1	RUNNING HEAD: MOUTHPART AND DIET OF GHOST SHRIMP ZOEA
2	
3	MOUTHPART MORPHOLOGY AND WILD DIET OF ZOEAE OF THE GHOST
4	SHRIMP, NIHONOTRYPAEA HARMANDI (DECAPODA: AXIIDEA:
5	CALLIANASSIDAE)
6	
7	Rei Somiya, Toshikazu Suzuki, and Akio Tamaki
8	
9	Graduate School of Fisheries Science and Environmental Studies, Nagasaki University,
10	Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
11	
12	
13	(RS, correspondence: somiya@nagasaki-u.ac.jp)
14	
15	
16	ABSTRACT
17	To infer diet and feeding mode of zoea of Nihonotrypaea harmandi (Bouvier, 1901), fine
18	functional morphology of the mouthparts and composition of undigested remnants of ingested
19	prey organisms contained in the gut were investigated. A mesh-like structure was observed for

20	the coxal and basal endites of the maxilla, which would be suitable for filter feeding. The
21	mandible edge is equipped with many fine processes and resembles the mandible edge of
22	herbivorous copepod. Abrasion of the incisor processes, which must be caused by frequent
23	mastication of planktonic diatoms, was recognized within a molting interval. Furthermore,
24	diatom frustules and their crushed fragments were frequently observed in the gut contents.
25	These observations indicate that zoea of <i>N. harmandi</i> may regularly feed on phytoplankton,
26	especially diatoms.
27	
28	KEY WORDS: gut contents, mouthpart morphology, Nihonotrypaea harmandi,
29	planktonic diatoms, zoeal stage
30	DOI:
31	
32	
33	INTRODUCTION
34	
35	The callianassid shrimp, Nihonotrypaea harmandi (Bouvier, 1901) (Decapoda: Axiidea),
36	commonly occurs on intertidal sandflats in Japanese waters, dwelling in a 30-60 cm deep
37	burrow (Tamaki and Ueno, 1998; Kubo et al., 2006). Through its intense bioturbation of
38	sediments, considerable effects are exerted on both sediment properties and benthic

	2001;
40 Amakusa-Shimoshima Island in western Kyushu, southern Japan (Flach and Tamaki,	
41 Fig. 1, Tomioka sandflat). The life cycle of <i>N. harmandi</i> includes planktonic larvae,	vhich
42 consist of six zoeal and one decapodid stages; five stages were recorded for zoea in H	Conishi et
43 al. (1999) and Tamaki et al. (2010), but a recent study has detected six (A. Tamaki, p	ersonal
44 observation). The nursery grounds for larvae released from the Tomioka sandflat is s	tuated in
45 nearby inner shelf waters of the coastal ocean (Amakusa-Nada), and the mean positio	on of
46 zoeae in the water column is about 40 m with a temperature of 21°C (Tamaki et al., 2	010,
47 2013). When reared at this temperature, it took about a median of 30 days for zoea I	o reach
48 decapodid (Tamaki et al., 2013).	
49	[Fig. 1]

50In the larval rearing experiments including that of Konishi et al. (1999), cultured rotifers (Brachionus rotundiformis) and newly-hatched nauplii of Artemia sp. have been used as the 5152main foods, and they were given in very high abundances. These conditions were similar to the larval rearing of other callianassid species (Aste and Retamal, 1984; Konishi et al., 1990; 53Thessalou-Legaki, 1990; Miyabe et al., 1998; Strasser and Felder, 2000). By contrast, food 5455items of field-caught specimens remain to be investigated. Although rotifers and/or Artemia nauplii are also most commonly used for rearing of other decapod crustacean larvae, a variety 56of possible wild food items are listed, including phytoplankton (Jones et al., 1997; Anger, 57

