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ABSTRACT:  15 

In this study, in-situ shear tests on a closely jointed rock mass containing two sets of joints, 16 

one continuous and another staggered, were conducted. A series of laboratory shear tests with 17 

varying combinations of loading conditions and geometrical characteristics of rock joints 18 

were also carried out. A Discrete Element Method (DEM) was used to numerically simulate 19 

the in-situ and laboratory shear tests. The in-situ tests, laboratory tests and numerical 20 

modeling were aimed at evaluating the anisotropic shear behavior of closely jointed rock 21 

masses. Comparison between the test and simulation results of this study with the results of 22 

similar laboratory tests was completed. The simulation results agreed well with the laboratory 23 

test results and provided slightly higher shear stresses comparing to the results of in-situ shear 24 

tests. The test and simulation results showed that the jointed rock masses exhibited strong 25 

anisotropic shear behavior, the significance of which depended on the orientation of 26 

continuous joint set. Different failure mechanisms were confirmed in the tested and simulated 27 

rock mass models with different geometrical characteristics of rock joints, which resulted in 28 

the anisotropic shear behavior.  29 

 30 
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1. INTRODUCTION 33 

The shear behavior of jointed rock masses is an important issue in rock engineering, 34 

especially for the stability of slopes and dam foundations. However, limited cases of in-situ 35 

shear tests have been conducted, mainly due to their high costs and technical challenges in 36 

implementation (e.g., [1]-[5]). The shear behavior of closely jointed rock masses is governed 37 

by the mechanical properties of intact rock matrix and mechanical and geometrical 38 

characteristics of rock joint systems, such as the orientations of the joint sets and direction of 39 

the shear loading. Different geometrical characteristics will induce different failure 40 

mechanisms of rock masses during shear processes, resulting in different shear behavior [6].  41 

Since in-situ tests are expensive, laboratory tests are typically conducted to give insight into 42 

the deformation behavior and failure mechanisms of jointed rock masses subjected to 43 

unconfined compression (e.g., [7]), biaxial compression (e.g., [8]) and triaxial compression 44 

(e.g., [9]). Such laboratory test results show that the strength of a jointed rock mass increases 45 

with the increase of confining stress and decrease of joint density, decreasing to the lowest 46 

value at a critical joint orientation. Different failure modes, such as splitting and shearing 47 

through intact rock and sliding along rock joints, can be observed on the models with different 48 

geometrical characteristics of rock joints. Hayashi and Fujiwara [10] conducted a series of 49 

direct shear tests on jointed rock mass models with one continuous joint set and reported that 50 

higher shear strengths could be observed in most orientations of a positive joint orientation 51 

system than that in a negative joint orientation system (see Fig. 1). His results showed that the 52 

compaction of rock mass increased the normal stress acting on rock joints, resulting in the 53 

increase of the strength of rock mass in the positive joint orientation system, while the dilation 54 

of rock mass reduced the strength of negative joint orientation system. Kawamoto [11] 55 

conducted shear tests on similar mass models, and found that in the positive joint orientation 56 
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system, cracking initiated in the position underneath the toe of the face of the loading block 57 

subjected to shear loading, which propagated and connected with pre-existing joints and 58 

finally formed the failure plane. In the negative joint orientation system, opening of joints 59 

firstly happened in the same position, which then induced tensile cracks accompanied by the 60 

rotation of the rock mass, leading to the ultimate failure (see Fig. 9 presented later). 61 

Nagayama et al. [12],[13] also conducted shear tests on jointed rock mass models, 62 

emphasizing on the influence of rock joint orientation on the shear strength of rock mass. 63 

They reported that the strength of a jointed rock mass could be governed by the strength of 64 

intact rock, rock joints, or the mix of both depending on the orientation of the continuous joint 65 

set.  66 

Besides the laboratory tests, numerical simulations using Discrete Element Method (DEM), 67 

which more realistically models the mechanical behavior (compression, sliding, opening etc.) 68 

and geometrical characteristics (orientation, gap, spacing etc.) of rock joints, have achieved 69 

tremendous success in helping understand the mechanical behavior of jointed rock masses 70 

[14]. Although jointed rock masses subjected to unconfined, biaxial, and triaxial normal 71 

compressions have been modeled in numerical simulations, no attention has been paid to 72 

modeling jointed rock masses subjected to the combined normal and shear loadings. In 73 

addition, many numerical studies lacked support from measured data from laboratory tests or 74 

in-situ tests, thus caused difficulties for justifications of validity and applicability of the 75 

numerical models.      76 

To overcome the above mentioned shortcomings, combined research of numerical 77 

simulations and in-situ shear tests on a closely jointed rock mass, supported further by a series 78 

of laboratory shear tests, were conducted. Laboratory test models containing a set of 79 

continuous joints intersected by a set of staggered joints orthogonal to the continuous joint set 80 

were reproduced at a 1/3 scale using artificial rock materials. A series of shear tests on these 81 
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laboratory test models were carried out, taking into account the influence of loading 82 

conditions (lateral restraint stress and initial normal stress) and the geometrical characteristics 83 

of the rock joints (dip angle and spacing), in order to investigate the anisotropic shear 84 

behavior of closely jointed rock masses. The mechanical properties of the in-situ intact rock 85 

and rock joints, and the artificial rock materials and joints for laboratory tests were measured 86 

through a well-planed laboratory testing procedure, which were then adopted in the numerical 87 

simulations of the shear tests using a DEM. The influence of the orientation of continuous 88 

joint set on the anisotropic shear behavior of rock masses was further studied with numerical 89 

models containing varying dip angles of the continuous joint set. The test and simulation 90 

results were verified through comparisons with the results of similar laboratory tests reported 91 

in literature. 92 

2. SETUP OF IN-SITU AND LABORATORY SHEAR TESTS  93 

2.1 Characteristics of the prototype rock mass  94 

The site for the in-situ shear tests is located on Kyushu Island, Japan (a possible site for a 95 

foundation of a nuclear power plant). The rock mass in this site is constituted by Mesozoic 96 

clay slate, sandstone, and conglomerate, covered by a shallow layer of Cenozoic igneous rock. 97 

