SCIENTIFIC B ENC A

REP{%}RTS

SUBJECT AREAS:
CLIMATE SCIENCES
ENVIRONMENTAL SCIENCES

Received

3 February 2014

Accepted
30 June 2014

Published
18 July 2014

Correspondence and
requests for materials
should be addressed to
AM. (manda@

nagasaki-u.ac.jp)

Impacts of a warming marginal sea on
torrential rainfall organized under the
Asian summer monsoon

Atsuyoshi Manda', Hisashi Nakamura?#4, Naruhiko Asano?, Satoshi lizuka®, Toru Miyama?,
Qoosaku Moteki®, Mayumi K. Yoshioka®, Kazuaki Nishii? & Takafumi Miyasaka?

'Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, 852-8521, Japan, Research
Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan, *Monitoring and Forecast
Research Department, National Research Institute for Earth Science and Disaster Prevention, Tsukuba, 305-0006, Japan,
“4Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan, *Department of
Coupled Ocean-Atmosphere-Land Processes Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, 237-
0061, Japan, ®Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai, 980-8578, Japan.

Monsoonal airflow from the tropics triggers torrential rainfall over coastal regions of East Asia in summer,
bringing flooding situations into areas of growing population and industries. However, impacts of rapid
seasonal warming of the shallow East China Sea (ECS) and its pronounced future warming upon extreme
summertime rainfall have not been explored. Here we show through cloud-resolving atmospheric model
simulations that observational tendency for torrential rainfall events over western Japan to occur most
frequently in July cannot be reproduced without the rapid seasonal warming of ECS. The simulations also
suggest that the future ECS warming will increase precipitation substantially in such an extreme event as
observed in mid-July 2012 and also the likelihood of such an event occurring in June. A need is thus urged for
reducing uncertainties in future temperature projections over ECS and other marginal seas for better
projections of extreme summertime rainfall in the surrounding areas.

lobal climate model projections for the 5" Assessment Reports (AR5) of the Intergovernmental Panel for

Climate Change (IPCC) indicate that the global hydrological cycle will intensify in future under the

global warming', with increasing precipitation over wet climate regions at present, especially in the
tropics and summertime subtropical/midlatitude Asia’, a region of growing economy and population. In these
regions summertime precipitation is produced mostly by meso-scale convective systems, which occasionally yield
extremely heavy rainfall locally causing serious flooding and/or landslides with casualties. Owing to their small-
ness, however, convective systems are not represented explicitly in any of the current IPCC global climate models.
To assess future occurrence of convective precipitation extremes, one currently needs to rely on effective use of a
cloud-resolving regional model into which future changes in large-scale atmospheric state projected by global
climate models are somehow incorporated, for example, through the “pseudo-global warming (PGW)”
approach™®.

Extreme rainfall events occur under convectively-unstable stratification, which requires warm, moist air near
the surface. Through the nonlinear Clausius-Clapeyron relationship between saturated vapor pressure and
temperature, amount of near-surface moisture available for convective rainfall is highly sensitive to sea-surface
temperature (SST) over the warm ocean’. During the last century, ECS has undergone persistent warming that is
greater than the averaged warming over the global ocean®, and the climate model projections suggest that the
pronounced warming is likely to continue into future’. Resolutions of the current IPCC models are, however,
insufficient for reproducing fine SST distributions along the warm western boundary currents and continental
marginal seas, including the Kuroshio and ECS, respectively.

The IPCC climate models project a future increase in summertime precipitation over East Asia’, including
Japan, where the Asian summer monsoon brings the wettest season in June and July (Fig. 1). Heavy convective
rainfall often occurs when near-surface monsoonal southwesterlies carry moist air from the tropical oceans
toward a quasi-stationary seasonal rain front called “Baiu (Meiyu)” front®', extending from subtropical
China to Japan (Fig. 1a). The moist airflow is most likely to affect the western portion of Kyushu, the westernmost
main island of Japan facing ECS. Due to its bathymetric effect", the shallow ECS is cooled off strongly by
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Figure 1| Climatologies of the Baiu/Meiyu rain front and rain events in Kyushu Island. (a), July climatologies of monthly precipitation (mm d~*; color)
and vertically-integrated moisture flux (kg m™' s7'; vectors). (b), Monthly SST climatology (°C; color) for July, and climatological SST rising from
June into July (°C; black lines). (c), Climatological bi-pentad precipitation (mm) over western Kyushu. The arrow indicates the climatological Baiu
period. (d), Seasonality in frequency of precipitation events that occurred in western Kyushu and its dependency on daily precipitation threshold for
selecting rain events as given on the lower abscissa. Total accumulated numbers of the selected events based on the individual thresholds are given on the
upper abscissa. Data sources for this figure are given in Supplementary Information S1. The Grid Analysis and Display System was used for creating the

maps in (a) and (b).

