1 Supplementary Experimental Procedures:

2 **1.1 Cell culture exposed to DNA methyltransferase inhibitors**

Cell lines were maintained in RPMI 1640 supplemented with 10% heat-inactivated 3 4 FBS, penicillin G (50 units/ml), and streptomycin (50 µg/ml) in a humidified incubator containing 5% CO₂ in air. The DNA methyltransferase inhibitors (DNMT-is), decitabine $\mathbf{5}$ 6 (Dac) and zebularine (Zeb) (Sigma-Aldrich-Japan, Tokyo, Japan), were dissolved in $\overline{7}$ phosphate-buffered saline. To adjust the biological effects of Dac and Zeb, we analyzed their growth suppressive effects in 5 AML cell lines categorized in the MPOa-L group 8 (KG-1, KG-1a, THP-1, CMK-86, and K562). A total of 5×10^5 cells were seeded on 9 10 day 0, media containing DNMT-is were freshly added on days 1 and 3, and cells were 11 harvested on day 5, as previously described [1]. The final concentrations of Dac in the cultures were 0.3, 1.0, 3.0, and 10.0 µM; those of Zeb were 10.0, 20.0 50.0, and 100.0 12 μ M. The number of viable cells was determined daily by the exclusion of Trypan blue. 1314DNMT-is inhibited cell proliferation in dose- and time-dependent manners in all cell lines tested. The exposure to Dac at 1.0 µM and Zeb at 50.0 µM led to comparable 15growth suppression in MPOa-L AML cell lines cultures at day 5 (Figure S1d). To assess 1617the DNA-hypomethylating activity of Dac and Zeb, the methylation status of the 5' region of the MPO gene was quantified by bisulfite sequencing. Demethylation was 18

1	present at 1.0 μ M of Dac and 50.0 μ M of Zeb in all 5 AML cell lines with MPOa-L. On
2	the basis of these results, $1.0 \mu M$ of Dac and 50.0 μM of Zeb were considered
3	biologically equivalent in this study for these 5 AML cell lines.
4	
5	1.2 Flow cytometry analysis
6	The expression of cytoplasmic MP) protein was examined using flow cytometry
7	(FACSCalibur flow cytometer and Cellquest software, BD Biosciences). The antibody
8	against MPO conjugated with FITC (DAKO) was used after th fixation and
9	permeabilization of cells using FIX&PERM cell permeabilization reagents (Invitrogen,
10	Carlsbad, CA, USA) following the manufacturer's protocol.
10 11	Carlsbad, CA, USA) following the manufacturer's protocol.
10 11 12	1.3 Direct sequencing of FLT3, NPM1, and CEBPA genes
10 11 12 13	 Carlsbad, CA, USA) following the manufacturer's protocol. 1.3 Direct sequencing of FLT3, NPM1, and CEBPA genes Mutations in the <i>FLT3, NPM1</i>, and <i>CEBPA</i> genes were detected by direct sequencing
 10 11 12 13 14 	 Carlsbad, CA, USA) following the manufacturer's protocol. 1.3 Direct sequencing of FLT3, NPM1, and CEBPA genes Mutations in the <i>FLT3, NPM1</i>, and <i>CEBPA</i> genes were detected by direct sequencing after the amplification of genomic DNA by PCR. The exons tested were as follows:
 10 11 12 13 14 15 	 Carlsbad, CA, USA) following the manufacturer's protocol. 1.3 Direct sequencing of FLT3, NPM1, and CEBPA genes Mutations in the <i>FLT3, NPM1</i>, and <i>CEBPA</i> genes were detected by direct sequencing after the amplification of genomic DNA by PCR. The exons tested were as follows: <i>FLT3,</i> exons 14 and 15; <i>NPM1</i>, exon 12; <i>CEBPA</i>, exon 1. The primers for sequencing
 10 11 12 13 14 15 16 	 Carlsbad, CA, USA) following the manufacturer's protocol. 1.3 Direct sequencing of FLT3, NPM1, and CEBPA genes Mutations in the <i>FLT3, NPM1</i>, and <i>CEBPA</i> genes were detected by direct sequencing after the amplification of genomic DNA by PCR. The exons tested were as follows: <i>FLT3,</i> exons 14 and 15; <i>NPM1</i>, exon 12; <i>CEBPA</i>, exon 1. The primers for sequencing were previously described (see Table below) [2-4]. DNA sequencing of exons was
 10 11 12 13 14 15 16 17 	 Carlsbad, CA, USA) following the manufacturer's protocol. 1.3 Direct sequencing of FLT3, NPM1, and CEBPA genes Mutations in the <i>FLT3</i>, <i>NPM1</i>, and <i>CEBPA</i> genes were detected by direct sequencing after the amplification of genomic DNA by PCR. The exons tested were as follows: <i>FLT3</i>, exons 14 and 15; <i>NPM1</i>, exon 12; <i>CEBPA</i>, exon 1. The primers for sequencing were previously described (see Table below) [2-4]. DNA sequencing of exons was performed as follows. PCR reactions were run in a final volume of 50 µL containing 10