The rock mass is slightly weathered, and closely jointed by three sets of rock joints. The 98 

geometrical characteristics of rock joints and the mechanical properties of intact rocks and 99 

rock joints at two locations in this site with different rock types (location A: clay slate; 100 

location B: conglomerate) were investigated. The rock mass at location A was chosen as the 101 

prototype rock mass for the laboratory tests, and in-situ shear tests were conducted at location 102 

B. From a cross-sectional view, two sets of joints can be identified in the field, orthogonal to 103 

each other with different spacing. The joints of Set 1 are continuous with good persistence, 104 

serving as the major rock structure; the joints of Set 2 are less persistent and staggered, and 105 
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are oriented perpendicular to the joints of Set 1. Fig. 2 shows an example of the core specimen 106 

sketch, the statistical orientation distribution of the rock joints and a cross-sectional view of 107 

the distribution of joints in the field. The sketches show a set of sub-vertical persistent rock 108 

joints (Set 1), intersecting with several parallel sub-horizontal rock joints (Set 2). The lower 109 

hemisphere stereographic projection of joint poles shows that most of the rock joints of Set 1 110 

in the field have moderate to steep dip angles ranging from 50º to 90º. Through the analysis of 111 

34 boreholes with a maximum length of 230 m and field investigation by trench and tunnel 112 

excavations (Fig. 2c), the approximate cross-sectional profiles of the geometrical distribution 113 

of joints for the two locations were then obtained, as shown in Fig. 3.  114 

According to the survey results, the spacing of Set 1 is 30 mm to 60 mm, and that of Set 2 115 

is 90 mm to 180 mm at location A. The mean spacing of joints of Set 1 is 50 mm with a 116 

standard deviation of 30 mm, and 100 mm with a standard deviation of 60 mm for Set 2, at 117 

location B. Set 1 dips at mean angles of 70º and 75º at the locations A and B, with standard 118 

deviations of 9.9 º and 8.2º, respectively.   119 

Note that there is a third set of joints on the site with orientation normal to both set 1 and 120 

set 2 and in the out-of-plane direction in Fig. 2, which has a mean spacing larger than 1 m. Its 121 

influence on the in-situ shear tests with a sheared area of 600 mm×600 mm is therefore 122 

negligible. This information also made a 2D numerical model for the site a reasonable 123 

simplification. 124 

The physico-mechanical properties of the intact rocks and the mechanical properties of 125 

rock joints in the two locations are shown in Tables 1 and 2, respectively. The properties of 126 

intact rocks were estimated through standard laboratory unconfined compression tests and 127 

triaxial compression tests, and the properties of rock joints were estimated through laboratory 128 

direct shear tests. Core specimens were used for all tests. A servo-controlled direct shear 129 

apparatus was used in this study to accurately estimate the shear behavior of relevant rock 130 
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joints, which is important since the deformation and failure of rock joints govern the total 131 

performance of the jointed rock masses. The testing procedure and some results are presented 132 

in detail in [15],[16].  133 

2.2 In-situ shear test 134 

The setup of the in-situ shear test conducted in location B followed the suggested method 135 

for determining shear strength of rock masses [17], and therefore, only a few important 136 

settings are summarized here. The area of the shear plane is 600 mm×600 mm and the height 137 

of the loading concrete block is 300 mm. The direction of shear load was inclined 15º with 138 

respect to the horizontal plane, and the increment of shear load at each loading step is 0.02 139 

MN at a loading rate of 0.25 MPa/min. Four LVDTs were installed on the top surface of the 140 

loading block (block subjected to normal and shear loads positioned above rock mass, see Fig. 141 

4) and another four were installed on the back surface. The mean values of LVDTs on the top 142 

surface were taken for calculating the representative normal displacement and the mean 143 

values of those on the back surface were taken for calculating the representative shear 144 

displacement. Two cases of in-situ tests, numbered as case I-15-1 and I-15-2, were conducted 145 

with normal stresses of 0.4 MPa for case I-15-1 and 1.2 MPa for case I-15-2.  146 

2.3 Laboratory experiment 147 

(a) Testing apparatus 148 

To reproduce the stress state and boundary conditions of the rock mass subjected to the 149 

in-situ shear test, 1/3 down-scaled physical test models were established by using a laboratory 150 

direct shear testing apparatus, as shown in Fig. 4. A series of shear tests were conducted by 151 

using this apparatus and some results have been reported in [18],[19], which were also 152 

included in this article. The test model has a length of 900 mm, a height of 300 mm and a 153 

thickness of 100 mm, and the loading block has a length of 200 mm, a height of 100 mm and 154 
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a thickness of 100 mm, where the thickness stands for the dimension in the direction 155 

perpendicular to the x-y plane. The capacity of jacks is 50 kN for shear loading, 20 kN for 156 

normal loading, and 50 kN for lateral restraint. The shear load acting on the front face of the 157 

loading block is inclined by an angle of 15º with respect to the horizontal plane, in order to 158 

suppress the rotation of the loading block during the test, as commonly adopted in the in-situ 159 

shear tests. The lateral restraint jacks provide stresses on the lateral boundaries for 160 

reproducing the initial in-situ stresses exerted by the surrounding rock mass. The faces of the 161 

test model parallel to the x-y plane are free to move. Four LVDTs were installed on the top 162 

face of the loading block (two of them can be observed in Fig. 4) to measure the normal 163 

displacement, while another two LVDTs were installed on the back face of the loading block 164 

to measure the lateral (shear) displacement. 165 

(b) Specimen of artificial rock mass  166 

The artificial rock masses were constituted by a large number of small-sized blocks (see 167 