monsoonal northerlies in winter and then warms up into August. As
part of this large seasonal march in SST, ECS exhibits 2-4°C warming
from June into July (Fig. 1b; Supplementary Fig. S1), to which the
shallow bathymetry of ECS" and warm-water advection by the
Kuroshio' contribute.

Although the vital importance of lower-tropospheric water vapor
transport for torrential rainfall events has been confirmed, impacts of
SST on those events have not been quantified yet. Detailed analysis of
daily precipitation observed at manned and automated (AMeDAS)
weather stations over western Kyushu reveals that extreme rain
events (exceeding 250 mm a day) occur mostly in July (Fig. 1d).
When a larger number of modest precipitation events are included,
however, the peak period is shifted into late June, the core period of
the Baiu rainy season (Fig. 1d), as in the rainfall climatology (Fig. 1c).
This is suggestive of the potential contribution from seasonal SST rise
over ECS from late June to late July toward heavy rainfall over
Kyushu.

In fact, the SST-precipitation relationship is well recognized in the
tropics. A recent study'’ reports that a tendency for precipitation in
the tropical Indian Ocean and Western Pacific to increase linearly at
~2 mm day~' with an increase of 1°C in local SST holds up to
extremely high SST (31°C) above an upper threshold (28-29.5°C)
that has been supposed to exist. This is an indication that the impact
of SST on tropical precipitation is more important than what was

previously thought. In mid-latitudes, however, importance of SST for
precipitation is still debatable, due partly to the weakness of precip-
itation signals that could be forced by relatively low SST.

An outstanding issue is thus whether the rapid seasonal SST rising
in ECS can exert any significant influence on the occurrence of
monsoonal heavy rainfall events over Kyushu at present and in
future. This issue is addressed through a set of numerical simulations
with a cloud-resolving regional atmospheric model®, with primary
focus on a torrential rainfall event that occurred on the 11" through
14™ of July 2012 as a typical test case (see Methods). In that event, a
number of weather stations over Kyushu observed rainfall with
hourly rate exceeding 25 mm over many hours and 24-hour totals
exceeding 100 mm, with records set at eight stations. Consequently,
a severe flooding situation caused more than 20 casualties.

Results

The model performance is assessed in our control simulation
(CTRL), in which high-resolution SST over ECS for mid-July 2012
was prescribed as the model lower-boundary condition. CTRL is
found to reproduce the observed precipitation successfully (Fig. 2),
with respect to locations and magnitudes of its local maxima. A
backward-trajectory analysis reveals that air parcels transported into
the areas of heavy precipitation over Kyushu traveled over south-
western ECS (Supplementary Fig. S2). The low-level monsoonal
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southwesterlies, as observed typically south of the Baiu/Meiyu rain
front' (Fig. 1), carried those air parcels, to which the warm Kuroshio
over ECS supplied moisture to maintain convectively unstable strati-
fication' (Supplementary Fig. S2).

The importance of the seasonal ECS warming is assessed through a
seasonal-march (SMCH) experiment, in which each of the climato-
logical-mean bi-pentad SST fields observed from June to August is
prescribed on the model lower boundary while the large-scale atmo-
spheric condition was kept the same as in CTRL for the mid-July
event. The experiment indicates an unambiguous tendency for pre-
cipitation over Kyushu to increase with SST over ECS, especially with
SST for the mid-July and later periods (Fig. 3), which is consistent
with the most frequent occurrence of heavy rainfall events in late July
(Fig. 1). Another SMCH experiment that is conducted with the
atmospheric condition observed in another event on June 19th,
2001 also exhibits qualitatively the same sensitivity of precipitation
over Kyushu to SST over ECS (Supplementary Information S2 and
Fig. S5). Compared with CTRL, total precipitation simulated in
SMCH for the July 2012 event would increase by 20% if it had
occurred in late July (S12Jul31), since the ECS warming renders
the near-surface stratification further unstable for convective precip-
itation systems to develop (Supplementary Fig. S3). Unlike in these
SMCH experiments, the rain gauge data indicate that heavy precip-
itation events occur much less frequently in August than in July
(Fig. 1d). This is because the Baiu/Meiyu rain front and associated
upper-level westerly jetstream, which organize large-scale ascent,
move northward in weakening by August'®.

