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Abstract— In this paper, the method of the realization of 
a MHz level switching frequency DC-DC converter for high 
power-density is presented. For high power-density, Gal-
lium Nitride field effect transistor (GaN-FET) and current-
mode resonant DC-DC converter are adopted. In addition, 
the proposed pulse width modulation (PWM) control me-
thod which is suitable for the isolated current-mode reso-
nant DC-DC converter operated at MHz level switching 
frequency, and the novel primary-side zero voltage switch-
ing (ZVS) turn on method for the proposed PWM control 
are presented. 

Some experiments have been done with 5MHz isolated 
DC-DC converter which has GaN-FET, and the total vo-
lume of the circuit is 16.14cm3. With the proposed PWM 
control method, input voltage range is 36-44V, and maxi-
mum load current range is 8A at Vi = 44V. The primary-
side ZVS turn on is confirmed, and the maximum power-
efficiency is 89.4%. 

Keywords— High Switching Frequency, PWM Control, 
Current-Mode Resonant DC-DC Converter, GaN-FET 

I.  INTRODUCTION 
Recently, high power-efficiency and high power-

density DC-DC converters have been required in 
information and communication technology (ICT) 
equipment. Corresponding to the requirement of high 
power-density, the increase in the switching frequency of 
these converters has been considered to be one of key 
technologies. In particular, MHz level switching 
frequency contributes significantly to downsizing.  

However, by adopting high switching frequency, 
power loss such as switching loss and gate driving loss 

increases. To solve this problem, the current-mode 
resonant DC-DC converter is effective because this 
converter can reduce switching loss. Also, GaN-FETs are 
suitable for high switching frequency operation as 
semiconductor switches because of low gate driving loss. 
Therefore, we have developed a 5MHz current-mode 
resonant DC-DC converter with GaN-FETs [1].  

Current-mode resonant DC-DC converters are usually 
controlled by pulse frequency modulation (PFM). 
However, PFM control is hard to design to control the 
output voltage at MHz level switching frequency 
operation. The details are going to be described in the 
section III. 

To solve the issue, this paper presents a novel PWM 
control method for the current-mode resonant DC-DC 
converter for MHz level switching frequency. This 
converter topology is same as the conventional current-
mode resonant DC-DC converter with synchronous 
rectification. The feature of the converter is controlling 
the output voltage without any additional components. 
By using transformer’s leakage inductance and 
secondary-side synchronously rectifying switches, the 
novel control method for boost conversion is realized. 

In the previous researches, some PWM-controlled 
current-mode resonant DC-DC converters have been 
presented [2-4]. For example, the method of additional 
auxiliary circuits for regulating output voltage [2-3], and 
the method of controlling the duty ratio of primary-side 
switches [4] have been proposed. However, these 
methods need some additional components for regulating 
output voltage.  
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On the other hand, the advantages of the proposed 
method are controlling secondary-side switches and no 
additional components. 

To accomplish the primary-side ZVS turn on, small 
magnetizing inductance Lm have been used in current-
mode resonant DC-DC converter generally. However, 
small Lm leads to increase of primary-side current which 
is cause of reducing power-efficiency. Therefore, to 
accomplish the ZVS operation in the proposed method, 
phase-shift between primary and secondary-side switches 
which control resonant current is adopted. As a result, 
this proposed converter maintains primary-side ZVS turn 
on. 

The targets of the study are to obtain the high 
performance which is the small volume, 36-75V or 42-
53V of input voltage range, 10A of maximum load 
current range, the realization of primary-side ZVS turn on, 
and high power-efficiency. 

In the section II, the approach of the realization of DC-
DC converter operated at MHz level switching frequency 
is described. In the section III, the issue of the 
conventional PFM-controlled current-mode resonant DC-
DC converter in MHz level operation is revealed. In the 
section IV, the proposed PWM-controlled current-mode 
resonant DC-DC converter is explained. In the section V, 
the experimental results are revealed. 

