1	Hexapeptide derived from prothymosin alpha attenuates cisplatin-induced acute kidney injury
2	
3	Kenta Torigoe ¹ , Yoko Obata ^{1, 2} , Miki Torigoe ¹ , Satoru Oka ¹ , Kazuo Yamamoto ³ , Takehiko Koji ⁴ ,
4	Hiroshi Ueda ⁵ , Hiroshi Mukae ⁶ , and Tomoya Nishino ¹
5	
6	¹ Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-
7	1 Sakamoto, Nagasaki City, Nagasaki 852-8501, Japan
8	² Medical Educational Development Center, Nagasaki University Hospital, 1-7-1 Sakamoto,
9	Nagasaki City, Nagasaki 852-8501, Japan
10	³ Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki City,
11	Nagasaki 852-8523, Japan
12	⁴ Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical
13	Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki 852-8520, Japan
14	⁵ Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate
15	School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki City, Nagasaki 852-8521, Japan
16	⁶ Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical
17	Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki 852-8501, Japan

- 19 **Corresponding author:**
- 20 Yoko Obata, M.D., Ph.D.
- 21 Department of Nephrology
- 22 Nagasaki University Graduate School of Biomedical Sciences
- 23 1-7-1 Sakamoto, Nagasaki City, Nagasaki 852-8501, Japan
- 24 E-mail: yobata-ngs@umin.ac.jp
- 25 Tel: +81-95-819-7282; Fax: +81-95-849-7285
- 26
- 27 Word Count: 3928

29 Abstract

30 **Background.** Prothymosin alpha (ProT α) is a nuclear protein expressed in virtually all mammalian 31tissues. Previous studies have shown that $ProT\alpha$ exhibits protective effects against ischemia-induced 32cell death in various cell types. Recently, the 6-residue peptide P₆Q (NEVDQE), the modified form of 33 the active 6-residue core (51–56) in ProT α , has also been shown to protect effect against retinal 34ischemia. However, it remains to be elucidated whether P_6Q is effective against acute kidney injury 35(AKI). Therefore, we investigated the renoprotective effect of P_6Q on cisplatin-induced AKI. 36 Methods. Cultured HK-2 cells were treated with cisplatin for 24 hours and cell viability was evaluated 37using the MTT assay. In an in vivo study, 8-week-old male Wistar rats were divided into control, 38cisplatin-treated, and cisplatin-treated with P₆Q injection groups. In the last of these, P₆Q was injected 39 intravenously before cisplatin treatment. Then, we evaluated the renoprotective effect of P_6Q . 40 **Results.** In the study on cultured cells, pretreatment with $ProT\alpha$ or P_6Q prevented cisplatin-induced 41cell death. In the *in vivo* study, pretreatment with P₆Q significantly attenuated cisplatin-induced 42increases in serum creatinine and blood urea nitrogen levels, renal tubular cell injury, and apoptosis. 43Moreover, P₆Q attenuated the mitochondrial apoptotic pathway and accelerated Akt phosphorylation 44after cisplatin-induced renal damage. 45Conclusion. Taken together, our findings indicate that P₆Q can attenuate cisplatin-induced AKI and

46 suppress the mitochondrial apoptotic pathway via Akt phosphorylation. These data suggest that P₆Q

- 47 has potential as a preventative drug for cisplatin-induced AKI.
- 48 Keywords: prothymosin alpha, renoprotective peptide, cisplatin nephrotoxicity, apoptosis, acute
- 49 kidney injury.

51 Introduction

52Cisplatin is one of the most common anti-cancer drugs used to treat solid cancers [1, 2]. However, 53it is associated with multiple adverse effects, including nephrotoxicity [3]. The incidence of cisplatin 54nephrotoxicity is 20-30%, limiting its clinical application [4]. Cisplatin nephrotoxicity is related to its 55preferential uptake by proximal tubular cells. After cisplatin administration, cisplatin is freely filtered at the glomerulus and taken up into the renal tubular cells, primarily by the copper transporter protein 56571 (Ctr1) and organic cation transporter 2 (OCT2) [4, 5]. Then, cisplatin induces tubular cell injury via 58oxidative stress, inflammation, hypoxia, and cell death (apoptosis and necrosis) [6, 7]. These 59mechanisms have been targeted to prevent cisplatin nephrotoxicity, but no ideal treatment has been 60 established. 61 Prothymosin (ProTα) is a small (~12.5 kDa), highly acidic, nuclear protein expressed in virtually 62 all mammalian tissues [8, 9]. ProT α has multiple functions in cell survival, proliferation, and 63 immunogenicity [8-13]. Several studies have reported a therapeutic effect of $ProT\alpha$ in multiple disease 64 models. For example, $ProT\alpha$ has been shown to prevent ischemia-induced apoptosis in cardiocytes 65 via Akt activation [8] and ischemia-induced damage in the retina [14]. Different forms of $ProT\alpha$ have 66 different effects. Recently, it was reported that the active core 30-residue peptide of ProTa (P₃₀, 67residues 49-78) is essential for neuroprotection against brain and retinal ischemia as well as serum-68 starvation stress [15]. Furthermore, a 6-residue peptide (P₆, 51–56: NEVDEE) from ProTα also has