58	2001). Taking into account a rather slow vertical migration speed of zoeae of <i>N. harmandi</i> at a
59	maximum of 0.18-0.30 cm s ^{-1} in the water column (Tamaki et al., 2010), there arises some
60	doubt as to whether these stages are actually capable of raptorial feeding by pursuit of
61	sparsely distributed zooplankton. Alternatively, it may be possible for those larvae to carry out
62	filter-feeding for relatively motionless phytoplankton available in the ambient water in higher
63	densities. One way to infer feeding habits of decapod crustacean larvae under natural
64	conditions may be to examine the functional morphology of their feeding appendages in
65	relation to gut contents. However, few inferences based on digestive enzyme activities (e.g.
66	Jones et al., 1997) have not concomitantly been backed by gut content and functional
67	morphology analyses. By comparison, substantial data sets regarding feeding habit and
68	mouthpart functional morphology are available for planktonic copepods (Schnack, 1989).
69	The objective of the present study was to examine gut contents and detailed anatomical
70	structure for some selected mouthparts in zoeae of N. harmandi collected from
71	Amakusa-Nada. Special attention was paid to the possibility of filter feeding for planktonic
72	diatoms for comparison to findings on herbivorous and carnivorous planktonic copepods.
73	Some notes were made regarding a few descriptions on callianassid larvae and scarce
74	information on other decapod crustacean larvae that were studied on both mouthpart
75	morphologies and feeding habits based on digestive enzyme activities.

MATERIALS AND METHODS

78

79	Zoeae of N. harmandi were collected every month from June to August, 2011 and from June
80	to September, 2012 on cruises of the T/V Kakuyo-maru, Nagasaki University. A plankton net
81	(1.3-m opening diameter, 4.5-m length, and 330- μ m mesh size) was towed at 1.5 knots for 5
82	min. horizontally at 20-m depth at Stn. A (32° 32.0' N, 129° 57.2' E) in an inner shelf area
83	(Amakusa-Nada), western Kyushu, Japan (Fig. 1). Collected samples were immediately fixed
84	with neutralized formalin solution (5% final concentration) and brought to the laboratory.
85	We sorted and dissected zoeae under a stereo-microscope (Nikon SMZ 1500).
86	Feeding-related parts such as the maxilla, maxillule, mandible, and paragnath (= labium) were
87	individually mounted with Apathy's Mounting Media (Wako 010-13811) between a slide
88	glass and a cover slip and observed under biological microscopes (Olympus IX71 and Nikon
89	E600) with bright field and the differential interference contrast (DIC) observation methods.
90	For observing ingested prey plankton in the gut, larvae with gut contents recognized under a
91	stereo-microscope were selected, dehydrated with ethanol (30, 50, 75, 95, and 100%, each for
92	5 min.) and mounted with Mountmedia (Wako 139-06682) between a slide glass and a cover
93	slip. Undigested plankton remnants in the gut were observed through the body tissue under a
94	biological microscope with DIC observation methods. The identification for zoea I to zoea V
95	was based on Konishi et al. (1999) and that for zoea V and zoea VI on the distinctly longer

96	pleopods in the latter, suggesting the molt between the two. Diatoms in the gut were
97	taxonomically classified in accord with methods of Hasle and Syvertsen (1997).
98	
99	RESULTS AND DISCUSSION
100	
101	Maxilla and Maxillule
102	
103	[Fig. 2]
104	The maxilla is composed of a coxal endite, a basial endite, an endopod, and a scaphognathite
105	in all zoeal stages (Fig. 2A). The coxal and basial endites have luxuriantly sprouting setae
106	with thick shaft bases (4-8 μ m in diameter). From the setal shafts, many sharp setules are
107	spreading at 10-20 μ m intervals. These shafts and setules overlap each other and form a
108	mesh-like structure (Fig. 2B) on the inside of both maxillae. Such a mesh-like structure is
109	generally observed on the maxilla of herbivorous copepods, e.g. Calanus finmarchicus
110	(Gunnerus, 1770) (see Marshall and Orr, 1956) and Acartia clausi Giesbrecht, 1889 (see
111	Conover, 1956; Gauld, 1966), and it is considered to be a sieving device for collecting prey
112	organisms entrained in a stream of water past their bodies (Marshall, 1973). From this
113	structural similarity, it is inferred that zoea of N. harmandi might possess an herbivorous habit,
114	sieving ambient phytoplankton with the mesh-like structure on the maxilla.