II. THE APPROACH OF THE REALIZATION OF DC-DC 
CONVERTER OPERATED AT MHZ LEVEL SWITCHING 

FREQUENCY 
For miniaturization of the DC-DC converter, the in-

crease in the switching frequency of these converters is 
considered to be one of key technologies. Therefore, this 
study challenges 5MHz of switching frequency at 120W 
of output power. Studies that satisfy both the frequency 
and the output power have not been challenged so far, as 
shown in Fig. 1. To suppress increasing core power loss 
with high switching frequency, NiZn ferrite core is used 
in the study because this core material is suitable for high 
frequency operation [5]. In addition, to decrease parasitic 
inductance, multilayer printed circuit board (PCB) and 
planar transformer like [6], [7] is adopted. 

However, by adopting high switching frequency, pow-
er loss such as switching loss and gate driving loss in-
creases dramatically. The switching loss Psw is expressed 
by 

sDSosssw fVCP 2= (1) 
where Coss is output capacitance of FET, VDS is drain-

to-source voltage of FET, and fs is switching frequency. 
The gate driving loss Pd is expressed by 

sGSGd fVQP =    (2) 
where QG is gate charge, and VGS is gate-to-source vol-

tage of FET. From eqs. (1) and (2), these power losses 
are proportional to fs. 

For reducing gate driving loss, GaN-FET is adopted in 
the study because GaN-FET has low QG and be driven at 
low gate-source voltage. From these reasons, GaN-FET 
can realize low Pd. Also, another researches have been 

proved utilizing GaN-FET for high switching frequency 
DC-DC converter is very practical [8-10]. Some litera-
tures [11-13] prove that GaN devices are more effective 
than silicon devices.  

However, because GaN-FETs have low gate-to-source 
threshold voltage Vth, low maximum gate-to-source vol-
tage VGSS, and high source-to-drain voltage VSD, it is dif-
ficult to drive these FETs. Therefore, suitable drive cir-
cuit for GaN-FET is needed. Some literatures show that 
driver LM5113 is suitable for driving GaN-FETs [14], 
[15]. 

Furthermore, current-mode resonant DC-DC converter 
topology featuring primary-side ZVS turn on operation is 
adopted because switching loss can be suppressed. The 
circuit topology is shown in Fig. 2.  

III. THE ISSUE OF THE CONVENTIONAL PFM-
CONTROLLED CURRENT-MODE RESONANT DC-DC 

CONVERTER IN MHZ LEVEL OPERATION 
To reduce the switching loss, the current-mode reso-

nant DC-DC converter is widely used. Also, other re-
searches have been proved using current-mode resonant 
DC-DC converter for high power-efficiency is very prac-
tical [16-19]. Generally, the current-mode resonant DC-
DC converter is controlled by PFM control which varies 
switching frequency. PFM control has been valid for the 
control of the resonant DC-DC converters in kHz level 
switching operation so far. 

To show the static characteristics, the definitions of the 
converter are  

( ) io VnVM 2= , (3) 

rm LL=κ , (4) 

0ffF s= , (5) 

Fig. 1. The performance of isolated DC-DC converters in the pre-
vious papers. 

Fig 2. The circuit topology used in the paper. 
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( )rrCLf π= 210 , (6) 

00 2 fπ=ω , (7) 

acRZQ 0= , (8) 

( ) 228 π= Lac RnR (9) 
and 

rr CLZ =0     (10)
where turn ratio n, magnetizing inductance Lm, reso-

nant inductance Lr, switching frequency fs, resonant capa-
citance Cr and load resistance RL. 

From literatures, voltage conversion ratio M of PFM-
controlled current-mode resonant DC-DC converter is 
written by 
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From eq. (11), the static characteristics of PFM con-
trolled current-mode resonant DC-DC converter can be 
leaded. Two examples of the static characteristics are 
shown in Fig. 3. One is Vi = 48V, n = 2.2, Lm = 200nH, Lr 

= 100nH, Cr = 10nF, Z0 = 3.16, f0 = 5.04MHz and κ = 2. 
The other is Vi = 48V, n = 2.2, Lm = 200nH, Lr = 10nH, Cr 
= 80nF, Z0 = 0.354, f0 = 5.63MHz and κ = 20. 

