conjugated secondary antibody, HRP-labeled goat anti-rabbit lgG (cat.\#JM-6401-05), and rabbit anti-mouse IgG (cat.\#JM-6402-05) (both from from MBL International); and donkey anti-goat IgG-HRP (cat.\#sc-2056) (Santa Cruz Biotechnology). Bands were detected using ECL-Plus (GE Healthcare).

Polysome Fractionation and Microarray Analysis

Cytoplasmic extracts prepared from exponentially-growing 293T cell clones were centrifuged on pre-chilled 10-50\% sucrose gradients at $35,000 \mathrm{rpm}$ for 2 hr at $4^{\circ} \mathrm{C}$ in a Beckman SW40Ti rotor, as described previously (Mamane et al., 2007; Dowling et al., 2010). Gradients were fractionated and the UV-absorbance at 254 nm was continuously recorded using an ISCO fractionator (Teledyne ISCO). Light and heavy polysome fractions were prepared from three independent sucrose gradient fractionations, and RNA from each fraction was isolated using Trizol (Invitrogen). RNA was subjected to microarray analysis at the UHN Microarray Centre (http://www.microarrays.ca/) using Whole Human

Genome 4x44k arrays (Agilent Technologies). The unpaired Student t-test was used to evaluate differences in mRNA levels between the heavy and light polysome groups, and the Benjamini \& Hochberg FDR method (Benjamini and Hochberg, 1995) was used for multiple testing corrections. A list of genes exhibiting a fold-change >3.5 (using corrected $p<0.05$) was compared between parental control cells and 2D10 cells to create Table S2.

Quantitative Real-Time PCR (qRT-PCR)

RNA from individual sucrose gradient fractions was isolated using Trizol (Invitrogen). Purified RNA ($1 \mu \mathrm{~g}$) was subjected to reverse transcription (RT) using the iScript cDNA Synthesis Kit (BIO-RAD) according to the manufacturer's instructions. Equal amounts of each RT reaction were amplified on a 7900 HT Fast Real-Time PCR System (Applied Biosystems) using Power SYBR Green PCR Master Mix (Applied Biosystems) and the primer sets listed in Table S3. Relative quantitation of the abundance of an mRNA in a given polysome fraction was performed using the $\Delta \Delta \mathrm{Ct}$ method. Values were normalized to the value obtained for each mRNA in the corresponding input RNA.

For mitochondrial DNA/nuclear DNA quantitation, genomic DNA was purified from liver or cultured cells and serially diluted to estimate the range of templates necessary for linear amplification. Typically, 8-32 ng of genomic DNA was used for qRT-PCR, which was performed as described above using the primer sets listed in Table S3.

For luciferase mRNA quantitation, total RNAs were purified from transfected cells using the NucleoSpin RNAll kit (Macherey-Nagel) and converted to $1^{\text {st }}$ strand cDNAs as
described above. qRT-PCR was performed as described above using the primer sets listed in Table S3.

Purification of Mitochondria

Mitochondria were isolated from cultured cells or mouse liver using the Mitochondria Isolation Kit for Cultured Cells or Tissue (Thermo Scientific), respectively, following the manufacturer's instructions. Mitochondrial pellets were resuspended in 1xTBS containing 2% CHAPS followed by centrifugation at $20,000 \times \mathrm{g}$ for 2 min at $4^{\circ} \mathrm{C}$. Supernatants were recovered as mitochondrial protein extracts and subjected to immunoblotting as described above.

Mitochondrial Mass Measurement

Cells were stained with 50 nM Mitotracker Red FM or Mitotracker Green FM (Invitrogen) in PBS buffer at $37^{\circ} \mathrm{C}$ for 15 min , followed by washing and resuspension in PBS. Samples were evaluated on a FACSCalibur (BD Biosciences) and data were analyzed with CellQuest Pro version 5.2 software (BD Biosciences). The mean fluorescence intensity in the FL1 or FL3 channel was used as an estimate of mitochondrial mass.

Immunocytochemistry

Cells $\left(2 \times 10^{5}\right)$ of individual 293T clones were seeded in a glass bottom 35 mm dish, cultured overnight, washed with $\mathrm{PBS}(-)$, and fixed in 4% formaldehyde. To visualize
mitochondria and nuclei, cells were counterstained with Mitotracker Red FM (Invitrogen) and 4',6-diamino-2-phenylindole (DAPI) (Invitrogen). Microscopic observations were made and photographic images captured using an Olympus confocal microscope (FV1000).

Oxygen Consumption Rate

Measurement of oxygen consumption was performed using a Seahorse XF96 analyzer (Seahorse Bioscience). Exponentially-growing Jurkat and 2D10 cells were collected by centrifugation, resuspended in unbuffered RPMI1640 medium, and seeded at 1.5×10^{5} cells/well in XF96 plates precoated with CELL-TAK (BD Biosciences). Cells were equilibrated in unbuffered medium for 45 min at $37^{\circ} \mathrm{C}$ in a CO_{2}-free incubator prior to transfer to the XF96 analyzer. The basal oxygen consumption rate (OCR) was measured before sequential injections of $1 \mu \mathrm{M}$ (final concentration) oligomycin (Sigma-Aldrich) were applied to halt ATP synthesis (negative control).

ATP Measurement

Total ATP levels in cells $\left(4 \times 10^{5}\right)$ of individual 293 clones were measured by chemiluminescence using the ATPlite ATP detection kit (Perkin Elmer) according to the manufacturer's protocol. Absolute ATP levels were determined using an ATP standard curve established in parallel in each 96-well plate assayed.

Cell Cycle Analysis

For cell cycle and proliferation analyses, BrdU incorporation was assessed using the APC BrdU Flow Kit (BD Pharmingen). Briefly, Jurkat or 2D10 cells were seeded in 6-well plates ($1 \times 10^{5} / \mathrm{well}$) and cultured with or without $1 \mu \mathrm{~g} / \mathrm{ml}$ DOX. After $24 \mathrm{hrs}, 10 \mu \mathrm{M}$ BrdU was added to each well for an additional 30 min incubation. Cells were then fixed and immunostained according to the manufacturer's protocol. Flow cytometric analysis of incorporated BrdU was performed using a FACSCalibur (BD Biosciences) and FlowJo software (Tree Star).

SUPPLEMENTAL REFERENCES

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289-300.

Dowling, R.J., Topisirovic, I., Alain, T., Bidinosti, M., Fonseca, B.D., Petroulakis, E., Wang, X., Larsson, O., Selvaraj, A., Liu, Y., Kozma, S.C., Thomas, G., and Sonenberg, N. (2010) mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172-1176.

Mamane, Y., Petroulakis, E., Martineau, Y., Sato, T.A., Larsson, O., Rajasekhar, V.K., and Sonenberg, N. (2007) Epigenetic activation of a subset of mRNAs by elF4E explains its effects on cell proliferation. PLoS One 2, e242.

[^0]: *1 Sequenced tag was asigned in the noncoding region between the genes indicated.
 *2 Cytogenetic Cordinates