 $\mathbf{2}$

1	primers (0.3mmol/L of each), nucleotides (0.2 mmol/L of each), and 1 U of
2	KOD-Plus-Neo polymerase (TOYOBO, Osaka, Japan). The mixture was initially heated
3	at 94°C for 2 min before being subjected to 35 cycles of denaturation at 94°C for 10 s
4	and annealing and extension at 68°C for 1 min. The amplified products were
5	fractionated by gel electrophoresis (1.2% agarose gel), cut from the gel, and purified
6	with the MinElute Gel extraction kit (QIAGEN, Germany). To screen gene mutations,
7	PCR products were sequenced in both directions with the previously published primers,
8	using the BigDye Terminator v3.1 Cycle Sequencing Kit and ABI Prism 3100 $\times 1$
9	Genetic Analyzer (Applied Biosystems, CA, USA). Heterozygous or homozygous
10	mutations in NPM1 and CEBPA genes were confirmed by cloning PCR products using
11	the StrataClone Blunt PCR Cloning Kit (Stratagene, CA, USA) following the
12	manufacturer's recommendations. Plasmid DNA was prepared using a QIAprep spin
13	plasmid miniprep kit (Qiagen, Hilden, Germany), and its integrity was confirmed by the
14	sequence of both strands using T3 and T7 primers.

16 1.4 Quantitative reverse transcriptase-polymerase chain reaction MPO and 17 DNMT3B genes

18 Quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) was

1	performed using LightCycler TaqMan Master (Roche Diagnostics, Mannheim,
2	Germany) following the manufacturer's instructions. PCR amplification was performed
3	using a LightCycler 350S instrument (Roche). Thermal cycling conditions were as
4	follows; 10 min at 95°C, followed by 45 amplification cycles at 95°C for 10 seconds,
5	60°C for 30 seconds, and 40°C cooling cycle for 30 seconds. These primers for
6	DNMT3B could detect 6 alternative spliceoforms; 3 catalytic forms (3B1, 3B2, and
7	3B6) and 3 non-catalytic forms (3B3, 3B7, and 3B8). Primers and the TaqMan probe for
8	the sequence of the ABL1 gene were those published in the EAC network protocol for
9	RQ-PCR [5].