Potential influence of future ECS warming is assessed in what may
be called “future climate simulation (FC)”. This is as an extension of
the SMCH experiments but with area-averaged future increments in
air temperature and SST taken from the IPCC CMIP5 projections'’,
which have been added to the atmospheric state observed in the mid-
July event and the climatological OISST data, respectively (see
Methods). The projected warming of ECS and the overlying atmo-
sphere leads to significant increases in precipitation simulated over
Kyushu (Fig. 4). With the atmospheric and SST increments derived
from their multi-model ensemble means (MMEs), the fractional
rainfall increase in July is 30% in the 2040s (Jul4OMME) and 45%

for the 2090s (Jul9OMME) relative to the present climate simulation
(JulPC). For crudely evaluating uncertainties in the simulated pre-
cipitation increase introduced by those in the projected SST incre-
ment, the FC simulations were repeated by replacing the MMEs of
projected increments of SST fields with the projected minimum
(min.) or maximum (max.) increment of SST in ECS, and the vertical
profiles of incremental air temperature obtained by the MMEs were
also replaced with those obtained by the corresponding models. The
differences in the simulated precipitation arising from these three
types of increments are found to be rather small (Fig. 4), confirming
the robustness of the enhanced rainfall over Kyushu into future. The
dominant contribution from the future SST increase over that from
the atmospheric warming has been revealed in a comparison
between two additional sets of the FC experiments, one with the
SST increment only (e.g., JuIMME90(S)) and the other with the
atmospheric warming only (e.g., JuIMME90(A)). The atmospheric
warming augments moisture availability for convective precipita-
tion, but near-surface stratification would be stabilized without the
SST warming (Supplementary Fig. S6). Although none of the low-
level monsoonal southwesterlies, mid-tropospheric westerlies and
vertically integrated water vapor flux over ECS into Kyushu signifi-
cantly changes into future, enhanced surface evaporation due to
higher SST renders near-surface atmospheric stratification over
ECS more convectively unstable (Supplementary Figs. S6-S9).

The same experiments are repeated but with SST projected for
June (Jun40 and Jun90). Though less sensitive to the SST increment
than for July, rainfall over Kyushu simulated by a particular FC
experiment with June SST to which the maximum increment among
the CMIP5 models for the 2040s has been added (Jun40max) is
comparable to that in CTRL. The potential is thus suggested that
such a torrential rain event as observed in mid-July 2012 can occur
over Kyushu as early as in June under the warmed future climate.
Note that the SST sensitivity of the Kyushu rainfall shown in Fig. 4
does not necessarily seem consistent among the simulations, because
in some cases a substantial fraction of the enhanced convective pre-
cipitation is simulated over ECS rather than over Kyushu.

Highlighting the distinct seasonal march of SST over ECS as one of
the critical factors in controlling the seasonality of the occurrence of
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Figure 2 | Maps of daily precipitation (mm) during the torrential rain event in mid-July 2012. (a), Based on JMA radar observations. (b), In the control
simulation (CTRL). The Grid Analysis and Display System was used for creating the maps in this figure.
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Figure 3 | Impacts of seasonal ECS warming on rainfall over Kyushu. (a), Maps of 4-day precipitation (mm) obtained in the seasonal march simulations
(SMCH), in each of which climatological bi-pentad OISST from June 1 to August 10, as indicated, is assigned while the atmospheric conditions are kept
the same as in CTRL. (b), (bar) 4-day precipitation (mm,; left axis) averaged over Kyushu [31.0°N-34.1°N, 129.5°E-131.8°E] in the SMCH runs, and
(square) SST (°C; right axis) averaged over the southern ECS [27°N-31°N, 123°E-128°E] assigned. The Grid Analysis and Display System

was used for creating the maps in this figure.

