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D-Glucosamine Conjugation Accelerates the Labeling
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Quantum dots (QDs) are useful imaging tools in the medical and biological fields due to their optical properties, such as a high
fluorescence intensity, remarkable resistance to photobleaching, broad absorption spectra, and narrow emission spectra.This is the
first study to investigate the uptake of carboxylated QDs conjugated with D-glucosamine (core size: approximately 3 nm, final
modified size: 20–30 nm) into cultured osteoblastic cells. The QDs attached to the cell surface and were transported into the
cytoplasm within approximately three hours of culture, whose process was clearly demonstrated using specific fluorescent staining
of the cell membrane. Although the intranuclear distribution was not observed, a dramatic decrease in the transfer of quantum dots
into the cytoplasm was recognized after approximately seven days of culture. Other interesting phenomena include the escape of
the quantum dots from lysosomes in the cytoplasm, as confirmed by the merging of both QD fluorescence and specific fluorescent
staining of lysosomes in the cytoplasm.These findings suggest that D-glucosamine conjugation enhances proton absorption in acid
organelles and promotes the lysosomal escape of QDs.

1. Introduction

Cationic polymers with a large number of primary amine
groups, such as polyamidoamine (PAMAM) dendrimer,
polyethylenimine (PEI), and chitosan, are widely used in
development of gene delivery carriers to promote cellular
uptake via electrostatic interactions between positive and
negative charges on the cell membrane [1–4]. Furthermore,
these polymers are thought to have a strong pH-buffering
capacity that enhances proton absorption in acid organelles
and osmotic pressure buildup across the organelle mem-
brane.These processes in turn promote the endosomal escape
and release of genes into the cytoplasm [5, 6]. Quantum
dots (QDs) are useful imaging tools for cellular labeling and
monitoring due to their optical properties, such as a high
fluorescence intensity, remarkable resistance to photobleach-
ing, broad absorption spectra, and narrow emission spectra

[7, 8]. Recently, QDs have been modified with PAMAM
dendrimers for the efficient labeling of mesenchymal stem
cells (MSCs).The uptake efficiency and cytosolic distribution
of QDs in primary cultured MSCs are increased by modi-
fication of the PAMAM dendrimer [9]. However, it has not
yet been investigated whether the chitosan monomer (D-
glucosamine) accelerates the uptake of modified QDs into
cells.

The aim of this paper was to label osteoblastic cells by
QDs for in vitro imaging. D-glucosamine hydrochloride is an
extremely low molecular bioactive material with a potential
buffering capacity. We synthesized carboxylated QDs to
conjugate with D-glucosamine in order to enhance both
cellular uptake and endosomal escape in osteoblastic cells.
The cellular uptake efficiency and intracellular distribution of
D-glucosamine-conjugated QDs were investigated.
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2. Materials and Methods

2.1. Synthesis of CdSe Core Nanocrystals (NCs). Cadmium
selenide (CdSe)NCswere synthesized and purified according
to the method of Z. A. Peng and X. Peng [10]. Following
purification, the vacuum-dried CdSe NCs were dissolved in
chloroform and kept in the dark.

2.2. Carboxylation of QDs. Water-soluble CdSe core NCs
were obtained using mercaptosuccinic acid as a surface-
modifying agent. Briefly, 20–30mg of NCs was dissolved
in chloroform, after which 3mL of dimercaptosuccinic acid
(Sigma, dissolved in 150mM PBS, pH 7.3) was added to 6mL
of NCs in chloroform. Water containing water-soluble CdSe
NCs was carefully decanted and subjected to ultrafiltration
to remove free (nonreacted) dimercaptosuccinic acid. The
ultrafiltrationwas carried out using a concentrator (Vivaspin-
6/20, Sartorius AG, Gottingen, Germany).