It is assumed that input voltage range is from 42 to 
53V at RL = 1.2Ω and Vo = 12V.  In case of Lr = 100nH, 
for realization of the range, F is changed from 0.81 to 
0.99 (fs is changed from 4.06 to 4.99MHz). In contrast, in 
case of Lr = 10nH, for realization of the range, F is 
changed from 0.38 to 0.92 (fs is changed from 2.16 to 
5.17MHz).  

The difference between two parameters can be con-
firmed. If switching frequency changes widely for con-
trolling output voltage, the large noise filter will be 
needed. Therefore, the DC-DC converter is prevented 
from downsizing by large noise filter. If switching fre-
quency changes narrow for controlling output voltage, 
the large resonant inductance is needed for controlling. 

As a result, in MHz level operation for the miniaturiza-
tion of the DC-DC converter, it is shown that PFM con-
trol is hard to be designed. 

IV. THE PROPOSED PWM-CONTROLLED CURRENT-
MODE RESONANT DC-DC CONVERTER

The proposed current-mode resonant DC-DC conver-
ter can be controlled at fixed switching frequency. In 
addition, for controlling output voltage, this method need 
not any additional components. 

A. The Circuit Topology 
The circuit topology is based on a half-bridge type 

current-mode resonant DC-DC converter as shown in Fig. 
2. The primary-side is the half-bridge topology. Q1 and
Q2 are driven in 50% duty ratio, alternatively. Coss1 and 
Coss2 are parasitic capacitance of primary-side switches 

Q1 and Q2. Cr1 and Cr2 are the resonant capacitors which 
have same capacitances and also make averaged voltage 
of vc to a half of the input. The inside of the broken line is 
the magnetic transformer which equivalently indicated 
that Lr is leakage inductance, and Lm is the transformer’s 
magnetizing inductance. The turn ratio is n : 1. Lr is used 
as the resonant inductance. The secondary-side is the full-
bridge topology composed with diodes D1 and D2 for 
high-side arm switches, and transistors Q3 and Q4 for 
low-side arm switches. 

B. The Principle of the Proposed PWM Control Method 
To simplify analysis of the circuit operation, the fol-

lowing assumptions are made: 
 FETs are treated an ideal switch; 
 The body diodes of the primary-side FET are neg-

lected; 
 The output capacitances of the primary-side FETs 

are constant during operation, satisfying 

21 ossoss CC = , 21 ossossoss CCC += ; 

 Resonant capacitances are satisfied  21 rr CC = ,

21 rrr CCC += ;

 The forward voltage drop and the parasitic capacit-
ance of the secondary-side diodes are neglected; 

 The output capacitance and the body diodes of the 
secondary-side FETs are neglected; 

 The output voltage is constant; 
The output voltage can be controlled with changing 

the duty ratio of Q3 and Q4, simultaneously. When the 
duty ratio is less than 0.5, the circuit is operated as well 
as conventional current resonance circuit. When the duty 
ratio is more than 0.5, the circuit is operated in the pro-
posed operation. 
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(a) Lr = 100nH, Cr = 10nF, Z0 = 3.16. 
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(b) Lr = 10nH, Cr = 80nF, Z0 = 0.354. 
Fig 3. The static characteristics of LLC resonant DC-DC converter 

with the conventional PFM control method. 
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The circuit can be separated into 5 states in the pro-
posed operation with the switch combination as shown in 
TABLE I. The operational waveforms are shown in Fig. 
4. The equivalent circuits for each state of a half switch-
ing term are shown in Fig. 5. In this figure, the switches 
drawn with weak colors represent OFF, and red line 
represents current flow. The definitions of the duty ratio 
D is followed as 

Son TTD = , (12)