been reported to have a neuroprotective effect against retinal ischemia, and a modified P_6 , P_6Q (NEVDQE) showed a stronger protective effect than the unmodified peptide [16]. Although the mechanism of action of P_6Q is not fully understood, the deteriorative factors, including oxidant stress, inflammation, hypoxia, and apoptosis, in retinal ischemia are shared with acute kidney injury, including cisplatin nephrotoxicity [6, 7, 17, 18]. Therefore, we hypothesized that P_6Q would prevent cisplatin nephrotoxicity and have tested this hypothesis.

75 Materials and Methods

76 Cell culture and drug treatment

77HK-2 cells, a proximal tubular cell line derived from healthy human kidney, were purchased from 78the ATCC (CRL-2190; Manassas, VA, USA). HK-2 cells were cultured in Keratinocyte Serum-Free 79(KCSF) medium supplemented with 5 ng/ml epidermal growth factor, 0.05 mg/ml bovine pituitary extract (17005042; Life Technologies), 100 U/ml penicillin (15140122; Life Technologies), and 100 80 µg/ml streptomycin (15140122; Life Technologies) in 75-cm² tissue culture flasks in a 5% CO₂ 81 atmosphere at 37 °C. For drug treatments, HK-2 cells were seeded at a density of 1×10^4 cells/well in 82 96-well plates and treated with 12.5 µM cisplatin (479306-1G; Sigma-Aldrich, Saint Louis, MO, 83 USA) for 24 hours. Pretreatment with 0-80 μM of recombinant human ProTα (CSB-YP0190000HU; 84 85 CUSABIO, Wuhan, China) or 0-100 µM of P₆Q peptide (275754; GL Biochem, Shanghai, China) was 86 carried out 30 minutes before cisplatin treatment. 87

88 Cell viability assay

```
Cell viability was evaluated using a CytoSelect<sup>TM</sup> MTT Cell Proliferation Assay kit (CBA-252; Cell
Biolabs Inc., San Diego, CA, USA), according to the manufacturer's instructions. Absorbance was
measured at 540 nm with a microplate reader (MULTISKAN FC; Thermo Scientific, Kanagawa,
Japan).
```

94Animals 95All studies were performed on 8-week-old male Wistar rats (Japan SLC Inc., Shizuoka, Japan), 96 housed in standard rodent cages in a light- and temperature-controlled room in the Biomedical 97 Research Center, Center for Frontier Life Sciences, Nagasaki University, with free access to laboratory 98 food and tap water. 99 100 Animal experimental protocol 101 Wistar rats were divided into three groups: control (CTL), which received 16 ml/kg saline 102intraperitoneally and 3 ml/kg phosphate-buffered saline (PBS) intravenously (n = 3); P_6Q , which 103 received 16 ml/kg saline intraperitoneally and 30 mg/kg P_6Q in PBS intravenously (n = 3); cisplatin 104 (Cis), which received 8 mg/kg cisplatin intraperitoneally and 3 ml/kg PBS intravenously (n = 5). In 105addition to these three groups, we evaluated renal function in two additional groups: cisplatin with 106 P_6Q (Cis + P_6Q), which received cisplatin 8 mg/kg intraperitoneally and 30 mg/kg P_6Q 107 intravenously (n = 5); cisplatin with control peptide (Cis+CTL peptide), which received 8 mg/kg 108cisplatin intraperitoneally and 30 mg/kg control peptide intravenously (n = 4). The Cis + CTL peptide 109group was added as a control for nonspecific effects of peptide injection. Control peptide was a mixture of N (70-47-3; GL Biochem, Shanghai, China) and EVDQE (713038; GL Biochem, 110

111 Shanghai, China). P ₆ Q and control peptide were injected 30 minutes before cisplatin treatmen	ients.
---	--------

112	The doses and timing for administration of P_6Q were selected on the basis of a pilot study.
113	Pretreatment with P ₆ Q at 30 mg/kg, but not 10 mg/kg, attenuated cisplatin nephrotoxicity. We found
114	that administration of P ₆ Q alone at a dose of 30 mg/kg did not affect renal function. Furthermore,
115	posttreatment with P ₆ Q at a dose of 30 mg/kg did not attenuate cisplatin nephrotoxicity. Therefore,
116	we selected pretreatment with P ₆ Q at a dose of 30 mg/kg. Five days after cisplatin treatment, rats
117	were sacrificed and the blood and kidneys collected. Serum creatinine (Cr) and blood urea nitrogen
118	(BUN) levels were measured using enzymatic methods (SRL, Tokyo, Japan). Dissected kidneys were
119	fixed with 4% paraformaldehyde in PBS (pH 7.4) immediately after sampling and were embedded
120	in paraffin. For histology, 3-µm-thick paraffin-embedded tissue sections were stained with Periodic
121	Acid-Schiff (PAS) stain.
122	