115	Plumose setae extend from the scaphognathite of the maxilla, arrayed in a plane with the
116	setule intervals at 1-2 μ m (Fig. 2C). An opening between the setules is finer than that of the
117	mesh-like structure on the coxal and basial endites of the maxilla. Such an ultra-fine opening
118	would not be suitable for sieving plankton, with water not easily passing through them
119	(Tangen, 1978). Due to this insufficient function in filtering, the plumose setae on the maxilla
120	might be used as a wall-like device regulating a water stream rather than a sieving device
121	collecting prey particles.
122	[Figs. 3 & 4]
123	Some zoeae observed in this study had elongate pennate diatoms tightly bundled between
124	both mandibles (Fig. 3). This position is within the reach of setae extending from the
125	maxillules, which are the only appendages extending between the maxillae and mandibles.
126	Furthermore, maxillule setae of the zoea have stiff serrated appearances particularly in those
127	extending from the coxal and basal endites (Fig. 4). This structure resembles the grasping
128	setae typically observed for the maxilla of carnivorous copepods, e.g. Labidocera aestiva
129	Wheeler, 1899 and Tortanus discaudatus (Thompson I.C. and Scott A. in Herdman,
130	Thompson, and Scott, 1897) (see Anraku and Omori, 1963; Marshall, 1973). From this
131	morphological similarity, it is inferred that the maxillule of zoea of N. harmandi might have a
132	grasping ability and work for bundling elongate diatoms as well as sending them to the
133	mandible.

Mandible

136

137 The mandible is equipped with incisor and molar processes in all zoeal stages; the former 138processes are arrayed in a row on the anterior part of the mandible edge, while the latter processes are situated on the area almost fringed by the mandible edge (Fig. 5). The incisor 139140 processes of zoea I were 4-23 μ m in distance between each successive pair and 3-14 μ m in height, and those of zoea VI was 8-36 µm in distance and 6-20 µm in height. On the other 141hand, the molar processes of zoea I were 7-13 µm in distance and 2-11 µm in height, and 142143those of zoea VI were 5-15 µm in distance and 5-16 µm in height. To infer the feeding mode from the edge structure on the mandible blade for planktonic copepods, Itoh (1970) proposed 144145the edge index (*Ie*) :

146
$$Ie = \sum_{i} (wi/W \cdot hi/H \cdot 10^4)/N$$

where *wi* is the distance between each successive pair of processes, *W* is the total width of the mandible blade, *hi* is the height of each process, *H* is the total height of the cutting edge, and *N* is the total number of processes on the mandible blade. Based on *Ie* values, the feeding mode of planktonic copepods was classified into three categories ($Ie \le 500$ for herbivores, 500 $< Ie \le 900$ for omnivores, and Ie > 900 for carnivores). When this system is applied to the zoeal stage of *N. harmandi*, the *Ie* values of zoea I and zoea VI are 319-390 (mean = 359, *SD*)

153	= 25, $N = 5$) and 199-238 (mean = 217, $SD = 19$, $N = 5$), respectively. These values are within
154	the range of herbivory for copepods, suggesting that the mandible blade of zoea of N.
155	harmandi equipped with many fine processes is suitable for grazing phytoplankton.
156	[Figs. 5 & 6]
157	When apolysis was observed on the mandible, hypodermal incisor processes undergoing
158	development for the next stage were always sharper than the epidermal ones (Fig. 6A). In the
159	case of zoea VI, incisor processes in the post-molting stage, which can be confirmed by the
160	undeveloped, rudimentary palp on the mandible, were sharper than those in the pre-molting
161	stage (Fig. 6B, C). Each molting interval in the zoeal stages was reported to be 3-4 days
162	(Konishi et al., 1999), and the incisor processes would perhaps become dulled within such a
163	short period. This abrasion is likely caused primarily by frequent mastication of planktonic
164	diatoms, which have hard siliceous frustules.
165	
166	Gut Contents
167	
168	Diatom frustules or their crushed pieces contained in the gut, along with other unidentified
169	remnants, were observed through the zoeal body tissues. Of the zoeae with gut contents
170	recognized under a stereo-microscope, 97.5% possessed diatom frustules. Although detailed
171	morphology of diatom frustules was not always clearly observed, some were classified into