54121 DDDD +++=  , (13) 

2154321 =++++ DDDDD (14) 

and 

⎩
⎨
⎧

>
≤

)operation  proposed(5.0
)operation alconvention(5.0

D
D

(15) 

where Ts is the switching period, and Ton is the on-term of 
Q3 and Q4. D1~D5 are the duty ratio of the each state. The 

definitions of the resonant are followed; 
( ) rmr CLL +=ω 11 , (16) 

( ) rmr CLLZ +=1 (17) 
and 

ossross CL1=ω    (18)

The definitions of the initial value of the variable are fol-
lowed; 

( ) cic VVv −= 201 (19) 

and 
( ) rr Ii =01     (20)

The description for each state is described below. 

State 1 (0 < t < D1Ts):  
In this state, t1 is defined as t1 = t. The primary-side 

switch Q1 is turned ON. Also, the secondary-side switch-

TABLE I. CIRCUIT OPERATION STATES 

State FET Diode
Q1 Q2 Q3 Q4 D1 D2 

State 1 ON OFF ON ON OFF OFF 
State 2 ON OFF ON OFF OFF ON 
State 3 ON OFF ON OFF OFF OFF 
State 4 ON OFF ON ON OFF OFF 
State 5 OFF OFF ON ON OFF OFF 

Q1 ON

Q2 ON

Q3 ON

Q4 ON

TS 

DTon 

State1

Ts/2 

vDS

vGS1

vGS2

vGS3

vGS4

vc

vp

vs

ir

im

State2 State3 State4 State5
D1Ts D2Ts D3Ts D4Ts D5Ts

Δtps 

Fig. 4. The operational waveforms of the proposed PWM control. 

(a) State 1 (0 < t < D1Ts). 

(b) State 2 (D1Ts < t < (D1+D2)Ts). 

(c) State 3 ((D1+D2)Ts < t < (D1+D2+D3)Ts). 

(d) State 4 ((D1+D2+D3)Ts < t < (D1+D2+D3+D4)Ts). 

(e) State 5 ((D1+D2+D3+D4)Ts < t < Ts/2). 
Fig. 5. The equivalent circuits for each state 

of the proposed PWM method. 
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es both Q3 and Q4 are turned ON. Q3 and Q4 are over-
lapped as indicated with the light gray area in Fig. 4. The 
resonant inductance Lr is magnetized by ir for boosting 
output voltage. From the figure, vc1 (t1) and ir1 (t1) are be-
come 

( ) ( ) ( ) ( ){ }1001011 sincos2 tIZtVVVtv rciic ω+ω+−=
(21) 

and 
( ) ( ) ( ) ( )1010011 cossin21 tItVVZti rcir ω+ω+−= . 

(22) 
The final values of the state 1 are 

( )Scc TDvV 112 = (23) 

and 
( )Srr TDiI 112 = . (24) 

State 2 (D1Ts < t < (D1+D2)Ts):  
In this state, t2 is defined as t2 = t-D1Ts. After Q4 is 

turned OFF, the direction of the voltage applied to D2 is 
inverted, and diode of D2 becomes ON. The inductance 
current which is magnetized in state 1 flow through diode 
D2 and switch Q3, to the load. From the figure, vc2 (t2) and 
ir2 (t2) are become 

( )
( ) ( ) ( )2020202

22

sincos tIZtnVVV
nVVtv

roic

oic

ω−ω+−+
−=

(25) 
and 

( ) ( ) ( )
( )202

202022

cos
sin1

tI
tnVVVZti

r

oicr

ω+
ω+−=

. (26) 

The final values of the state 2 are 
( )Scc TDvV 223 = (27) 

and 
( )Srr TDiI 223 = . (28) 

State 3 ((D1+D2)Ts < t < (D1+D2+D3)Ts):  
In this state, t3 is defined as t3 = t-D1Ts-D2Ts. The direc-

tion of the diode D2 current is inverted, and diode of D2 
becomes OFF. In the state, resonant current ir equal to 
magnetizing current im. From the figure, vc3 (t3) and ir3 (t3) 
are become 

( ) ( ) ( ) ( )313131333 sincos tIZtVVVtv ricic ω−ω−+=
(29) 

and 
( ) ( ) ( ) ( )313313133 cossin1 tItVVZti ricr ω+ω−= . 