123 Immunohistochemistry

124 Paraffin-embedded tissue sections were examined immunohistochemically using an indirect method.

125 The following antibodies were used: rabbit anti-active caspase-3 (1:50) (AB3623; Millipore, Temecula,

126 CA, USA), rabbit anti-caspase 9 (1:30) (10380-1-AP; Proteintech Group, Chicago, IL, USA), rabbit

- 127 anti-phosphorylated Akt (pAkt) diluted at 15 µg/ml (AF887; R&D systems, Minneapolis, MN, USA),
- 128 mouse anti-hypoxia-inducible factor 1α (HIF-1α) (1:40) (NB100-105; Novus Biologicals, Littleton,

129 CO, USA), mouse anti-ED-1 (1:400) (MCA341R; Serotec, Kidlington, UK), mouse anti-4-hydroxy-

130 2-nonenal (4-HNE) (1:50) (MHN-100P; Jaica, Shizuoka, Japan), and goat anti-caspase 1 (1:50) (sc-

131 1597; Santa Cruz Biotechnology, TX, USA).

132After deparaffinization, for active caspase-3, pAkt, and ED-1 staining, sections were treated with 133proteinase K (P2308; Sigma-Aldrich, Saint Louis, MO, USA) for 15 minutes at 37 °C for antigen 134retrieval. For caspase 9 and HIF-1 α staining, the sections were heated to 95 °C for 15 minutes in 10 135mM citrate buffer (pH 6.0) for antigen retrieval. Sections were treated with 0.3% H₂O₂ in methanol 136for 20 minutes to inactivate endogenous peroxidase activity, then incubated with a blocking solution 137[500 µg/ml normal goat IgG in 1% bovine serum albumin (BSA) in PBS, 500 µg/ml normal rabbit IgG dissolved in 1% BSA in PBS, or 10% normal goat serum] for 30 minutes at room temperature 138139(RT). For caspase-9 and pAkt staining, sections were stained with the avidin-biotin complex using a 140Vectastain Elite ABC-HRP kit (PK-6101; Vector Laboratories, Burlingame, CA, USA) after reacting with the primary antibody overnight at 4 °C. For active caspase-3 and 4-HNE staining, sections were 141142stained with the mouse Envision kit (K4000; Dako) or rabbit Envision kit (K4002; Dako) after reacting 143with the primary antibody overnight at 4 °C. For HIF-1a, ED-1, and caspase-1 staining, after reacting 144with the primary antibodies for 1 hour or overnight at RT, sections were incubated with horseradish 145peroxidase (HRP)-conjugated goat anti-rabbit immunoglobulin antibody (P0448; Dako) or goat anti-146mouse immunoglobulin antibody (P0447; Dako) diluted at 1:100 or 1:200 for 1 hour at RT. Antibody

147	binding was visualized by treating the sections with H_2O_2 and 3,3'-diaminobenzidine
148	tetrahydrochloride (DAB). Finally, after counterstaining with methyl green, sections were dehydrated
149	and mounted. For all specimens, negative controls were prepared using normal IgG instead of primary
150	antibody.
151	
152	Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining
153	To identify renal tubular cell apoptosis, TUNEL staining was performed as described previously [19].
154	In each sample, the numbers of TUNEL-positive nuclei were counted in 10 fields at $\times 400$
155	magnification.
156	
156 157	Histological analysis
156 157 158	Histological analysis We carried out a semiquantitative analysis of the morphological changes in the outer medulla and
156 157 158 159	Histological analysis We carried out a semiquantitative analysis of the morphological changes in the outer medulla and corticomedullary junction at day 5 after cisplatin treatment. Renal tubular injury was scored and
156 157 158 159 160	Histological analysis We carried out a semiquantitative analysis of the morphological changes in the outer medulla and corticomedullary junction at day 5 after cisplatin treatment. Renal tubular injury was scored and analyzed as described previously [20].
156 157 158 159 160 161	Histological analysis We carried out a semiquantitative analysis of the morphological changes in the outer medulla and corticomedullary junction at day 5 after cisplatin treatment. Renal tubular injury was scored and analyzed as described previously [20]. For the semiquantitative evaluation of the positive area for immunohistochemistry, images were
156 157 158 159 160 161 162	Histological analysis We carried out a semiquantitative analysis of the morphological changes in the outer medulla and corticomedullary junction at day 5 after cisplatin treatment. Renal tubular injury was scored and analyzed as described previously [20]. For the semiquantitative evaluation of the positive area for immunohistochemistry, images were digitized using ImageJ software (National Institute of Health, MD, USA). Positive areas in the outer
156 157 158 159 160 161 162 163	Histological analysis We carried out a semiquantitative analysis of the morphological changes in the outer medulla and corticomedullary junction at day 5 after cisplatin treatment. Renal tubular injury was scored and analyzed as described previously [20]. For the semiquantitative evaluation of the positive area for immunohistochemistry, images were digitized using ImageJ software (National Institute of Health, MD, USA). Positive areas in the outer medulla and the corticomedullary junction were examined using a light microscope (Nikon ECLIPSE

identified at ×200 magnification. For each sample, the numbers of ED-1-positive cells were counted
in 10 fields at ×400 magnification.