11 **1.5 Bisulfite sequencing for the 5' region of the MPO gene**

Genomic DNA (1µg) was chemically modified with the Cells-to-CpG Bisulfite 12Conversion Kit (Applied Biosystems) according the 13to manufacturer's recommendations. Bisulfite-treated DNA was amplified in PCR with MPO-specific 14primers. PCR reactions were run in a final volume of 50 µL containing 100 ng DNA, 1510× buffer, 2.5 mmol/L of each deoxynucleotide triphosphate, primers (0.2 mmol/L of 16each), MgCl₂ (25 mmol/L of each), and 2.5 U of TaKaRa EpiTaq HS (TaKaRa, Ohtsu, 17Japan). The mixture was initially heated at 95°C for 3 min, before being subjected to 49 18

1	cycles of denaturation at 95°C for 1 min, annealing at 55°C for 2 min, and extension at
2	72°C for 2 min. The amplified products were gel-purified using the MinElute Gel
3	extraction kit (QIAGEN, Germany) and ligated into the pMD20T-Vector using the
4	Mighty TA-cloning Kit (TaKaRa). Eighteen to thirty clones per sample were sequenced
5	using the BigDye Terminator v3.1 Cycle Sequencing Kit and ABI Prism 3100 $\times 1$
6	Genetic Analyzer. Analysis of the obtained sequences confirmed a complete bisulfite
7	reaction in all samples. The average methylation of the MPO promoter fragment was
8	assessed by the Student <i>t</i> -test.

10 **1.6 Pyrosequencing for** *long interspersed nuclear element-1*

11 DNA methylation (%5-mC) of long interspersed nuclear element-1 (LINE-1) was quantified using PCR-pyrosequencing of the bisulfite-treated DNA (EpigenDx 12Laboratory Service (Worcester, MA)), as previously described [6]. In brief, 13bisulfite-treated DNA was amplified by PCR using primers designed toward a 14consensus LINE-1 sequence. PCR was performed in a 50µL reaction mixture containing 1525µL GoTaq Green Master mix (Promega, Madison, WI, USA), 1 pmol of the forward 1617and biotinylated reverse primers, 50 ng of bisulfite-treated genomic DNA, and water. Biotin-labeled final PCR products (amplified by biotin-labeled primers) bound to 18

1	Streptavidin Sepharose HP (Amersham Biosciences, Uppsala, Sweden) were washed
2	using the Pyrosequencing Vacuum Prep Tool (Pyrosequencing Inc., Westborough, MA,
3	USA), as recommended by the manufacturer. A total of $0.3\mu M$ of the pyrosequencing
4	primer was then annealed to the purified single-stranded PCR products, and
5	pyrosequencing was performed using the PSQ-HS 96 Pyrosequencing System
6	(Pyrosequencing Inc.). The relative 5-mC content was expressed as a percentage of
7	methylated cytosines divided by the sum of methylated and unmethylated cytosines
8	(5-mC / [5-mC + unmethylated cytosine] = %5-mC). Built-in controls were used to
9	verify bisulfite conversion efficacy. To increase precision, each sample was tested four
10	times for LINE-1 methylation, and the mean of 4 independent experiments was used in
11	statistical analyses. The coefficient of variation (CV) among 48 blinded replicate
12	samples was 5.7%, and the inter-plate CV was 2.9%. Differences in the percentage of
13	DNA methylation (%5-mC) of LINE-1 among patients in different categories (MPOa-H
14	group, MPOa-L group, Ph+ALL group, and healthy donor group) were compared using
15	the non-parametric Kruskal-Wallis test and followed by Dunn's multiple comparison
16	post-test.

1.7 Primer Sequences

1 Primers for direct sequencing

Gene	Primer	Sequencing
EI T2	forward	5'-GCAATTTAGGTATGAAAGCCAGC-3'
FLI3	reverse	5'-CTTTCAGCATTTTGACGGCAACC-3'
NDM1	forward	5'-GGTTGTTCTCTGGAGCAGCGTTC-3'
INP IM I	reverse	5'-CCTGGACAACATTTATCAAACACGGTA-3'
	forward1	5'-TGCCGGGTATAAAAGCTGGG-3'
CEDDA	reverse1	5'-CTCGTTGCTGTTCTTGTCCA-3'
CEDPA	forward2	5'-TGCCGGGTATAAAAGCTGGG-3'
	reverse2	5'-CACGGTCTGGGCAAGCCTCGAGAT-3'