Fig. 4b), manufactured by using the mixture of plaster, slaked lime, standard sand and water 168 

with a weight ratio of 1:1:5:1.6, cured for 28 days. These blocks have two kinds of 169 

dimensions: the first kind has a width of 20 mm, a length of 60 mm, and a thickness of 100 170 

mm, and the second kind has a width of 10 mm, a length of 30 mm, and a thickness of 100 171 

mm (1/3 of the rock blocks at the location A as shown in Fig. 3). Here, the width stands for 172 

the spacing of joints of Set 1, the length stands for the spacing of joints of Set 2, and the 173 

thickness stands for the dimension of the rock blocks in the direction perpendicular to the x-y 174 

plane (see Fig. 3). By inclining the rock blocks to the required dip angle, the block collection 175 

then approximately reproduced the joint distribution in the in-situ rock mass of location A 176 

with a 1/3 down-scaling. The physico-mechanical properties of the rock-like test material and 177 

the mechanical properties of artificial rock joints are shown in Tables 1 and 2, respectively. 178 
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These properties were estimated using the same methods for determining the properties of 179 

natural rocks at locations A and B (also shown in Tables 1 and 2). The shear stress-shear 180 

displacement relations of the artificial joints subjected to different normal stresses are shown 181 

in Fig. 5. Since the joints had planar and smooth surfaces, their cohesions and dilation angles 182 

(confirmed on normal displacement-shear displacement curves) were assumed to be 0, and no 183 

obvious peak shear stress could be observed in these curves. The friction angle was estimated 184 

through the linear regression of the shear stress-normal stress curves, and the shear stiffness 185 

was estimated through the linear regression of the curves shown in Fig. 5, using the inclined 186 

portions. The normal stiffness of joints, which is a function of normal stress, was estimated 187 

from the normal stress-normal displacement curves obtained from the third or fourth cycle of 188 

the loading-unloading test using the Bandis model [20], with the deformation contributed by 189 

the intact rock cancelled. The estimated initial normal stiffness kni is 7.56 GPa/m and the 190 

maximum joint closure Vm is 0.03mm. Taking the joint opening and compressive stresses as 191 

positive values, the normal stiffness kn at arbitrary normal stress σn can then be determined by 192 

the following equation [20]. 193 
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(c) Testing procedure and cases 196 

Artificial rock blocks were carefully packed into the steel frame of the testing apparatus 197 

(see Fig. 4) to form a physical rock mass model. The loading block, manufactured by using 198 

high strength plaster, was then firmly bonded to the top surface of the rock mass model by 199 

using epoxy resin. By doing so, neither failure of the loading block nor slip between the 200 

loading block and the rock mass model would happen during the tests. Failure would only 201 
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happen within the rock mass models. The lateral confining stress was firstly applied on a rock 202 

mass model, followed by the normal stress being applied on the loading block, in order to 203 

consolidate the model. Then, the shear stress was incrementally applied on the loading block 204 

until failure occurred, with a shear load of 0.98 kN for each step and a loading rate of 0.49 205 

MPa/min.    206 

  In-situ geological survey indicated that the continuous joint set (Set 1) in the field dips in a 207 

range of 50º to 90º. To investigate its influence on the shear behavior of the test models, rock 208 

mass models of 5 different dip angles (θ=50º, 70º, 90º, -70º and -50º) of Set 1 were 209 

constructed and tested. Here, joints rotating clockwise from the vertical axis (θ=90º) up to 90º 210 

were assigned a positive dip angle, and vice versa. Besides the dip angles, 2 kinds of block 211 

sizes (10 mm×30 mm and 20 mm×60 mm, 1/3 of those shown in Fig. 3a), which were the 212 

lower and upper bounds of the block sizes discovered in the field, were used in the model 213 

constructions. For loading conditions, 5 magnitudes of normal stresses (0.082 MPa, 0.2 MPa, 214 

0.29 MPa, 0.49 MPa and 0.98 MPa) and 3 magnitudes of lateral restraint stresses (0.082 MPa, 215 

0.16 MPa and 0.33 MPa) were selected for the tests. These conditions then led to 14 rock 216 

mass models with different geometrical characteristics of joints as demonstrated in Fig. 6, and 217 

36 testing cases in total as summarized in Table 3. As shown in Fig. 6, Model 1 is intact rock 218 

(without joints), Models 2-7 and 12-14 have the larger blocks (20 mm×60 mm), Models 8 and 219 

9 have the smaller blocks (10 mm×30 mm), and Models 10 and 11 have the mixture of both. 220 

Offset of staggered joints in Models 2 and 3 were modified to create a few new models 221 

(Models 4 and 6 based on Model 2, and Models 5 and 7 based on Model 3) with identical 222 

density of joints but different geometrical distributions of the joints of Set 2. In the labeling of 223 

the test cases, such as case E-1-1, “E” is the capital letter of experiment, the first number 224 

stands for the model (from 1 to 14) used in this case, and the second number stands for the 225 

case number of the model, since several cases with different boundary conditions may be 226 
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conducted on one model.     227 

3. NUMERICAL SIMULATIONS OF LABORATORY AND IN-SITU SHEAR TESTS 228 

The laboratory and in-situ shear tests were numerically modeled using the DEM code 229 