167

168 Western	blotting
-------------	----------

Whole kidney protein was extracted by using CelLyticTM MT Cell Lysis Reagent (C3228; Sigma-169170Aldrich, St. Louis, MO, USA). Extracts were mixed with sample buffer solution (AE-1430; ATTO, 171Tokyo, Japan) and heated at 95 °C for 5 minutes. Proteins were separated by sodium dodecyl sulfate 172polyacrylamide gel electrophoresis and transferred onto polyvinylidene difluoride membranes. The 173membranes were blocked with 5% BSA in Tris (hydroxymethyl) aminomethane-buffered saline (pH 1747.2-7.4) containing 0.05% Tween-20 (TBS-T) for 2 hours and incubated with primary antibodies 175against pAkt (0.4 µg/ml) or total Akt (2 µg/ml) (MAB2055; R&D systems, Minneapolis, MN, USA) 176overnight at RT. Membranes were washed with TBS-T five times and incubated with HRP-conjugated 177goat anti-rabbit (1:2500) or goat anti-mouse (1:1000) immunoglobulin antibody for 1 hour at RT. The 178membranes were washed five times again, and the signals were visualized using Pierce ECL Plus 179western blotting substrate (170-5061; Bio-Rad Laboratories, Hercules, CA, USA) and quantified using 180the ChemiDoc[™] MP System (170-8280J1; Bio-Rad Laboratories, Hercules, CA, USA). 181

182 Statistical analyses

183	Data are expressed as means ± standard errors. Differences among groups were examined for
184	statistical significance using repeated measures analysis of variance (Tukey's Honestly Significant
185	Difference tests). All statistical analyses were performed using JMP version 13 software (SAS Institute
186	Inc., Cary, NC, USA). Differences were considered statistically significant at a <i>P</i> -value less than 0.05.

187 **Results**

188 ProTα and hexapeptide derived from ProTα attenuated cisplatin-induced tubular cell 189 cytotoxicity

190 First, we examined the protective effects of ProTa and P6Q on cisplatin-induced tubular cell cytotoxicity by MTT assays. When HK-2 cells were treated with 12.5 µM cisplatin for 24 hours, the 191 192viability of cisplatin-treated cells decreased to 82.1-82.6% (Figure 1A and 1B). However, this 193 cytotoxicity was significantly attenuated by co-treatment with ProTa. For example, 20 µM ProTa 194increased the viability of cisplatin-treated cells to 94.5% (Figure 1A). Similarly, co-treatment with P₆Q 195significantly attenuated cisplatin-induced cytotoxicity; treatment with 100 µM P₆Q increased the 196viability of cisplatin-treated cells to 91.2% (Figure 1B). These results suggested that both ProTa and 197 modified hexapeptide P₆Q had a protective effect on cisplatin-induced cytotoxicity in renal tubular 198 cells.

199

200 P₆Q attenuated cisplatin-induced acute kidney injury in rats

201	We next examined the protective effects of P_6Q on cisplatin nephrotoxicity <i>in vivo</i> . In contrast with
202	the CTL and P ₆ Q groups, serum Cr and BUN levels peaked on day 5 after cisplatin treatment in the
203	Cis group. However, P ₆ Q injection significantly suppressed serum Cr and BUN levels on day 5.
204	Control peptide did not suppress serum Cr and BUN levels (Figure 2 A, B). Furthermore, in contrast

205	with the CTL and P_6Q groups, histologic examination of renal tissue on day 5 revealed extensive
206	tubular damage and intratubular cast formation in the outer medulla and corticomedullary junction in
207	the Cis group. The tubular damage score increased in the Cis group. However, P_6Q treatment
208	significantly suppressed these histological changes and decreased the tubular damage score. Control
209	peptide did not suppress histological change (Figure 2 C-F, K). Because renal tubular cell apoptosis is
210	one of the most crucial factors in cisplatin nephrotoxicity [6, 7], we analyzed apoptotic renal tubular
211	cells by TUNEL staining. As shown in Figure 2 G-J and L, TUNEL-positive apoptotic cells were more
212	numerous around the corticomedullary junction in the Cis group than in the Cis+ P_6Q group. These
213	results indicated that P ₆ Q prevented cisplatin-induced AKI, as well as tubular apoptosis <i>in vivo</i> .
214	
215	P ₆ Q suppressed the mitochondrial apoptotic pathway via Akt activation