(30) 
The final values of the state 3 are 

( )Scc TDvV 334 = (31) 

and 
( )Srr TDiI 334 = . (32) 

State 4 ((D1+D2+D3)Ts < t < (D1+D2+D3+D4)Ts):  
In this state, t4 is defined as t4 = t-D1Ts-D2Ts-D3Ts.  This 

state is similar to state 1. In the state, the resonant induc-
tance Lr is magnetized by ir for primary-side ZVS turn on. 
Q3 and Q4 are overlapped as indicated with the dark gray 

area in Fig. 4. From the figure, vc4 (t4) and ir4 (t4) are be-
come 

( ) ( ) ( ) ( )404040444 sincos tIZtVVVtv ricic ω−ω−+=
(33) 

and 
( ) ( ) ( ) ( )404404044 cossin1 tItVVZti ricr ω+ω−= .(34)

The final values of the state 4 are 
( )Scc TDvV 445 = (35) 

and 
( )Srr TDiI 445 = . (36) 

State 5 ((D1+D2+D3+D4)Ts < t < Ts/2):  
In this state, t5 is defined as t5 = t-D1Ts-D2Ts-D3Ts-D4Ts. 

The primary-side switch Q1 is turned OFF. All primary-
side switches are turned OFF, called dead-time. The pa-
rasitic capacitor Coss1 of Q1 is discharged by a half of re-
sonant inductance current ir. Q3 and Q4 are overlapped as 
indicated with the dark gray area in Fig. 4. From the fig-
ure, vc5 (t5), vDS5 (t5) and ir5 (t5) are become 

( ) ( )
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⎟
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cc
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(37) 
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(38) 
and 

( )

⎟
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 (39) 

C. The Method for Achieving Primary-side ZVS Turn 
On  in the Proposed PWM Control 
To accomplish the primary-side ZVS turn on, small 

magnetizing inductance Lm have been used generally. 
However, small Lm leads to increase of primary-side cur-
rent which is cause of reducing power-efficiency. There-
fore, to accomplish the ZVS operation in the proposed 
converter, phase-shift between primary and secondary-
side switches which control resonant current is adopted. 
As shown in Fig. 4, the proposed operation has phase-
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shift between primary and secondary-side switches. Δtps 
is the time length of the phase-shift. Without the phase-
shift, Δtps = 0ns, the previous state of the dead-time be-
comes discontinuous current state. With this situation, 
initial current cannot be charged enough for ZVS because 
of secondary parasitic capacitance. Therefore, even with 
the long dead-time term, ZVS cannot be achieved. With 
the phase-shift, the problem of the initial current can be 
solved. From eqs. (34) and (36), the initial current of the 
dead-time, Ir5 is 

( ) ( ) ( )SrSicr TDITDVVZI 40440405 cossin1 ω+ω−= .
(40) 

The term of the phase-shift becomes 
SSps TDTDt 54 +=Δ .  (41) 

In eq. (41), as defined as the D5Ts is fixed, the term of 
state 4 becomes larger with the increase of Δtps. Ir5 is re-
lated to Δtps almost linearly. With the enough amount of 
Ir5, the amount of electrical charge qr5 which flows reso-
nant inductance in dead-time becomes larger. For an ex-
ample, in the conditions of Coss = 900pF, Vi = 36V, RL = 
1.5ohm, D5Ts = 5ns, the relation of Δtps and qr5 are shown 
in Fig. 6. The electrical charge qr5 can be calculated with 

( )∫=
STD

rr dttiq
5

0
55 (42) 

For achieving ZVS, qr5 has to be larger than the amount 
of the electrical charge of the parasitic capacitance of the 
switch as 

ossr qq >5 (43) 
where iossoss VCq = (44) 
From the figure, it can be seen that the phase-shift 

Δtps between primary and secondary-side switches are 
valid for ZVS operation for the proposed PWM control. 