172	order or suborder ranks such as Rhizosoleniineae in zoea VI, Coscinodiscineae in zoea VI,
173	Biddulphineae in zoea I-VI, and Pennales in zoea I-VI (Fig. 7). These observations suggest
174	that larvae of N. harmandi actually fed on planktonic diatoms in all zoeal stages.
175	Most diatom frustules and their crushed pieces contained in the gut were limited in their
176	sizes. Each frustule or piece was shorter than 25 μ m in width and height, while the length was
177	not limited. Smaller or slender diatoms could be ingested without being fragmented (Fig. 7E);
178	however, larger or wider diatoms would be masticated before ingestion (Fig. 7A-D).
179	[Figs. 7 & 8]
180	The paragnath (= labium), which is positioned behind the maxillule, has a bilobed shape
181	in all zoeal stages (Fig. 8). Between the lobes, slender pennate diatoms were sometimes
182	tightly held (Fig. 9A, C-H), and these diatoms were arrayed in a row extending into the gut
183	(Fig. 9B). Although such a bilobed paragnath is widely reported in other crustaceans, e.g.
184	adult females of copepod Heterorhabdus spinifrons (Claus, 1863) (see Nishida and Ohtsuka,
185	1996) and the phyllosoma stage of decapod Panulirus japonicus (von Siebold, 1824) (see
186	Konishi, 2007), its functional role has not been elucidated as yet. The bilobed shape observed
187	in this study would be suitable for holding and swallowing pennate diatoms, guiding slender
188	prey organisms to enter the gut.
189	[Fig. 9]

191 Comparison of Zoeal Feeding Appendages with Other Callianassids and Some Decapods192

193	The morphologies of the mouthparts for zoea of N. harmandi given in the first two
194	sub-sections above are basically similar to those described for the other callianassid species
195	with 4 to 6 zoeal stages during which planktotrophic development underwent (or was
196	expected to undergo) for the median durations of over 11 days to reach the decapodid stage.
197	These species include Callichirus seilacheri (Bott, 1955) as Callianassa garthi (see Aste and
198	Retamal, 1983), Callichirus major (Say, 1818) (see Strasser and Felder, 1999), Callichirus
199	islagrande (Schmitt, 1935) (see Strasser and Felder, 2000), Neotrypaea uncinata (H. Milne
200	Edwards, 1837) as Callianassa uncinata (see Aste and Retamal, 1984), Nihonotrypaea
201	petalura (Stimpson, 1860) as Callianassa petalura (see Konishi et al., 1990), and
202	Nihonotrypaea japonica (Ortmann, 1891) as Callianassa japonica (see Miyabe et al., 1998).
203	To our knowledge, their wild diets are unknown.
204	The mouthpart morphologies for zoea of N. harmandi are also similar to those of
205	protozoeae of a penaeid, Penaeus monodon Fabricius, 1798 (see Motoh, 1979), which is
206	recognized as an herbivore based on its higher trypsin activity (Jones et al., 1997). The setal
207	densities (= number of setae / length from base of coxa to top of basis) of protozoeae I-III of
208	this species are 54-170 setae mm^{-1} according to the line drawings of Motoh (1979, figs. 8-10)
209	and almost comparable with those of zoeae I and VI of <i>N. harmandi</i> (140-170 setae mm ⁻¹).