216	Previous reports have shown that $ProT\alpha$ suppresses the mitochondrial apoptotic pathway [8].
217	Therefore, we performed immunohistochemical detection of active caspase-3, a standard marker for
218	apoptosis, and of caspase-9, a marker for mitochondrial apoptosis. The expression of active caspase-
219	3 and caspase-9 increased in the Cis group on day 5 after cisplatin treatment. As hypothesized, P_6Q
220	suppressed the expression of both caspase-3 (Figure 3 A-D) and caspase-9 (Figure 3 E-H). These
221	results suggested that P ₆ Q suppressed the cisplatin-induced mitochondrial apoptotic pathway.
222	Next, we performed immunohistochemistry and western blot analyses for pAkt, a critical regulator

223	of the anti-apoptotic effect of ProTa [8]. Immunohistochemical analysis of pAkt demonstrated that
224	the sole administration of P ₆ Q enhanced pAkt expression significantly compared with that in the CTL
225	group. Moreover, both analyses indicated that pAkt expression was higher in the Cis group than in the
226	CTL group but that the difference was not significant. On the contrary, pAkt expression was highest
227	in the Cis + P_6Q group (Figure 4 A-G). Taken together, these results indicated that P_6Q enhanced Akt
228	phosphorylation and suppressed the cisplatin-induced mitochondrial apoptotic pathway.
229	
230	P ₆ Q did not affect cisplatin-induced renal oxidative stress, inflammation, and hypoxia
231	Cisplatin induces renal tubular damage via hypoxia, inflammation, and oxidative stress, all of
232	which can be an upstream causes in the induction of apoptosis [6, 7]. Therefore, we investigated the
233	effect of P_6Q on these factors. Immunohistochemical analyses of HIF-1 α , ED-1, caspase-1, and 4-
234	HNE were performed on day 5 after cisplatin treatment. As shown in Figure 5 A-P, cisplatin
235	increased HIF-1 α , caspase-1, and 4-HNE expression, as well as the frequency of ED-1-positive
236	cells, but P ₆ Q did not suppress any of these factors. These results suggested that the renoprotective
237	effect of P ₆ Q is independent of these pathways.
238	

239 **Discussion**

In this study, we found that $ProT\alpha$ and its derivative, P_6Q , significantly reduced cisplatin-induced cytotoxicity. We also found that P_6Q also inhibited cisplatin-induced AKI successfully by suppressing renal tubular cell apoptosis through the acceleration of Akt activation.

243As for the mechanism of the anti-apoptotic effect of P_6Q , previous studies have reported that $ProT\alpha$ 244prevented apoptosis via inhibition of apoptosome formation or Akt activation [23]. Apoptosome 245formation is a critical event in mitochondrial apoptotic pathways [24], and Akt activation also 246suppresses mitochondrial apoptotic pathways via inhibition of proapoptotic Bcl-2 family members and 247caspase-9 [25, 26]. In our study, pretreatment with P_6Q suppressed cisplatin-induced caspase-9 248expression; moreover, P₆Q accelerated Akt phosphorylation. Therefore, these results indicate that Akt 249activation may be one of the critical mechanisms in the anti-apoptotic action of P_6Q , similar to that of 250ProT α . Furthermore, in our pilot study P₆Q posttreatment did not attenuate cisplatin nephrotoxicity. 251This result suggested that preactivation of anti-apoptotic factor by P₆Q might be important for 252renoprotective action.

253 On the other hand, a previous study showed that preconditioning with $ProT\alpha$ inhibited the expression 254 of proinflammatory cytokines in a retinal ischemia model [14]; this is in accordance with the finding 255 that the inflammatory pathway is one of the major inducers of apoptosis [22]. However, in our study, 256 P_6Q did not inhibit the infiltration of inflammatory cells and expression of caspase-1 that might 257 promote the secretion of proinflammatory cytokines. Hypoxia and oxidative stress are also major 258inducers of apoptosis, and the central domain of $ProT\alpha$ (residues 32–52) is known to be related to the 259anti-oxidative stress effect via Nrf2/Keap1 pathway [13]. However, P_6Q did not affect cisplatin-260induced hypoxia and oxidative stress in this study. Therefore, the mechanism of P₆Q cytoprotective 261effect may be different depending upon cell or tissue type. 262Taken together, we propose the following mechanism: P₆Q preconditioning activates anti-apoptotic 263factor in tubular cells. After cisplatin administration, cisplatin is taken up by tubular cells and induces 264inflammation, oxidative stress, and hypoxia. However, downstream apoptosis and tubular cell damage 265are attenuated by preactivated anti-apoptotic factors. Our data point to Akt activation as a critical factor. 266An earlier study showed that Akt activation by $ProT\alpha$ administration worked via binding to the plasma 267membrane [8]; therefore, P₆Q might also activate Akt by binding to a membrane receptor. However, 268the molecular mechanisms and pharmacokinetics of P_6Q remain unclear. Moreover, regarding the 269relationship between P_6Q and pAkt, this study was unable to determine a cause-consequence 270relationship. Thus, our study could not fully clarify the renoprotective mechanism of P_6Q . On the 271contrary, co-administration of P₆Q and cisplatin or sole administration of P₆Q enhanced Akt 272phosphorylation. This result supports the hypothesis that P₆Q itself may affect Akt phosphorylation. 273Therefore, we consider Akt to be a critical factor affecting the P6Q renoprotective effect. However 274further studies are needed to determine the precise mechanism involved.