 $\mathbf{2}$

3 Primers for the quantitative reverse transcriptase-polymerase chain reaction

Gene	Primer	Sequencing
	forward	5'-CTGCATCATCGGTACCCAGTTC-3'
MPO	reverse	5'-GCCTGTCGCTGCTGCATG-3'
	probe	5'-CTCCCACCAAAACCGATCACCATCCCG-3'
	forward	5'-TTGGCGATGGCAAGTTCTCC-3'
DNMT3B	reverse	5'-AGACGAGCTTATTGAAGGTGGC-3'
	probe	5'- TGAACAGCCCCAGTGCCACCAGTTTG-3'
	forward	5'- GATACGAAGGGAGGGTGTACCA-3'
ABL1	reverse	5'- CTCGGCCAGGGTGTTGAA -3'
	probe	5'- TGCTTCTGATGGCAAGCTCTACGTCTCC-3'

4

5 Primers for bisulfite sequencing

Promoter	Primer	Sequencing
MDO	forward	5'-AGTTTTTTTTAGTTTAATTTG-3'
MPO	reverse	5'-TACAAAAATTACTTCTTACCTAAAAAA-3'

6

7 Primers for pyrosequencing

Target	Primer	Sequencing
	forward 5'-TTTTGAGTTAGGTGTGGGA	5'-TTTTGAGTTAGGTGTGGGATATA-3'
LINE-I	reverse	5'- biotin-AAAATCAAAAAATTCCCTTTC-3'

Supplemental References:

3	1. Moriguchi K, Yamashita S, Tsujino Y, Tatematsu M, Ushijima T. Larger numbers of
4	silenced genes in cancer cell lines with increased de novo methylation of scattered
5	CpG sites. Cancer Lett. 2007;249(2):178-187.
6	2. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic
7	implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood.
8	1999;93(9):3074-3080.
9	3. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al.
10	Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.
11	N Engl J Med. 2005;352(3):254-266.
12	4. Tominaga-Sato S, Tsushima H, Ando K, Itonaga H, Imaizumi Y, Imanishi D, et al.
13	Expression of myeloperoxidase and gene mutations in AML patients with normal
14	karyotype: double CEBPA mutations are associated with high percentage of MPO
15	positivity in leukemic blasts. Int J Hematol. 2011;94(1):81-89.
16	5. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, et al.

17 Standardization and quality control studies of 'real-time' quantitative reverse

1	transcriptase polymerase chain reaction of fusion gene transcripts for residual disease
2	detection in leukemia – a Europe Against Cancer program. Leukemia.
3	2003;17(12):2318-2357.
4	6. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, et al. Changes in
5	DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res.
6	2007;67(3):876-880.
7	
8	Figure S1
9	(a) DNA methylation status of the MPO gene promoter in 10 hematological cell lines.
10	Methylation of the cytosine-phosphate-guanine (CpG) dinucleotide was assessed by
11	sequencing the multiple cloned alleles of PCR products on bisulfite-treated genomic
12	DNA. Each horizontal line represents an individual allele. Filled circles represent
13	methylated CpG sites; open circles, unmethylated CpG sites. The position of each
14	cytosine nucleotide relative to the transcriptional start site is indicated at the top.
15	Kasumi-1 and SKM-1 showed high MPO enzymatic activity (MPOa-H), whereas the 8
16	other cell lines had low MPO enzymatic activity (MPOa-L).
17	(b) Effects of the DNMT-i treatment on methylation of the 5' promoter region of the