torrential rainfall events over Kyushu during the Baiu season, the
present study has shown a possibility of the future ECS warming to
enhance precipitation in a torrential rainfall event and thereby
modulate the earlier occurrence of such an event. However, future
changes in the atmospheric circulation can also exert some impacts
on torrential rain events. The latest GCM projections indicate future
intensification of the East Asian summer monsoon', with augmented
the northeastward moisture flux from the tropics into the Baiu/
Meiyu frontal zone. Furthermore, its projected southward shift®'®
will lead to the future delay in the termination of the Baiu period.
These changes may become another factors for future increase in
precipitation along the Baiu rainband. Though beyond the scope of
the present study, the combined influence of the changes in the
atmospheric circulation and the ECS warming on the future occur-
rence of torrential rainfall events should be investigated in future.

In summary, the present numerical study has revealed the distinct
seasonal warming of ECS as an important factor in causing a par-
ticular torrential rain event in Kyushu that occurred in mid-July
2012, which is found to explain the particular seasonality of torrential
rain events observed in Kyushu under the East Asian summer mon-
soon. Although the importance of both the moisture flux conver-
gence and moisture availability over the adjacent oceans has been
recognized for heavy rainfall events', the role of SST has not been
elucidated yet. Our study suggests that the pronounced future warm-
ing of ECS has the potential to increase rainfall significantly (30—
45%) in such an event as observed in mid-July 2012 over Kyushu,
enhancing the future risk of flooding and landslides in July and even
in June. A recent cloud-resolving model simulation projects substan-
tial increases of total rainfall and heavy rainfall during the Baiu
season®. We show that the rapid ECS warming into future can aug-
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Figure 4 | Impact of projected future ECS warming on rainfall over Kyushu. 4-day precipitation (mm) averaged over Kyushu [31.0°N-34.1°N, 129.5°E-
131.8°E] obtained by the future climate simulations (FC). Each of them is labeled “MmmPPSSS(A)”, where “Mmm” refers to a month, “PP” to a decade
of interest (i.e., “40” for the 2040s and “90” for the 2090s), “SSS” to kind of statistic (i.e., “min”, “max” and “MME” denoting minimum, maximum, and
multi-model ensemble mean, respectively), and the suffix “(S)” and “(A)” to a subset of the simulations where only SST and the vertical profile of
air temperature, respectively, is modified over ECS. These FC simulations are compared with the “present climate (PC)” runs that have been
conducted with the climatological SST observed in June and July, referred to as “JunPC” and “JulPC”, respectively.

ment the likelihood of torrential rainfall events not only in July but
also in June, suggesting the increasing risk of earlier occurrence of
summertime flooding in future. Although our simulations target on
the Kyushu Island of Japan, the results obtained here are relevant for
other subtropical/midlatitude coastal areas where convective rainfall
can occur in summer with moist airflow from the surrounding
oceans, including the continental marginal seas for East Asia, the
Gulf of Mexico and the subtropical Atlantic for the United States',
and the Mediterranean for southern Europe®. Although the future
precipitation increase in our regional-model simulations is robust
qualitatively, the amount of the increase is rather sensitive to the SST
increment projected in the CMIP5 models, which shows large quant-
itative uncertainties’. The present study urges the need for reducing
uncertainties in the SST projection over the marginal seas and along
the warm western boundary currents, for better future projection of
summertime precipitation in the surrounding coastal regions and
islands, especially where they are facing a steady rise of the sea sur-
face, which is useful for planning out disaster prevention and water
management over these regions into future.

Methods

Model set-up. The simulations in the present study utilize the WRF model'® version
3.4.1, with 30 vertical levels up to the 50-hPa level. To resolve individual convective
cloud systems explicitly over Kyushu and the maritime domain to its immediate
upstream, horizontal grid spacing is set as high as 3 km within the model inner
domain (Supplementary Fig. $4). This domain is nested within the intermediate and
outer domains, where horizontal grid spacing is 9 and 27 km, respectively, and the
Kain-Fritsch convective parameterization scheme®' is adopted for implicitly
representing convective rainfall. No such scheme was used for the inner domain. Each
of the domains employs Yonsei University planetary boundary layer scheme®, MM5
similarity surface model'*. the WREF single-moment 3-class microphysics scheme®.
Other sophisticated microphysics schemes®** are also tested, but they rather tend to
overestimate precipitation, similar to a recent sensitivity study**. Atmospheric data
used for the initial condition and lateral boundary condition for the outer domain for
each of our 120-hour model integrations are based on the Global Forecast System
(GFS) Final Analyses® with horizontal resolution of 1° X 1°. For each of the nested
domains, one-way nesting is used and the lateral boundary conditions are supplied
from the parent domain.