275 Our study showed beneficial effects from P_6Q treatment, but there are limitations for its clinical

276	application. First, the long-term beneficial effect of P ₆ Q is not clear. Indeed, renal function peaked on
277	day 5 after cisplatin treatment and then decreased to the same level in the Cis and Cis + P_6Q groups
278	(data not shown). However, clinical studies have shown that the severity of AKI is a major factor in
279	all-cause mortality and chronic kidney disease progression [27]. Therefore, we anticipate that P ₆ Q
280	preconditioning for cisplatin nephrotoxicity would have long-term beneficial effects. Second, P ₆ Q
281	might contribute to cancer proliferation. In fact, $ProT\alpha$ has been reported to be involved in cancer
282	progression and resistance to cisplatin [28, 29]. Akt activation is also known to be related to cancer
283	proliferation [30]. Therefore, it is prudent to have concerns about the potential for P ₆ Q to attenuate
284	anti-cancer effects. However, at least in our study, P ₆ Q did not induce renal or other malignant
285	alterations (data not shown). Furthermore, even if P ₆ Q affect cancer cells, it is controversial whether
286	the doses and frequency of P_6Q administration in this study would be high enough to cause concerns.
287	In conclusion, from our data, P ₆ Q shows significant promise as a preventative therapeutic for
288	cisplatin nephrotoxicity. However, before clinical use further studies are needed to investigate whether
289	P ₆ Q influences cancer cell proliferation, as well as determination of appropriate dosages.

291	Acknowledgment
-----	----------------

292	We thank Ms. Ryoko Yamamoto for excellent experimental assistance.
293	
294	Funding
295	This research received no specific grant from any funding agency.
296	
297	Conflict of interest
298	The authors have declared that no conflict of interest exists.
299	
300	Human and Animal rights:
301	This article does not contain any studies with human participants.
302	Ethical approval: All procedures performed in studies involving animals were in accordance with the
303	ethical standards of the institution or practice at which the studies were conducted (IRB approval
304	number 1506261242-5).
305	
306	Informed Consent
307	This section is not applicable to this study.

308 References

- 309 1. Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action.
- 310 Eur J Pharmacol. 2014; 740:364–78.
- 311 2. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov.
- 312 2005; 4:307–20.
- 313 3. Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced
- ototoxicity and prevention. Hear Res. 2007; 226:157–67.
- 4. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity.
- 316 Toxins. 2010; 2:2490–518.
- 5. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018; 31:15–
- 318 25.
- 319 6. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci.
- 320 2007; 334:115–24.
- 321 7. Pabla N, Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney
- 322 Int. 2008; 7:994–1007.
- 323 8. Cannavo A, Rengo G, Liccardo D, Pironti G, Scimia MC, Scudiero L, De Lucia C, Ferrone M,
- 324 Leosco D, Zambrano N, Koch WJ, Trimarco B, Esposito G. Prothymosin alpha protects
- 325 cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation. Apoptosis.
- 326 2013; 18:1252–61.

9.

Mosoian A. Intracellular and extracellular cytokine-like functions of prothymosin α: implications

- for the development of immunotherapies. Future Med Chem. 2011; 3:1199–208.
- 10. Emmanouilidou A, Karetsou Z, Tzima E, Kobayashi T, Papamarcaki T. Knockdown of
 prothymosin α leads to apoptosis and developmental defects in zebrafish embryos. Biochem Cell
- Biol. 2013; 91:325–32.
- 332 11. Ioannou K, Samara P, Livaniou E, Derhovanessian E, Tsitsilonis OE. Prothymosin alpha: a
- ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunol
 Immunother. 2012; 61:599–614.
- 335 12. Jiang X, Kim H-E, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg
- 336 S, Wang X. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory
- 337 pathway. Science. 2003; 299:223–6.
- 13. Ueda H, Matsunaga H, Halder SK. Prothymosin α plays multifunctional cell robustness roles in
- genomic, epigenetic, and nongenomic mechanisms. Ann N Y Acad Sci. 2012; 1269:34–43.
- 340 14. Halder SK, Matsunaga H, Ishii KJ, Ueda H. Prothymosin-alpha preconditioning activates TLR4-
- 341 TRIF signaling to induce protection of ischemic retina. J Neurochem. 2015; 135:1161–77.
- 342 15. Halder SK, Matsunaga H, Yamaguchi H, Ueda H. Novel neuroprotective action of prothymosin
- 343 alpha-derived peptide against retinal and brain ischemic damages. J Neurochem. 2013; 125:713–
- 344 23.