D. The Advantage of the Proposed Method at MHz 
Level Operation 
Similar to section III, two examples of the static cha-

racteristics of the proposed PWM controlled current-
mode resonant DC-DC converter are shown in Fig. 7. 

It is assumed that input voltage range is from 42 to 
53V at RL = 1.2Ω and Vo = 12V. In case of Lr = 100nH, 
for realization of the range, D is changed from 0.5 to 0.61. 
In contrast, in case of Lr = 10nH, for realization of the 
range, D is changed from 0.5 to 0.55. By comparing be-
tween two parameters, the case of Lr = 10nH can control 
in narrow duty ratio than the other one. Therefore, the 
proposed PWM control method is seem to be suitable for 
the miniaturization of the DC-DC converter because the 
output voltage can be controlled with small resonant in-
ductance. 

V. EXPERIMENTAL RESULTS 
In this section, it can be confirmed the difference be-

tween the experimental results of the proposed method 
and the targets of the study. 

A. The Experimental Conditions 
As a prototype digital controller, field programmable 

gate array (FPGA) Cyclone IV is used, which generates 
individual gate signal for each switch. The on-term of the 
gate signals are manually changed with software. The 
resolution of the gate signals is 1nano second. 

Some experiments have been carried out with para-
meters as shown in TABLE II, and 12V of constant out-

Non-ZVS

ZVS

qoss

0 5 10 15 20 25 3010
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35
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r5

 | 
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C
]

Fig 6. The effect of the phase-shift Δtps vs | qr5 |. 
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(a) Lr = 100nH, Cr = 10nF, Z0 = 3.16. 
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M

D = 0.5~0.55

Vi = 53V
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(b) Lr = 10nH, Cr = 80nF, Z0 = 0.354. 
Fig 7. The static characteristics of resonant DC-DC converter with the 

proposed PWM control method. 

TABLE II. EXPERIMENTAL PARAMETERS 
Specifications Value

Output reference voltage: Vo 12V
Transformer ratio n : 1 2 : 1 

Switching frequency:  fs 5MHz
Resonant frequency: fr 4.98MHz

Transformer leakage inductance: Lr 33nH
Transformer magnetizing inductance: Lm 200nH

Resonant capacitor: Cr1,Cr2 15.5nF
Output capacitor: Co 18.8μF 
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put voltage with open loop control. Components used in 
the experiment are shown in TABLE III.  

The main circuit of the proposed PWM-controlled 
5MHz DC-DC converter with GaN-FETs is shown in Fig. 
8. The total volume of the main circuit of the proposed
5MHz DC-DC converter is 16.14cm3. 

B. The Performance of the Proposed Method 
The open loop static characteristics of the 5MHz 

PWM-controlled DC-DC converter are exhibited as 
shown in Fig. 9. From the figure, it can be seen that vol-
tage transfer ratio M is controlled by duty ratio D, and 
input voltage range can be achieved 36-44V. The differ-
ence between the performance of the proposed method 
and the targets can be confirmed. The reason is that the 
ideal transformer turn ratio n is 2.2, however, the actual n 
is 2. Planar transformer cannot be changed n easily be-
cause the winding is incorporate into the substrate. 

The waveforms of Io = 0.89A and Io = 6.3A with the 
phase-shift are shown in Fig. 10. The blue bar of dead- 
time shows achieving primary-side ZVS turn on and Δtps 
is effective for primary-side ZVS operation. 

The power-efficiency of the DC-DC converter at Vo = 
12V is shown in Fig. 11. The maximum power-efficiency 
is 89.4%, and maximum load current is 8A at Vi = 44V. 
Also, at low input voltage 44V or 36V, it can be seen that 
the power-efficiency is relatively low, and maximum 
load current is low. The reason is that large duty ratio is 
needed at low input voltage and large output current. The 
large duty ratio leads to large peak current which is cause 
of power dissipation. ZVS operation has been confirmed 
in the range of the experimental conditions.  