210	The edge index of protozoea III of <i>P. monodon</i> is estimated around 75 according to the line
211	drawing of Motoh (1979: fig. 10), and this value is within the range of herbivory for copepods
212	as the values of N. harmandi are. By contrast, zoeae of carideans, Palaemon elegans Rathke,
213	1837 and Macrobrachium rosenbergii (de Man, 1879), which are recognized as carnivores
214	based on their lower trypsin activities (Jones et al., 1997), possess different morphologies.
215	Although available information is limited, setal densities of zoeae IV, VI, and VII of <i>P</i> .
216	elegans (79-110 setae mm ⁻¹ according to the line drawings of Tsurnamal, 1963: figs. 9, 16,
217	27) are smaller than that of <i>N. harmandi</i> . The edge indices of zoeae VII and VIII of <i>P. elegans</i>
218	(510-580 according to the line drawings of Tsurnamal, 1963, figs. 25, 38) and of zoeae I-III of
219	M. rosenbergii (1300-2400 according to the line drawings of Ling, 1969, figs. 3, 4) are greater
220	than those of <i>N. harmandi</i> and beyond the range in herbivorous copepods.
221	
222	Conclusions
223	
224	Zoea of <i>N. harmandi</i> has a mesh-like structure on the inside of both maxillae and many fine
225	processes on the mandible edge. Abrasion of the incisor processes was recognized within a
226	molting interval. Furthermore, diatom frustules and their crushed fragments were frequently
227	observed in the gut contents. These observations indicate that zoea of N. harmandi would
228	regularly feed on phytoplankton, especially diatoms.

230	ACKNOWLEDGEMENTS
231	We would like to thank the captains and crews of the T/V Kakuyo-maru for their support in
232	sampling. We also appreciate constructive comments from the three anonymous reviewers.
233	This research was supported by the Environment Research and Technology Development
234	Fund (4D-1104) of the Ministry of the Environment, Japan.
235	
236	REFERENCES
237	
238	Anger, K. 2001. The Biology of Decapod Crustacean Larvae. Crustacean Issues 14. A.A.
239	Balkema, Lisse.
240	Anraku, M., and M. Omori. 1963. Preliminary survey of the relationship between the feeding
241	habit and the structure of the mouth-parts of marine copepods. Limnology and
242	Oceanography 8: 116-126.
243	Aste, A., and M. A. Retamal. 1983. Desarrollo larval de Callianassa garthi Retamal, 1975
244	bajo condiciones de laboratorio. Ciencia y Tecnología del Mar 7: 5-26.
245	——, and ——. 1984. Desarrollo larval de Callianassa uncinata H. Milne Edwards,
246	1837 (Decapoda, Callianassidae) bajo condiciones de laboratorio. Gayana, Zoología 48:
247	41-56.

- 249 Senckenbergiana Biologica 36: 45-70.
- 250 Bouvier, E. L. 1901. Sur quelques crustacés du Japon, offerts au museum par M. le Dr.
- Harmand. Bulletin du Muséum National d'Histoire Naturelle, Paris 7: 332-334.
- 252 Claus, C. 1863. Die Frei Lebenden Copepoden mit Besonderer Berücksichtigung der Fauna
- 253 Deutschlands, der Nordsee und des Mittelmeeres. Leipzig, 230 pp., 37 pls.
- 254 Conover, R. J. 1956. Oceanography of Long Island Sound, 1952-1954. VI. Biology of Acartia
- *clausi* and *A. tonsa*. Bulletin of the Bingham Oceanographic Collection 15: 156-233.
- de Man, J. G. 1879. On some species of the genus *Palaemon* Fabr. with descriptions of two
- new forms, pp. 165-184. In, H. Schlegel (ed.), Notes from the Royal Zoological Museum
- of the Netherlands at Leyden, No.3. Brill, Leiden.
- 259 Edwards, H. M. 1837. Histoire Naturelle des Crustacés, comprenant l'Anatomie, la
- 260 Physiologie et la Classification de ces Animaux, Tome Deuxiéme. Librairie
- 261 Encyclopédique de Roret, Paris.
- Fabricius, J. C. 1798. Supplementum Entomologiae Systematicae. Apud Proft et Storch,
 Hafniae.
- Flach, E., and A. Tamaki. 2001. Competitive bioturbators on intertidal sand flats in the
- European Wadden Sea and Ariake Sound in Japan, pp. 149-171. In, K. Reise (ed.),
- 266 Ecological Studies: Ecological Comparisons of Sedimentary Shores. Springer, Berlin.