- 345 16. Ueda H, Halder SK, Matsunaga H, Sasaki K, Maeda S. Neuroprotective impact of prothymosin
- 346 alpha-derived hexapeptide against retinal ischemia-reperfusion. Neuroscience. 2016; 318:206–
- 347 18.
- 348 17. Minhas G, Sharma J, Khan N. Cellular stress response and immune signaling in retinal ischemia349 reperfusion injury. Front Immunol. 2016; 7:444.
- 350 18. Katai N, Yoshimura N. Apoptotic retinal neuronal death by ischemia-reperfusion is executed by
- two distinct caspase family proteases. Invest Ophthalmol Vis Sci. 1999; 40:2697–705.
- 352 19. Song N, Endo D, Song B, Shibata Y, Koji T. 5-aza-2'-deoxycytidine impairs mouse
- 353 spermatogenesis at multiple stages through different usage of DNA methyltransferases.
- 354 Toxicology. 2016; 361–362:62–72.
- 20. Miyaji T, Kato A, Yasuda H, Fujigaki Y, Hishida A. Role of the increase in p21 in cisplatin-
- induced acute renal failure in rats. J Am Soc Nephrol. 2001; 12:900–8.
- 357 21. Sancho-Martínez SM, Piedrafita FJ, Cannata-Andía JB, López-Novoa JM, López-Hernández FJ.
- 358 Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases
- and interfere with the execution of apoptosis. Toxicol Sci. 2011; 122:73–85.
- 360 22. dos Santos NAG, Carvalho Rodrigues MA, Martins NM, dos Santos AC. Cisplatin-induced
- 361 nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol. 2012; 86:1233–50.
- 362 23. Qi X, Wang L, Du F. Novel small molecules relieve prothymosin alpha-mediated inhibition of

apoptosome formation by blocking its interaction with Apaf-1. Biochemistry. 2010; 49:1923–30.

- 364 24. Schafer ZT, Kornbluth S. The apoptosome: physiological, developmental, and pathological
- 365 modes of regulation. Dev Cell. 2006; 10:549–61.
- 366 25. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE.
- 367 Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding
- 368 protein. J Biol Chem. 2000; 275:10761–6.
- 369 26. Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a
- 370 postmitochondrial level. J Cell Biol. 2000; 151: 483–94.
- 27. Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: An integrated clinical
- 372 syndrome. Kidney Int. 2012; 82(5):516-524.
- 28. Suzuki S, Takahashi S, Takahashi S, Takeshita K, Hikosaka A, Wakita T, Nishiyama N, Fujita T,
- 374 Okamura T, Shirai T. Expression of prothymosin alpha is correlated with development and
- 375 progression in human prostate cancers. Prostate. 2006; 66:463–9.
- 29. Lin Y Te, Liu YC, Chao CCK. Inhibition of JNK and prothymosin-alpha sensitizes hepatocellular
- 377 carcinoma cells to cisplatin. Biochem Pharmacol. 2016; 122:80-89.
- 378 30. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer:
- implications for therapeutic targeting. Adv Cancer Res. 2005; 94: 29–86.
- 380

381 Figure legends

382	Figure 1: Viability of cisplatin-treated HK-2 cells in the presence of $ProT\alpha$ or P_6Q
383	Cell viability was measured using the MTT assay. (A) ProTa prevented cisplatin-induced cytotoxicity.
384	HK-2 cells were pretreated with or without ProT α (0–80 μ M) for 30 minutes and then cultured in the
385	presence or absence of 12.5 μ M cisplatin for 24 hours. (B) P ₆ Q also prevented cisplatin-induced
386	cytotoxicity. HK-2 cells were pretreated with or without P_6Q (0–100 $\mu M)$ for 30 minutes and then
387	cultured in the presence or absence of 12.5 μ M cisplatin for 24 hours. * <i>P</i> < 0.05; Tukey's honestly
388	significant difference test; error bars indicate means \pm standard error. n = 8 for each group.
389	
390	Figure 2: Evaluation of renal function, morphological changes, and tubular cell apoptosis in the
391	kidneys
392	(A and B) Serum levels of blood urea nitrogen (BUN) and creatinine (Cr) 5 days after cisplatin (Cis)
393	treatment. In the Cis group, both serum BUN and Cr increased compared with the levels in the control
394	(CTL) and P_6Q groups. In the Cis + P_6Q group, pretreatment with P_6Q prevented the increases in serum
395	BUN and Cr, but the CTL peptide failed to prevent them. (C-G and M) Periodic acid-Schiff (PAS)
396	stain of the kidneys (magnification $\times 200$). (C and D) In the CTL and P ₆ Q groups, most tubular cells
397	appeared to be normal. (E) In the Cis group, tubular injury, including protein casts, vacuolation, and