18 MPO gene.

1	Open squares, represent the percentage of methylated CpG sites in the MPO gene of
2	each cell line without the DNMT-i treatment; filled squares, with the decitabine (Dac)
3	treatment; gray squares, with the zebularine (Zeb) treatment.
4	(c) Induction of the MPO protein by the treatment with DNMT-i.
5	The shared histogram shows the level of intracellular MPO as measured in flow
6	cytometry. The black curves represent each cell line without the DNMT-i treatment as
7	the control; gray curves, with the DNMT-is treatment.
8	(d) Inhibitory effect of DNMT-is on cell proliferation.
9	A total of 5×10^5 cells were cultured in the presence or absence of Dac (1.0 $\mu M)$ and
10	Zeb (50.0 μ M). The number of living cells after 5 days was counted by the Trypan blue
11	dye exclusion method. Error bars indicate one standard deviation (three replicate
12	experiments).
13	
14	Figure S2
15	DNA methylation status of the MPO gene promoter in CD34-positive cells obtained
16	from 15 AML patients. CpG dinucleotide methylation was assessed by sequencing
17	multiple cloned alleles obtained from PCR on bisulfite-treated genomic DNA.
18	Numbers on the left of each figure show the percentage of MPO positive blasts on

1	bone marrow smears. MPOa-H and -L indicate a high percentage (>50%) and low
2	percentage (\leq 50%) of MPO-positive myeloblasts, respectively.
3	
4	Figure S3
5	Methylation levels of <i>LINE-1</i> in clinical samples.
6	LINE-1 methylation was determined as a surrogate for global methylation in
7	CD34-positive cells from clinical samples (i.e. MPOa-H AML, MPOa-L AML,
8	Ph+ALL, and healthy donor groups). No significant differences were observed in the
9	median levels (horizontal dotted line) between the MPOa-H AML group and other
10	groups (Kruskal-Wallis test).
11	
12	
13	
14	
15	
16	
17	

Cell line	Origin	Fusion gene	MPO/ABL1 mRNA ratio	MPO enzymatic activity	FLT3-ITD	NPM1	CEBPA
SKM-1	Myeloid leukemia	-	137.45	Positive	Negative	wt	wt
Kasumi-1	Myeloid leukemia	RUNX1-RUNX1T1	293.65	Positive	Negative	wt	wt
KG-1	Myeloid leukemia	-	0.03	Negative	Negative	wt	wt
KG-1a	Myeloid leukemia	-	0.01	Negative	Negative	wt	wt
THP-1	Monocytic leukemia	-	0.54	Negative	Negative	wt	wt
CMK-86	Megakaryoblastic leukemia	-	0.01	Negative	Negative	wt	Single mutation
K562	Erythroblastic leukemia	BCR-ABL1	0.00	Negative	Negative	wt	wt
CML-T1	T-cell leukemia	BCR-ABL1	0.72	Negative	Negative	wt	wt
BV173	B-cell leukemia	BCR-ABL1	0.01	Negative	Negative	wt	wt
SU-DHL-6	B-cell lymphoma	-	0.00	Negative	Negative	wt	wt

1 Table S1 Expression of MPO and *FLT3*, *NPM1*, and *CEBPA* Mutations in cell lines

2 Abbreviations: MPO represents myeloperoxidase; wt, wild type.

3 Quantitative analysis of MPO and ABL1 mRNA was performed by quantitative reverse-transcriptional PCR amplifications after RNA isolation and complementary

4 DNA synthesis. MPO enzymatic activity was evaluated using the diaminobenzidine method. The mutation status of *FLT3*, *NPM1*, and *CEBPA* was determined

5 using direct sequencing.

6

- 7
- 8
- 9

	UPN	DNMT3B/ABL1
		mRNA ratio
	1	0.072
	2	0.026
	3	0.018
	4	0.093
	5	0.003
	6	0.081
	7	0.033
	8	0.057
	9	0.074
	10	0.044
	11	0.352
	12	0.153
	13	0.085
	14	0.030
	15	0.045
	Quantitat	ive analysis of DNMT3I

Table S2 Expression of DNMT3B in CD34-positive cells obtained from clinical samples

1 Figure S1

a

b

d

1 Figure S2

- $\frac{2}{3}$
- $\frac{4}{5}$

8

1 Figure S3

LINE-1 methylation (%) 80 75 75 65 MPOa-H MPOa-L Ph+ALL Healthy donor Group AML group group group

 $\frac{2}{3}$