UDEC [21], utilizing the original values of the dimensions, mechanical properties and 230 

boundary conditions etc. of the laboratory and in-situ tests (see Fig. 6). The dimensions of the 231 

numerical models for in-situ tests are full scale (i.e., 3 times the size of the laboratory test 232 

models), and the properties of intact rock and rock joints of location B were adopted. Roller 233 

boundaries were applied to lateral and bottom boundaries (no lateral restraint stress). In the 234 

numerical models for laboratory tests, roller boundaries were applied to the right and bottom 235 

boundaries, and lateral restraint stress was applied on the left boundary as shown in Fig. 6. 236 

Besides these, identical numerical treatments were applied to both kinds of numerical models 237 

during the modeling as follows.  238 

The loading block was treated as a rigid body, and normal and shear stresses were applied 239 

on its top and front faces respectively. The interface between the loading block and the rock 240 

mass was treated as a joint with the magnitudes of mechanical properties 2 orders higher than 241 

that of the joints in the rock mass, in order to avoid the possible sliding between them. Intact 242 

rock block matrix in the model was considered as an elastic-perfectly plastic material 243 

following the Mohr-Coulomb criterion. The behavior of rock joints was governed by the 244 

Coulomb slip model. Since UDEC is a 2-D code, the numerical models represented only the 245 

cross-sectional profiles of the test models in a plane strain condition, which were reasonable 246 

given that the two joint sets in the rock mass are oriented normal to the orientation of shear 247 

loading.  248 

Equilibrium of stresses in numerical models subjected to gravity was firstly achieved to 249 

consolidate the blocks. Then, normal and lateral constraint stresses (only for laboratory test 250 
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models) were applied to mimic the in-situ stresses in the models. After reaching equilibrium, 251 

the shear load was then applied step by step until the ratio of incremental shear stress ∆τ to 252 

incremental shear displacement ∆u, ∆τ /∆u, reached 200 MPa/m for the models with positive 253 

dip angles, and 50 MPa/m for the models with negative dip angles, according to the 254 

experimental results. For the simulation of the in-situ test, the shear load was applied until the 255 

shear displacement reached 30 mm. Since the numerical models are 2-D, the normal 256 

displacement was monitored at 2 points on the top surface of the loading block, and the shear 257 

displacement was also monitored at 2 points on the back face of the loading block. 258 

18 selected experimental cases (see Table 3), 2 in-situ test cases, and 3 other test cases 259 

based on the in-situ test model by changing the dip angle of joints of Set 1 from negative to 260 

positive (S-16-1 & S-16-2) and a model with randomly generated joints but keeping the other 261 

conditions unchanged (S-17-1) were simulated. Cases S-16-1 & S16-2 aimed at comparing 262 

the behavior of rock masses with joint sets of positive or negative dip angles in order to assess 263 

anisotropic shear behavior. The numerical model of case S-17-1 was created by randomly 264 

generating joints based on the mean (75º) and deviation (8.2º) of dip angles of joints of Set 1 265 

at location B. This model was used to represent the irregularly distributed rock joints in the 266 

field (see Fig. 2c) and to compare with the behavior of the models with regularly-spaced 267 

joints (e.g., S-15, see Fig. 6). For the label of cases in the context, “E” stands for laboratory 268 

experiment, “I” stands for in-situ test and “S” stands for their simulation cases.    269 

4. SHEAR TEST AND NUMERICAL SIMULATION RESULTS  270 

4.1 In-situ shear test  271 

Shear stress-shear displacement and normal displacement-shear displacement curves 272 

obtained from in-situ shear tests and their numerical simulations are shown in Fig. 7. Cases 273 

S-16-1 & S-16-2 have the magnitude of shear stresses 2-3 times higher than that of cases 274 
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S-15-1 & S-15-2 or I-15-1 & I-15-2. Note that the simulated results of the in-situ shear test 275 

did not reach the ultimate failure and were terminated when their shear displacement reached 276 

30 mm. The shear stresses obtained from in-situ tests increase fast in the initial stage of shear 277 

(i.e., shear displacement less than 10 mm), then keep almost constant values in the rest of 278 

shear. Shear stresses of cases S-15-1 & S-15-2 are close to the test results during the initial 279 

stage of shear, which continuously increase in a linear manner and exceed the curves of test 280 

results at around 10 mm of shear displacement for the case S-15-1 and around 15 mm for the 281 

case S-15-2. In the numerical simulations, no failure of intact rock was identified during the 282 

shear process due to the large values of the strength parameters (i.e., cohesion and internal 283 

friction angle, see Table 1) adopted, which is not the case in the in-situ test where a failure 284 

plane underneath the loading block induced by cracking of intact rock was visually confirmed 285 

by removing the loading block after test. These differences between test and simulation 286 

showed an overestimated intact rock strength by numerical simulations that adopted the 287 

measured mechanical properties using small-sized intact rock samples. As a heterogeneous 288 

material in reality, there are always defects existing in the intact rock matrices, which may 289 

lead to reduction of the strength and elastic modulus of rock matrices. In laboratory tests, this 290 

phenomenon can, in some degrees, be avoided using artificial rock mass models. This issue 291 

will be discussed further in the simulations of laboratory tests.  292 

Randomly generated rock joints were introduced into model 17 (see Fig. 6) based on the 293 

mean and deviation of the dip angle of the Set 1. This model provided slightly closer shear 294 

stress-shear displacement curves to the test results than the model of regularly spaced joints 295 