399	tubular injury was decreased. (G) In the Cis+CTL peptide group, the tubular injury was not decreased
400	compared with Cis group. (M) Bar graph showing the tubular injury score assessed by PAS staining.
401	(H-L and N) TUNEL stain of the kidneys (magnification ×400). (H and I) In the CTL group, few
402	positive nuclei were observed. (J) In the Cis group, the number of TUNEL-positive nuclei significantly
403	increased. (K) In the $Cis + P_6Q$ group, the number of TUNEL-positive nuclei significantly decreased
404	compared. (L) In the Cis+CTL peptide group, the number of TUNEL-positive nuclei remained high.
405	(N) Bar graph of counts of TUNEL-positive nuclei. (A and B) $n = 4-9$ for each group. (M and N) $n =$
406	3, CTL and P ₆ Q groups; n = 5, Cis and Cis + P ₆ Q groups; n = 4 Cis + CTL peptide group. * $P < 0.05$;
407	Tukey's honestly significant difference test; error bars indicate means \pm standard error.
408	
409	Figure 3: Immunohistochemistry for active caspase-3 and caspase-9 in the kidneys
410	(A-D) Immunohistochemical analyses of active caspase-3 in kidney (magnification ×200). (A) In the
411	control (CTL) group, little active caspase-3 expression was observed. (B) In the cisplatin (Cis) group,
412	active caspase-3 expression was increased. (C) In the $Cis+P_6Q$ group, active caspase-3 expression

- 413 was significantly decreased relative to Cis alone. (D) Bar graph showing active caspase-3-positive
- 414 areas. (E-H) Immunohistochemical analysis of caspase-9 in the kidneys (magnification ×200). (E) In
- 415 CTL rats, little caspase-9 expression was observed. (B) In the Cis group, caspase-9 expression was
- 416 significantly increased. (C) In the $Cis + P_6Q$ group, caspase-9 expression was significantly decreased

relative to that in the Cis group. (D) Bar graph showing the caspase-9-positive area; n = 3, CTL group; n = 5, Cis and Cis+P₆Q groups. *P < 0.05; Tukey's honestly significant difference test; error bars indicate means \pm standard error.

420

421 Figure 4: Immunohistochemistry and western blotting for pAkt in the kidney

422 (A-E) Immunohistochemical analysis of pAkt in the kidney (magnification ×200). (A) In the control

423 (CTL) group, little pAkt expression was observed. (B) In the P₆Q group, pAkt expression was

424 significantly increased over that in the CTL group. (C) In the cisplatin (Cis) group, pAkt expression

425 was increased, but not significantly over that in the CTL group. (D) In the Cis+P₆Q group, pAkt

426 expression was significantly increased over that in the other groups. (E) Bar graph showing pAkt-

427 positive areas. (F and G) Western blotting for pAkt. (F) Trends of the western blotting results for pAkt

428 were consistent with those of the immunohistochemistry results. (G) Densitometric analysis of

429 pAkt/Akt ratios by western blotting. Bar graph showing pAkt/Akt signal intensities. (E) n = 3, CTL

430 and P_6Q group; n = 5, Cis and Cis + P_6Q group. (G) n = 3, CTL group; n = 5, Cis and Cis + P_6Q group.

431 *P < 0.05; Tukey's honestly significant difference test; error bars indicate means \pm standard error.

435	control (CTL) group, little HIF-1 α expression was observed. (B-C) In the cisplatin (Cis) group and
436	$Cis + P_6Q$ group, HIF-1 α expression was significantly increased over that of the CTL group. However,
437	there was no difference between the Cis and Cis+ P_6Q groups. (D) Bar graph showing HIF-1 α -
438	positive area. (E-H) Immunohistochemical analysis of ED-1 in the kidneys (magnification ×400). (E)
439	In the CTL group, few ED-1-positive cells were observed. (F-G) In the Cis group and Cis $+$ P ₆ Q group,
440	the numbers of ED-1-positive cells were significantly increased over that of the CTL group. However,
441	there was no difference between the Cis and $Cis + P_6Q$ groups. (H) Bar graph showing numbers of
442	ED-1-positive cells. (I-L) Immunohistochemical analysis of caspase-1 in the kidneys (magnification
443	\times 200). (I) In the CTL group, little caspase-1 expression was observed. (J and K) In the Cis group and
444	$Cis + P_6Q$ group, caspase-1 expression was significantly increased. However, there was no difference
445	between the Cis and Cis $+ P_6Q$ groups. (L) Bar graph showing caspase-1-positive areas. (M-P)
446	Immunohistochemical analysis of 4-HNE in the kidneys (magnification ×200). (M) In the CTL group,
447	little 4-HNE expression was observed. (N-O) In the Cis group and Cis $+$ P ₆ Q group, 4-HNE expression
448	was significantly increased. However, there was no difference between the Cis and $Cis + P_6Q$ groups.
449	(P) Bar graph showing 4-HNE-positive areas. (D, H, L, P) n = 3, CTL group. N = 5, Cis, and Cis+
450	P_6Q group. * $P < 0.05$; Tukey's honestly significant difference test; error bars indicate means \pm standard
451	error.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