267	Gauld, D. T. 1966. The swimming and feeding of planktonic copepods, pp. 313-334. In, H.
268	Barnes (ed.), Some Contemporary Studies in Marine Science. Allen and Unwin, London.
269	Giesbrecht, W. 1889. Elenco dei Copepodi pelagici raccolti dal tenente di vascello Gaetano
270	Chierchia durante il viaggio della R. Corvetta 'Vettor Pisani' negli anni 1882-1885, e dal
271	tenente di vascello Francesco Orsini nel Mar Rosso, nel 1884. Atti della Accademia
272	Nazionale dei Lincei, Classe di Scienze Fisiche Matematiche e Naturali 5: 811-815.
273	Gunnerus, J. E. 1770. Nogle smaa rare og meestendeelen nye Nosrke Søedyr. Skrifter som udi
274	det Kiøbenhavnske Selskab af Lærdoms og Videnskabers Elskere ere fremlagte og oplæste
275	10: 166-176, pl. 1.
276	Hasle, G. R., and E. E. Syvertsen. 1997. Marine diatoms, pp. 5-385. In, C. R. Tomas (ed.),
277	Identifying Marine Phytoplankton. Academic Press, San Diego.
278	Herdman, W. A., I. C. Thompson, and A. Scott. 1897. On the plankton collected continuously
279	during two traverses of the North Atlantic in the summer of 1897; with descriptions of new
280	species of Copepoda; and an appendix on dredging in Puget Sound. Proceedings and
281	Transactions of the Liverpool Biological Society 12: 33-90, pls. 6-7.
282	Itoh, K. 1970. A consideration of feeding habits of planktonic copepods in relation to the
283	structure of their oral parts. Bulletin of the Plankton Society of Japan 17, 1-10. [In
284	Japanese with English abstract.]
285	Jones, D. A., M. Kumlu, L. Le Vay, and D. J. Fletcher. 1997. The digestive physiology of

288	Konishi. K.	2007. Mor	phological	l notes on th	e mouthpa	arts of decar	od crustacean	larvae.	with
-00			p						

- emphasis on palinurid phyllosomas. Bulletin of Fisheries Research Agency 20: 73-75.
- 290 _____, Y. Fukuda, and R. Quintana. 1999. The larval development of the mud burrowing
- shrimp *Callianassa* sp. under laboratory conditions (Decapoda, Thalassinidea,
- 292 Callianassidae), pp. 781-804. In, F. Schram, and J. C. von Vaupel Klein (eds.), Crustaceans
- and the Biodiversity Crisis: Proceedings of the Fourth International Crustacean Congress,
- Amsterdam, the Netherlands, 20-24 July 1998, Vol. 1. Brill, Leiden.
- 295 _____, R. R. Quintana, and Y. Fukuda. 1990. A complete description of larval stages of the
- 296 ghost shrimp *Callianassa petalura* Stimpson (Crustacea: Thalassinidea: Callianassidae)
- 297 under laboratory conditions. Bulletin of National Research Institute of Aquaculture 17:
- 298 27-49.

299 Kubo, K., K. Shimoda, and A. Tamaki. 2006. Egg size and clutch size in three species of

300 *Nihonotrypaea* (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan.

- Journal of the Marine Biological Association of the United Kingdom 86: 103-111.
- 302 Ling, S. W. 1969. The general biology and development of Macrobrachium rosenbergii (de
- 303 Man). FAO Fisheries Reports 57: 589-606.
- Marshall, S. M. 1973. Respiration and feeding in copepods. Advances in Marine Biology 11:

305 57-120.