(Model 15, see Fig. 6). The randomly jointed model had an assembly of rock blocks with 296 

different sizes and shapes, which provided more opportunities for the onset of sliding or 297 

separation of rock joints. It may serve as an alternative in simulating natural jointed rock 298 

masses, with known mean and deviation of the geometrical properties of rock joints. The 299 
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normal displacement-shear displacement curves of simulations agree well with the test results. 300 

Model 16 has larger dilation than Models 15 & 17.  301 

In summary, lacking of failure and cracking processes in the intact rock in the numerical 302 

models resulted in overestimated shear strength of the in-situ rock mass, which requires more 303 

flexible treatments of the geometry of rock joints, such as introducing the random models, and 304 

implementation of in-situ large-scale triaxial compression tests to obtain more realistic 305 

mechanical properties of the rock mass, to take into account the influence of possible defects 306 

in the intact rock blocks.  307 

4.2 Laboratory shear tests 308 

(a) General behavior of jointed rock masses during shear 309 

The results of normal stresses, shear stresses, normal displacements, and shear 310 

displacements of all laboratory tests and numerical simulation cases at failure are tabulated in 311 

Table 3. The normal stresses at failure are larger than their initial magnitudes because of the 312 

inclined shear loading direction (15º with respect to the horizontal reference plane). Fig. 8 313 

shows the comparisons between the relations of shear stress-shear displacement and normal 314 

displacement-shear displacement from test and simulation cases 1-3, 2-1, 2-3, 2-4, 3-1, 3-3 315 

and 3-4, as a supplement to Table 3 showing only the final results at failure. The comparison 316 

illustrates the full stress-deformation paths from the start of loading until failure. Generally, 317 

higher shear stresses at failure can be expected in the cases with either larger initial normal 318 

stress (comparing between cases 2-1 to 2-5, or between cases 3-1 to 3-5), or smaller density of 319 

joints (comparing between Models 2 & 8, or between Models 3 & 9), with the positive dip 320 

angle of joints of Set 1 rather than the negative dip angle (comparing between Models 2 & 3, 321 

or between Models 13 & 14). The correlation coefficients between test and simulation results 322 

are tabulated at the last row in Table 3. The numerical simulation results of the normal and 323 
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shear stresses match fairly well with the test results (correlation coefficients of 0.99 and 0.98, 324 

respectively), while the results of the normal and shear displacements are poorly fitted against 325 

the measured data (correlation coefficients of 0.15 and 0.39, respectively). These 326 

discrepancies are mainly due to the inevitable limitations of measurement sensor resolutions 327 

and possible errors, heterogeneity of or defects in the artificial materials, and/or the 328 

simplifications made for numerical models especially without cracking. In the tests, the 329 

displacements at peak shear stresses were significantly influenced by the small blocks with 330 

irregular shapes cut by the shear plane (see Fig. 6). The behavior of them was difficult to be 331 

reproduced in numerical models, since blind prediction for such randomly occurring small 332 

scale failure is difficult and may not affect the general trend of prediction results for the shear 333 

behavior, especially the strength behavior of the model. 334 

As shown in Figs. 8a & c, the test model with an intact rock mass containing no rock joints 335 

(Model 1) has higher peak shear stress and shear stiffness than the jointed models (Models 2 336 

& 3) under the same boundary conditions. The peak shear stress of Model 2 is around 3 times 337 

that of Model 3, exhibiting a strong anisotropic shear behavior. The shear stress of Model 1 338 

increases linearly with the increase of shear displacement, reaching the peak shear stress at a 339 

shear displacement less than l mm, which is similar to the shear behavior of an intact rock 340 

block or other brittle materials. By contrast, results of Models 2 & 3 show yielding points 341 

where shear stiffness undergone significant drops, with their peak shear stresses occurring at 342 

shear displacements of 1.3-2.3 mm. As shown in Figs. 8b & d, while Model 1 has almost 0 343 

normal displacement during shear, dilations occur for Models 2 & 3 in different magnitudes. 344 

Model 2 shows more contraction before turning into dilation than Model 3, while Model 3 345 

shows little contraction but strong dilation during shear. Other models behave similarly with 346 

Models 2 & 3, differing in the stress-displacement curves in different degrees subjected to 347 

changing boundary conditions and/or with different joint geometries.  348 
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(b) Failure phenomena in the rock mass during shear 349 

Intact rocks, as a sort of brittle solid materials, undergo cracking subjected to a loading 350 

process until failure, which, combined with the movements (separation, rotation and sliding) 351 

on pre-existing rock joints, serves as the principal source of macro-failure of a rock mass. The 352 

sketches of the cracking process in the cases E-2-1 & E-3-1 at various shear stresses observed 353 

during shear tests are demonstrated in Fig. 9, as an example providing insight into the failure 354 

mechanisms of rock masses subjected to normal and shear stresses. In the case of E-2-1, 355 

cracks initiated underneath the back toe of the loading block (Fig. 9b), propagating along the 356 

orientation of joints of Set 2, towards the boundary at the right-hand side of the model. As the 357 

shear stress increased, more cracks were generated underneath the loading block (Fig. 9c), 358 

which connected with the pre-existing rock joints, forming a failure plane on which the upper 359 

structure could slide after failure (Fig. 9d). In the case of E-3-1, sub-horizontal cracks initiated 360 

several centimeters underneath the back toe of the loading block, accompanied by the opening 361 

of the joints of Set 1 underneath the front toe of the loading block (Fig. 9f). These were 362 

induced by the combined movements of the dilation and lateral compression of the rock 363 

blocks on the right hand side of the opened joints. The cracks underneath the back toe of the 364 

loading block gradually propagated towards the front side, connection and coalescence of 365 

which with pre-existing rock joints finally formed the failure plane (Fig. 9h). Note that only 366 

major cracks that could be visualized were demonstrated in these sketches, and there were 367 

much more micro-cracks occurring in the test models. Obviously, cracking of intact rock 368 

blocks took place in a wider range in the Model 2 than that in Model 3, and the failure plane 369 

in Model 2 was located in a deeper position than that of Model 3. This gave the reason of the 370 

results shown in Table 3 and Fig. 8, where Model 2 exhibited larger shear stress at failure than 371 

that of Model 3, because more energy (stress) was required to generate more new cracks 372 
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spreading in a larger area in the model. Again, opening of joints happened in Model 3 due to 373 

the rotation of rock blocks on the right hand side of the opened joints, resulting in a more 374 

ductile shear behavior than that of Model 2 (Figs. 8a & c), thus producing abundant dilation 375 