2.3. Conjugation of Water-Soluble CdSe Core NCs with D-
Glucosamine. The water-soluble NCs were further conju-
gated with D-glucosamine. Carbodiimide chemistry was
applied for conjugation, using N-(3-dimethylaminopropyl)-
N-ethylcarbodiimide hydrochloride (EDC) as a zero-length
crosslinker. Briefly, 50𝜇L of carboxylated QDs was mixed
with 1mL of D-glucosamine solution in PBS. Then, 100 𝜇L of
0.1M EDC stock solution in water was added to the mixture.
Subsequently, themixture reacted while stirringmildly for 24
hours at 4∘C.

2.4. Cell Culture andCellularUptake Studies. Theosteoblastic
cell line (NOS-1 cells [11]) from human osteosarcoma was
purchased from Riken Cell Bank (Tsukuba city, Japan) and
seeded in a 65mm culture dish at a density of 1 × 105 cells
in 𝛼-MEM containing 10% fetal bovine serum and cultured
in a humidified incubator at 37∘C in an atmosphere of 5%
CO
2
and air. The subconfluent monolayer was passaged via

trypsinization (trypsin-EDTA, Gibco Lab). The NOS-1 cells
were seeded in a 35mm glass-bottom culture dish (Fluo-
roDish, World Precision Instruments, FL, USA) at a density
of 6 × 105 cells for three, six, and 24 hours of incubation
or a density of 3 × 105 cells for seven days of incubation.
The final concentration of D-glucosamine conjugated with
QDs was determined and adjusted to 0.05% in 𝛼-MEM
after preliminary experiments regarding cell growth and QD
uptake were performed. In the cells cultured for seven days,
normal 𝛼-MEM was replaced three days after two days of
incubation with conjugated QDs.

2.5. Fluorescent Staining of the Cell Membrane and Organelles.
For cell membrane staining, fluorescent dye {CellMask
(C10045), Life Technologies, CA, USA} was used. After
removing the culture medium from the dish, the dish was
covered with 0.5mL of staining solution {1 𝜇L of original
solution per 1mL of PBS(+)} for five minutes in a humidified
incubator at 37∘C. After removing the staining solution,
the culture dish was rinsed with PBS(+) three times and
covered with PBS(+) for observation. For cell organelle

staining, fluorescent dye {Organelle-ID RGB reagent I (ENZ-
53007), ENZO Life Sciences International, PA, USA}, was
used. After removing the culture medium from the dish, the
dish was covered with 0.5mL of staining solution {2 𝜇L of
original solution per 1mL of PBS(+)} for 30 minutes in a
humidified incubator at 37∘C. Subsequently, the culture dish
was similarly washed and covered with PBS (+).

2.6. Confocal Laser Microscopy. Following cell membrane or
organelle staining, the cells in 35mm glass-bottom culture
dishes were cultured in a 5% CO

2
incubator (H301-TC1-

HMTC,Okolab S.r.L., NA, Italy) for fluorescence observation
then three-dimensionally analyzed (slicing width of cells:
1.5 𝜇m) using a confocal laser microscope (TCS SL, Leica
Microsystems GmbH, Wetzlar, Germany) to detect QD-
glucosamine conjugates delivered into the cells at differ-
ent time intervals. The approximate fluorescence excita-
tion/emission maxima for imaging of the QDs, cell mem-
brane, and lysosomes were 385/525, 554/567, and 543/667,
respectively.

3. Results

Over two hours, the stable observation of vital cells and
fluorescence from QDs was possible using the 5% CO

2

incubator. As the yellow-green fluorescent brightness from
QDs was extremely strong, it was easy to differentiate these
molecules from other cellular elements. The cell membrane
staining and confocal microscopic imaging easily provided
observations of theQDuptake into the cells. After three hours
of culture,QDswere observed inside the cells (Figure 1). After
one day of culture, many QDs were taken up into the cells
(Figure 2). After seven days of culture, the distribution of
QDs was dramatically decreased inside the cells (Figure 3).
After seven days of culture, the intranuclear distribution
of QDs was not observed. After one day (Figure 4) and
seven days (Figure 5) of culture in the control group (cells
treated without conjugating with D-glucosamine), only a few
QDs were observed. After merging the fluorescent images of
the QDs and lysosomes, no overlap was observed between
these two structures in the experimental group (Figure 2).
However, partial overlap was detected in the images for the
QDs and lysosomes in the control group (Figures 4 and 5).