- 306 ——, and A. P. Orr. 1956. On the biology of *Calanus finmarchicus* IX: Feeding and
- 307 digestion in the young stages. Journal of the Marine Biological Association of the United
- 308 Kingdom 35: 587-603.
- 309 Miyabe, S., K. Konishi, Y. Fukuda, and A. Tamaki. 1998. The complete larval development of
- 310 the ghost shrimp, *Callianassa japonica* Ortmann, 1891 (Decapoda: Thalassinidea:
- 311 Callianassidae), reared in the laboratory. Crustacean Research 27: 101-121.
- 312 Motoh, H. 1979. Larvae of decapod crustacea of the Philippines. III. Larval development of
- 313 the giant tiger prawn, *Penaeus monodon* reared in the laboratory. Bulletin of the Japanese
- 314 Society of Scientific Fisheries 45: 1201-1216.
- Nishida, S., and S. Ohtsuka. 1996. Specialized feeding mechanism in the pelagic copepod
- 316 genus *Heterorhabdus* (Calanoida: Heterorhabdidae), with special reference to the
- mandibular tooth and labral glands. Marine Biology 126: 619-632.
- 318 Ortmann, A. E. 1891. Die Decapoden-Krebse des Strassburger Museums, mit besonderer
- Berücksichtigung der von Herrn Dr. Döderlein bei Japan und den Liu-Kiu-Inseln
- 320 gesammelten und z. Z. im Strassburger Museum aufbewahrten Formen. III. Theil. Die
- 321 Abtheilungen der Reptantia Boas: Homaridea, Loricata und Thalassinidea. Zoologische
- Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Thiere 6: 1-58, pl. 1.
- Rathke, H. 1837. Zur Fauna der Krym. Mémoires des Savants Étrangers, l'Académie

- 324 Impériale des Sciences, de St. Pétersbourg 3: 291-454, pls. 1-10.
- 325 Say, T. 1818. An account of the Crustacea of the United States. Journal of the Academy of
- 326 Natural Sciences of Philadelphia 1: 235-253.
- 327 Schmitt, W. L. 1935. Mud shrimps of the Atlantic coast of North America. Smithsonian
- 328 Miscellaneous Collections 93: 1-21, pls. 1-4.
- 329 Schnack, S. B. 1989. Functional morphology of feeding appendages in calanoid copepods, pp.
- 330 137–151. In, B. E. Felgenhauer, L. Watling, and A. B. Thistle (eds.), Functional
- Morphology of Feeding and Grooming in Crustacea. Crustacean Issues 12. A.A. Balkema,
 Rotterdam.
- 333 Stimpson, W. 1860. Prodromus descriptionis animalium evertebratorum, quae in Expeditione
- ad Oceanum Pacificum Septentrionalem, a Republica Federata missa, Cadwaladaro
- 335 Ringgold et Johanne Rodgers Ducibus, observavit et descripsit. Pars VIII, Crustacea
- 336 Macrura. Proceedings of the Academy of Natural Sciences of Philadelphia 1860: 22-47.
- 337 Strasser, K. M., and D. L. Felder. 1999. Larval development in two populations of the ghost
- 338 shrimp *Callichirus major* (Decapoda: Thalassinidea) under laboratory conditions. Journal
- of Crustacean Biology 19: 844-878.
- 340 _____, and _____. 2000. Larval development of the ghost shrimp Callichirus islagrande
- 341 (Decapoda: Thalassinidea: Callianassidae) under laboratory conditions. Journal of
- 342 Crustacean Biology 20: 100-117.

- 343 Tamaki, A., and H. Ueno. 1998. Burrow morphology of two callianassid shrimps, *Callianassa*
- *japonica* Ortmann, 1891 and *Callianassa* sp. (= *C. japonica*: de Man, 1928) (Decapoda:
- Thalassinidea). Crustacean Research 27: 28-39.
- 346 _____, S. Mandal, Y. Agata, I. Aoki, T. Suzuki, H. Kanehara, T. Aoshima, Y. Fukuda, H.
- 347 Tsukamoto, and T. Yanagi. 2010. Complex vertical migration of the ghost shrimp,
- 348 *Nihonotrypaea harmandi*, in inner shelf waters of western Kyushu, Japan. Estuarine,
- Coastal and Shelf Science 86: 125-136.
- 350 _____, Y. Saitoh, J. Itoh, Y. Hongo, S. Sen-ju, S. Takeuchi, and S. Ohashi. 2013.
- 351 Morphological character changes through decapodid-stage larva and juveniles in the ghost
- 352 shrimp *Nihonotrypaea harmandi* from western Kyushu, Japan: Clues for inferring pre- and
- 353 post-settlement states and processes. Journal of Experimental Marine Biology and Ecology
- 354 443: 90-113.
- Tangen, K. 1978. Sampling techniques: Nets, pp. 50-58. In, A. Sournia (ed.), Phytoplankton
 Manual. UNESCO, Paris.
- 357 Thessalou-Legaki, M. 1990. Advanced larval development of Callianassa tyrrhena
- 358 (Decapoda: Thalassinidea) and the effect of environmental factors. Journal of Crustacean
 359 Biology 10: 659-666.
- 360 Tsurnamal, M. 1963. Larval development of the prawn Palaemon elegans Rathke (Crustacea,
- 361 Decapoda) from the coast of Israel. Israel Journal of Zoology 12: 117-141.