(Fig. 8d). The numerical code used in this study only takes into account the plastic flow of 376 

intact rock after failure without cracking process, which may also contribute to the differences 377 

observed between the test and simulation results.  378 

(c) Shear strength  379 

The relations between the peak shear stress and normal stress at failure of Models 1, 2 & 3 380 

are shown in Fig. 10, by using the results of cases 1-1 to 1-3, 2-1 to 2-5 and 3-1 to 3-5 in 381 

Table 3, respectively, together with the failure envelops of the artificial intact rock and rock 382 

joints. Plots of Model 1 in the figure overlap with the failure envelop of the intact rock, which 383 

was obtained from the triaxial compression tests conducted on much smaller samples of the 384 

intact rock. This is a valuable evidence for verifying the reliability of mechanical properties 385 

used in the numerical simulations. The estimated cohesion and internal friction angles are also 386 

shown in Fig. 10, where cohesions of Model 2 and Model 3 are 0.77 MPa and 0.31 MPa, 387 

respectively, and their internal friction angles are 44º and 26º, respectively. These test results 388 

agree well with those of the simulation results. In the initial normal stress ranging 0.5-1.0 389 

MPa, the shear strength of Model 3 is about 50% of that of Model 2, which is about 80-90% 390 

of that of Model 1, revealing that a jointed rock mass with large positive dip angle of 391 

continuous rock joints (e.g., Model 2 in this study) may not undergo significant decrease of 392 

shear strength comparing to an intact rock body, due mainly to the interlocking effect of rock 393 

joints. Model 3, however, has a weak interlocking effect and exhibits shear strength just 394 

slightly above that of the rock joints. 395 

(d) Mechanism of anisotropic shear behavior  396 
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Test and simulation results of Models 2 & 3 demonstrate anisotropic shear behavior of the 397 

jointed rock mass. Differences in shear strength, shear stiffness and dilation were found to be 398 

due to the previously mentioned interlocking effect. This effect can be relatively weak (e.g., 399 

Model 3) or strong (e.g., Model 2), depending on the stress state in the rock mass and the 400 

geometrical characteristics of rock joints. Again, take the Models 2 & 3 as examples, the 401 

forces acting on the shear plane can be schematically represented as shown in Fig. 11. At here, 402 

N is the normal load and S is the shear load acting on the loading block, F is the resultant 403 

force, and Fn is the force normal to and Fs is the force parallel with the orientation of joints of 404 

Set 1. With the increase of S during shear, the orientation of F will gradually rotate 405 

counterclockwise from vertical downward to the orientation demonstrated in Fig. 11, where 406 

S=N. At this state, in Model 2, Fn (=1.4S) exerts compression and Fs (=0.8S) exerts shear 407 

stresses on the joints of Set 1 towards the downward direction. The combination of these 408 

forces inhibit sliding of the joints of Set 1 as well as the dilation of the rock mass, while 409 

enhancing the confinement of the jointed rock mass. Fs can turn to upward direction by 410 

continuously increasing the shear force up to S>10.8N, which usually does not occur in a 411 

shear test. By contrast, in Model 3, when S becomes larger than 0.4N, Fn will contribute to the 412 

rotation of the rock mass in the clockwise direction, inducing opening of joints of Set 1 413 

underneath the front toe of loading block (see Fig. 9). It will facilitate the sliding along 414 

surfaces of the joints of Set 1 since Fn is smaller than Fs, accompanied by remarkable dilation. 415 

The failure of Model 2 is likely to be induced by the yielding of intact rock blocks underneath 416 

the shear plane subjected to high compression and shear stresses, similar to the failure of an 417 

intact rock during a triaxial test. The failure of Model 3 is likely to be induced by the tensile 418 

failure in the rock mass underneath the shear plane, along with the rotation/bending of rock 419 

mass.  420 
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In summary, the anisotropic shear behavior of jointed rock masses with large dip angles 421 

(i.e., 50º-90º) of continuous joint set originates from the different stress states of the 422 

continuous joint set during a shear. The shear strength can be strong in the condition that the 423 

normal stresses acting on the continuous joint set help inhibit the movements (sliding, 424 

opening & rotation) along them, or can be weak in the opposite conditions, depending on the 425 

geometrical characteristics of rock joints.        426 

(e) Influences of joint density, lateral restraint stress and configuration of the joints of Set 2  427 

The shear test results of cases E-2-1 & E-3-1 with rock block dimension of 20 mm×60 mm, 428 

cases E-8-1 & E-9-1 with rock block dimension of 10 mm×30 mm and cases E-10-1 & E-11-1 429 

with mixed rock block dimensions of both, under the same initial normal stress, are shown in 430 

Fig. 12. Comparisons of results of cases E-2-1, E-8-1 & E-10-1, having identical dip angle of 431 

the joints of Set 1, show that the shear stiffness increases with the decrease of joint density. 432 