4. Discussion

D-glucosamine is used as an effective medicament in various
fields of medicine and dentistry. For example, it is an
attractive candidate for adjunctive therapy in patients with
arthritis [12]. D-glucosamine also has a significant antipain
effect in patients with osteoarthritis, a disease with low expec-
tations of the value of treatment [13, 14]. The present study
documents another biological action of D-glucosamine, that
is, the dramatic increase of the cellular uptake of QDs via
attachment with the cell membrane due to a positive charge
and the biocompatibility of conjugated D-glucosamine. This
phenomenon was confirmed in control experiments, which
clearly indicated that nonconjugated QDs have difficulty
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Figure 1: QD (high luminance of yellow-green fluorescence) inside
the cellmembrane (orange fluorescence) after three hours of culture.
Scale bar = 15𝜇m.

Figure 2:ManyQDs (green fluorescence) are labeled inside the cells
after one day of culturewithD-glucosamine. Note the lack of overlap
between the QDs and lysosomes (fluorescent red dots). Scale bar =
15𝜇m.

entering cells. Furthermore, additional interesting findings
include the escape of QDs from lysosomes inside cells, as
confirmed with the observation of merged fluorescence of
both QDs and lysosomes. This is the first study to observe
the stability and protection of intracellularly distributed QDs
following the application of the monomer type of chitosan,
D-glucosamine. The proton sponge hypothesis, while not
definitively proven, has been invoked to explain the rela-
tively high transfection efficiency of other proton-sponge-
type materials, such as lipopolyamines [15, 16], PAMAM
dendrimers [17], and various imidazole-containing polymers
[18–20]. The original hypothesis proposed that polyethylen-
imine (PEI) buffering in lysosomes induced osmotic rupture
and subsequent escape [21]. Although the proton sponge
hypothesis based on the findings of a lack of lysosomal
involvement is challenged in PEI-mediated gene transfer, a
version of this hypothesis, whereby PEI buffering induces

Figure 3: QD (green fluorescence) inside the cell after seven days
of culture with D-glucosamine. Note the decrease in the number of
QDs compared to that observed after one day of culture (Figure 2).
Scale bar = 15𝜇m.

Figure 4: QD (green fluorescence) inside the cell after one day of
culture without D-glucosamine. Note the partial overlap between
the QDs and lysosomes (fluorescent red dots). Scale bar = 15 𝜇m.

osmotic rupture in endosomes prior to fusionwith lysosomes
[15, 22], is consistent with the findings of Godbey et al. [23].
The pH of D-glucosamine hydrochloride is acidic (3.5-4.5).
This acidic condition supports the proton sponge hypothesis
involving escape from endosomes and lysosomes due to QD
labeling for long periods. The new polycationic function
of D-glucosamine (proton sponge hypothesis: escape from
the degradative lysosomal trafficking pathway) is useful and
meaningful for cell biology. This nanoimaging technology
is therefore indispensable for investigating the distribution
of bioactive materials, including applications in medical
diagnosis.
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Figure 5: QD (green fluorescence) inside the cell after seven days
of culture without D-glucosamine. Note the partial overlap between
the QDs and lysosomes (fluorescent red dots). Scale bar = 15𝜇m.

5. Conclusion

This is the first study to investigate the uptake of carboxylated
QDs conjugatedwithD-glucosamine into cultured osteoblas-
tic cells. The interesting findings of this study include the
escape of quantum dots from lysosomes in the cytoplasm,
as confirmed with the merging of both QD fluorescence and
specific fluorescent staining of lysosomes in the cytoplasm.
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