Control and seasonal march simulations. High-resolution (1/12°) daily SST fields
for mid-July 2012 produced by the Japan Coastal Ocean Predictability Experiment
(JCOPE) reanalysis system® are used for the model lower-boundary condition of the
control simulations (CTRL). The seasonal-march simulations (SMCH) utilize the
daily SST climatology for the period 1985-2004 with 1/4° resolution based on

the OISST?, in which both satellite measurements and in-situ observations are
incorporated. The SMCH runs are designated as “S12MonDD”, where “S” refers to

“SMCH”, “Mon” to month (Jun, Jul or Aug), and “DD” to day (e.g., 01). The
simulations were initialized at 0000 UTC on 10 July 2012, approximately 36 hours
prior to the beginning of the rainfall event, so as to reduce the influence of the spin-up.
Almost the same results are obtained when the initial time is shifted by six hours
earlier or later (Supplementary Fig. S10). For each of the SMCH runs, all the initial
meteorological parameters were kept the same as for CTRL, and the only change
introduced was the SST data as mentioned above.

Future climate simulations. For assessing the impact of future ECS warming on
precipitation, another set of simulations (“Future Climate” or FC) was conducted
where large-scale future changes in SST and/or vertical air-temperature profiles
projected in the CMIP5 (Phase 5 of Coupled Model Intercomparison Project) global
climate models'® were incorporated into the high-resolution climatological OISST
SST and the atmospheric conditions observed during the rainfall event, respectively.
This experimental design, which is similar to the PGW approach®, is advantageous,
since horizontal resolutions of the CMIP5 climate models are lower than those of the
OISST and GFS final analysis (See Supplementary Information S3 for the details of
the CMIP5 SST data). Although exactly the same synoptic-scale weather patterns as
observed in 2012 would never occur in future, similar patterns should occur in the
Baiu/Meiyu season.

For a subset of the FC simulations, the projected thermodynamic changes due to
increasing anthropogenic greenhouse gases under the RCP4.5 scenario'” were taken
from 32 CMIP5 climate models. Specifically, monthly fields were averaged separately
for June and July over the climate models in which temperature data were available at
all the standard pressure levels. These monthly model-ensemble fields were averaged
within the inner domain of the WRF model before computing decadal means for the
1990s, 2040s and 2090s. The changes in the vertical temperature profile thus obtained
from the 1990s into both the 2040s and 2090s were then added to the original GFS
analyses uniformly within the entire model domain during the 5-day period for the
WREF model integration (11 through 15, July 2012). The horizontal averaging is
necessary to prevent any large-scale wind changes from being added into the initial
condition for the FC through thermal wind balance. As in previous modeling stud-
ies®!, the same relative humidity (RH) field as used for CTRL was assigned as the
initial and boundary conditions for all the FC simulations, since studies of the global
atmospheric moisture have found little long-term change in RH associated with the
recent warming trend***>*. These procedures are to mimic thermodynamic condi-
tions around the 2040s and 2090s under the global warming.

The PGW approach for projecting the future changes in precipitation has been
tested by some hindcast experiment* and becoming widely utilized®**. The main
advantage of this approach is a reduction of the model bias yielded in global climate
model (GCM) projections. The large model biases in the GCM future projections may
contaminate the results of the downscaling modeling results. The lateral boundary
and initial conditions for the PGW approach consist of atmospheric reanalysis data
under the present-day climate and the components of climatic changes projected by
the GCMs. Although this GCM-projected component can yield some uncertainty
into the simulated results based on the PGW approach, the usage of the reanalysis
data can greatly reduce the overall uncertainty without introducing any biases of the
GCMs in their reproduction of the current climatic conditions. Meanwhile, the main
shortcoming of the PGW approach lies in its inability to include the influence of
future modulations in the inter-annual variability and future changes in large-scale
disturbances, including the future changes in the position of the Baiu front, which
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must be assumed to be unchanged. Quantitative assessment of this uncertainty is
beyond the scope of this study and should be performed in future study.
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