However, their shear stresses at failure do not have obvious differences. By contrast, in the 433 

cases of E-3-1, E-9-1 & E-11-1, both of the shear stiffness and shear stresses at failure 434 

increase with the decrease of joint density. Comparing with the failure mechanism and the 435 

shear strength of Model 2, it seems that the shear strength of the models with large positive 436 

dip angles of the continuous joint set like Model 2 is not sensitive to the density of rock joints, 437 

since they have already achieved the shear strength as high as 80-90% of that of the intact 438 

rock. The shear strengths, shear stiffness and dilations of the models with large negative dip 439 

angle of the continuous joint set, like Model 3, increase proportionally with the decrease of 440 

joint density. However, due to the limited testing cases, more in-depth mathematical 441 

descriptions about their relations have not been reached in this study. 442 

As presented in Table 3, comparisons of cases E-2-1, E-2-6 & E-2-7, and cases E-3-1, 443 

E-3-6 & E-3-7 show that the lateral restraint stress has limited influence on the shear strength 444 
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of jointed rock mass. Comparisons of cases E-2-1, E-4-1 & E-6-1, and cases E-3-1, E-5-1 & 445 

E-7-1 show that the influence of the configuration of the joints of Set 2 with different offsets 446 

on the shear strength of jointed rock mass is also negligible. Note that in these models, the dip 447 

angle of the joints of Set 1 is either 70º or -70º, tested within a small range of lateral restraint 448 

stress with slight changes on the configuration of the joints of Set 2. The shear behavior of 449 

these models may change if these parameters are modified in larger ranges, which, however, 450 

is beyond the focus of this study.  451 

5. ANISOTROPIC SHEAR BEHAVIOR OF CLOSELY JOINTED ROCK MASSES WITH 452 

VARIOUS ORIENTATIONS OF CONTINUOUS JOINT SET  453 

5.1 Simulation cases and results 454 

Last chapter was focused on the closely jointed rock mass models with large dip angles 455 

(70º or 75º) of the set of continuous joints, which remain as special cases in natural rock 456 

masses. Since the numerical simulation approach adopted in this study has been confirmed 457 

through the comparison with the test results, it allows us to conduct parametric studies taking 458 

into account more orientations of joint sets in the numerical models, in order to reach a more 459 

general understanding of the shear anisotropy. In light of this motivation, 34 numerical cases 460 

were conducted based on the full-scale model of in-situ shear test [22]. The numerical models 461 

adopted the block dimension of 30 mm×90 mm, and properties of intact rock and rock joints 462 

at the location A (see Tables 1 & 2) to allow failure in intact rocks. The dip angles of the joints 463 

of Set 1 were set to ±10º to ±80º with an interval of 10º, and 90º, under the initial normal 464 

stresses of 0.39 MPa and 0.98 MPa. The shear load was applied with an increment of 0.02 465 

MN for each step until ∆τ /∆u reached 10 MPa/m. The other parameters were identical to the 466 

modeling of in-situ shear tests (e.g., S-15-1).  467 
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The simulation results of all cases at failure are presented in Table 4, and the shear 468 

stress-shear displacement and normal displacement-shear displacement curves of the 469 

modeling cases with initial normal stress of 0.39 MPa are shown in Fig. 13. The shear stress 470 

increases proportionally with the increase of shear displacement for the case with θ=90º, 471 

reaching the ultimate failure directly after the appearance of yielding point (see Fig. 13a), 472 

exhibiting typical failure behavior of brittle materials. The shear stresses of the cases with 473 

negative dip angles (see Fig. 13c) also increase in a linear manner with the increase of shear 474 

displacement until the yielding points, followed by a short strain-softening stage to reach the 475 

ultimate failure. For the cases with positive dip angles, the yielding points appear at the early 476 

stage of the whole shear processes, for instance, at 0.4 mm for θ=30º and at 7 mm for θ=70º, 477 

followed by a long gradual yielding stage until the ultimate failure occurred (see Fig. 13a). 478 

For most of the cases, the yielding points appear at the shear displacements where maximum 479 

contractions (maximum negative normal displacements) appear, revealing that the turning 480 

point of contraction to dilation of a rock mass during a shear process has inherent connection 481 

with the appearance of the yielding point, which can also be observed in the laboratory shear 482 

test results (see Fig. 8).    483 

5.2 Shear strength and failure mechanism 484 

Peak shear stress-normal stress relations of the cases θ=±10º, ±30º, ±50º, ±70º & 90º, 485 

together with the strength envelopes of intact rock and rock joints are shown in Fig. 14. The 486 

cases with positive dip angles have smaller shear strengths than that of the cases with negative 487 

dip angels in the range θ=±10º-±30º. This relation is reversed in the range θ=±40º-±80º. Cases 488 

θ=10º, 30º, -50º & -70º have very weak shear strength as low as the shear strength of the rock 489 

joints, while case θ=90º has a shear strength close to that of the intact rock. The shear strength 490 

of the case θ=70º is 70-80% of the intact rock, and the shear strength of the case θ=-70º is 491 
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around 10% above that of the rock joints, which have good agreements with the results of the 492 

laboratory shear test (see Table 3).  493 

The failure mechanisms of the models with dip angles of the joints of Set 1 of ±70º has 494 

been thoroughly investigated and discussed in the last chapter by analyzing the forces acting 495 

on the joints of Set 1 in the models (see Fig. 11). By using the same method, one can analyze 496 

the state of forces acting on the joints of Set 1 in various models so as to investigate the 497 

deformation and failure mechanisms of the rock masses. Here, only a brief description about 498 

the failure mechanisms obtained from numerical simulations is presented below. Note that the 499 