The temperature distribution of the DC-DC converter 
as shown in Fig. 12, has been taken of the breadboard at 
Vi = 44V and Io = 8A. From the results, the temperature 
of the secondary-side is still in high level. The reason is 
that large duty ratio leads to the hard-switching of sec-
ondary-side switches, and large conduction loss of diodes 
is happened. On the other hand, the primary-side temper-
ature is relatively low because of achieving ZVS turn on. 
Therefore, in the future, the hard-switching of secondary-
side switches will be improved. 

TABLE III. EXPERIMENTAL COMPONENTS 
Name Manufacture Part Name/ Material 

Primary side GaN-FET EPC EPC2001 
Secondary side  

GaN-FET EPC EPC2015

FET Driver TEXAS 
INSTRUMENTS LM5113 

Diode DIODES PDS1040L
Transformer Core 

Material TDK NiZn Ferrite Core 

Resonant Capacitor TDK C1608C0G1H392J 
Input Capacitor TDK C3216X7R1H105K 

Output Capacitor TDK C2012X7R1E475M 

FPGA Terasic 
(ALTERA) 

DE0-nano  
 (Cyclone IV) 

Isolator TEXAS 
INSTRUMENTS ISO722 

FET Driver

GaN-FET 
Transformer

68.05mm

30.00mm

Diode
Output Capacitor  

Primary-side Secondary-side

Fig. 8. The main circuit of the DC-DC converter. 

0.5 0.55 0.6 0.651

1.1

1.2

1.3  Io=1A
 Io=3A
 Io=5A

D

M

Vi = 40V

Vi = 36V

Vi = 44V D = 0.58~0.62

D = 0.51~0.58

Fig. 9. The open loop static characteristics of resonant DC-DC 
converter with the proposed PWM control method. 

  (a) Vi = 44V, Vo = 12V, Io = 0.89A, D = 0.53, Δtps = 3ns. (a) Vi = 44V, Vo = 12V, Io = 6.3A, D = 0.6, Δtps = 13ns. 
Fig. 10. Experimental waveforms of resonant DC-DC converter with the proposed PWM control method. 
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VI. CONCLUSIONS

In this paper, the method of the realization of a MHz 
level switching frequency DC-DC converter for high 
power-density is described. Furthermore, the novel PWM 
control method and achieving ZVS operation method for 
the current-mode resonant DC-DC converter in MHz 
level operation has been proposed.  

The targets of the study is to obtain the high perfor-
mance which is the small volume, 36-75V or 42-53V of 
input voltage range, 10A of maximum load current range, 
the realization of primary-side ZVS turn on, and high 
power-efficiency. 

Some experiments have been done with 5MHz isolated 
DC-DC converter which has GaN-FET, and the total vo-
lume of the circuit is 16.14cm3. With the proposed PWM 
control method, input voltage range is 36-44V, and maxi-
mum load current range is 8A at 44V. The primary-side 
ZVS turn on is confirmed, and the maximum power-
efficiency is 89.4%. 

As the future work, to accomplish the targets of the 
study, detailed analysis of the proposed method with 
phase-shift, realization of the wide control range and 
feedback control by digital controller are under consider-
ations.   
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Fig. 11. The power-efficiency of resonant DC-DC converter with 
the proposed PWM control method at Vo = 12V. 

GaN-FET Q1 : 65 °C

GaN-FET Q3 : 82.2 °CPrimary FET Driver : 74 °C
Secondary FET Driver : 80 °C

Diode D1 : 95.7 °C
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Primary side of Trans. : 72 °C

Fig. 12. The temperature distribution of resonant DC-DC converter 
with the proposed PWM control method  

at Vi = 44V, Vo = 12V, Io = 8A. 
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