362	von Siebold, P. F. 1824.	De Historiae N	Naturalis in Japonia statu,	nec non de Augmenta
-----	--------------------------	----------------	-----------------------------	---------------------

- 363 Emolumentisque in Decursu Perscrutationum Exspectandis Dissertatio, cui Accedunt
- 364 Spicilegia Faunae Japonicae, Auctore G.T. de Siebold, Med. Doct. Bataviae, 16 pp.
- 365 Wheeler, W. M. 1899. The free-swimming copepods of the Woods Hole region. Bulletin of
- the United States Fish Commission 19: 157-192.
- 367
- 368 RECEIVED: 29 November 2013
- 369 ACCEPTED: 31 March 2014
- 370 AVAILABLE ONLINE: ???
- 371
- 372

- Fig. 1. Sampling station for *Nihonotrypaea harmandi* larvae. Stn. A (32°32.0' N, 129°57.2' E)
- is located in Amakusa-Nada, western Kyushu, southern Japan.

377

- Fig. 2. A, Maxilla of zoea VI composed of coxa (C), basis (B), endopod (E), and
- 379 scaphognathite (S); B, Setal shafts and sharp setules extending from the coxal and basial
- and the scaphognathite.

381

- Fig. 3. A, Pennate diatoms (in box) bundled between both mandibles (Md); B, Enlarged
- 383 microphotograph of pennate diatoms. Mx1, maxillule.

384

- Fig. 4. A, Maxillule of zoea VI composed of coxa (C), basis (B), and endopod (E); B, Stiff
- serrated setae extending from the coxal and basal endites.
- 387
- Fig. 5. Incisor processes (IP) and molar processes (MP) on the mandible of zoea VI. W, total
- width of the mandible blade; *wi*, distance between each successive pair of processes; *H*, total
- height of the cutting edge; *hi*, height of each process.

392	Fig. 6. A, Apolysis structure in the mandible of zoea V. Hypodermal incisor processes (IP) and
393	molar processes (MP) are undergoing development for the next, zoea-VI stage; B, Sharp
394	incisor processes (arrows) in the post-molting stage of zoea VI; C, Dulled incisor processes
395	(arrows) in the pre-molting stage of zoea VI.
396	
397	Fig. 7. Diatom frustule fragments in the gut contents of zoea VI. A, Rhizosolenineae (arrow);
398	B, Coscinodiscineae (arrows); C, D, Biddulphineae (arrows: the same specimen at different
399	focal depth); E, Pennales (arrow).
400	
401	Fig. 8. A, Schematic mouth structure in zoea of Nihonotrypaea harmandi (ventral view).
402	Right maxillule is omitted. Paragnath (= labium) is positioned behind the maxillule; B,
403	Bilobed paragnath of zoea VI. Md, mandible; Mx1, maxillule; P, paragnath.
404	
405	Fig. 9. A, Pennate diatoms ingested by zoea II; B, Enlarged microphotograph of the box area
406	in A. Bundles of pennate diatom frustules (arrows) in an array from the oral region (lower
407	part) to the digestive canal (upper part). Three microphotographs taken at different focal
408	depths are stacked; C-H, Pennate diatoms tightly held between the two lobes of paragnath.
409	Three photographs (C, E, G) taken at different focal depths, with three line drawings (D, F, H)
410	for the traces of the respective photographs. E, eye; Md, mandible; P, paragnath; RL, right

411 lobe of the paragnath; LL, left lobe of the paragnath.