shear strength mentioned below refer to the shear stress at failure under various normal 500 

stresses ranging from 0.5-2.5 MPa as shown in Fig. 14.    501 

(a) Cases with positive dip angles of the joints of Set 1  502 

For the cases of θ=10º-30º, the failure is governed by the sliding (slip failure) of the joints 503 

of Set 1 underneath the loading block, leading to the shear strength of the rock mass models 504 

close to that of the rock joints. For the case of θ=40º, the failure firstly occurs in the intact 505 

rock, inducing progressive cracking gradually connecting to the joints of Set 1. Then the 506 

sliding of the upper body mainly along the joints of Set 1 happens, producing a shear strength 507 

between that of the intact rock and the rock joints. For the cases of θ=50º-80º, the failure is 508 

mainly governed by the cracking in the intact rock underneath the loading block, as depicted 509 

in Section 4.2(d), exhibiting strong shear strengths as high as 90% of that of the intact rock. 510 

(b) Cases with negative dip angles of the joints of Set 1       511 

For the cases of θ=-10º & -20º, the failure is mainly governed by the buckling failure of the 512 

rock blocks underneath the back toe of the loading block subjected to compression, since 513 

sliding of joints are extremely difficult in these cases. Models of these cases produce shear 514 

strength over 50% of that of the intact rock. For the cases of θ=-30º to -70º, tensile failure in 515 
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the rock blocks underneath the loading block happens along with the rotation of the rock 516 

blocks, producing much weak shear strength close to that of the rock joints. For the case of 517 

θ=-80º, the rotation of rock blocks is inhibited due to the sub-vertical orientation of the joints 518 

of Set 1. It can be categorized as the same group with the cases of θ=80º & 90º, where failure 519 

of rock mass is governed by the shearing failure in the intact rock underneath the loading 520 

block, therefore providing strong shear strength as high as 90% of that of the intact rock.  521 

5.3 Comparison with previous studies  522 

There are a series of data available in literature, regarding the laboratory shear tests on 523 

closely jointed rock masses with various dimensions, among which, four sets of data carried 524 

out by three different research groups have been selected, and were compared with the 525 

laboratory shear test and numerical simulation results obtained in this study, as shown in Fig. 526 

15. Hayashi and Fujiwara [10] and Nagayama et al. [13] conducted direct shear tests on 527 

artificial jointed rock mass specimens with one set of joints dipping at different angles, where 528 

the dimension of Hayashi (1965) model is 30 cm×20 cm×10 cm with a joint spacing of 3 cm, 529 

and the dimension of Nagayama (1994) model is 15 cm×15 cm×15cm with a joint spacing of 530 

1 cm. Kawamoto [11] and Nagayama and Katahira [12] also conducted shear tests on artificial 531 

jointed rock mass specimens with one set of joints dipping at different angles, where the areas 532 

of shear plane and rock mass model for Kawamoto (1970) model are 10 cm×4 cm and 30 533 

cm×4 cm respectively with a joint spacing of 1 cm, and the areas of shear plane and rock 534 

mass model for Nagayama (1989) model are 20 cm×20 cm and 40 cm×40 cm, respectively, 535 

with a joint spacing of 1 cm. Since these tests adopted different testing methods by using 536 

models of various geometrical and mechanical properties, direct comparison of results with 537 

them would be difficult to comprehend and may lead to misunderstanding. As an alternative, 538 

for each dataset, the ratios of the shear strengths of the models with various dip angles to the 539 
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model with dip angel of 90º was calculated, leading to the normalized ratio τθ /τ90º, which was 540 

used as the vertical coordinate in Fig. 15. Since these datasets have different ranges of normal 541 

stresses, the mean normal stress at failure of each dataset and its corresponding shear stress 542 

were calculated. In this frame of presentation, the normal stress corresponding to the shear 543 

strength shown in Fig.15 of laboratory model tests is 0.2 MPa, of numerical simulations is 1.0 544 

MPa, of Hayashi (1965) model is 0.15 MPa, of Kawamoto (1970) model is 0.12 MPa, of 545 

Nagayama (1989) model is 0.89 MPa, and of Nagayama (1994) model is 0.44 MPa. Similar 546 

tendencies can be observed on these datasets obtained from shear tests or numerical 547 

simulations on different rock mass models, except that Hayashi (1965) model provided a 548 

much larger shear strength at θ=-45º than other models. For the cases with positive dip angles, 549 

the shear strength monotonically increases with the increase of dip angle, in which the lowest 550 

strength can be found when θ=10º-20º, and the maximum strength can be found when 551 

θ=60º-90º. The cases with negative dip angles can have large shear strength either at small dip 552 

angles (e.g., -20º) or at large dip angles (e.g., -80º), and have the lowest strength when θ=-50º 553 

to -70º, exhibiting a nonlinear relation between shear strength and dip angle. The numerical 554 

simulations and laboratory tests conducted in this study illustrated significant shear strength 555 

anisotropy, due to the existence of 2 sets of joints comparing to 1 set in other models and 556 

relatively large strength difference between intact rock and rock joints. Taking the mean value 557 

of the available dip angles included in these datasets, the inclination parameter accounting for 558 

the influences of orientation of the continuous joint set on the shear strength of rock masses 559 

can be estimated, in the order of -90º, -80º, -75º, -70º, -60º, -50º, -45º, -40º, -35º, -30º, -25º, 560 

-20º, -15º, -10º, 0º, 10º, 15º, 20º, 30º, 40º, 45º, 50º, 60º, 70º, 75º, 80º & 90º, as 1.00, 0.87, 561 

0.68, 0.39, 0.53, 0.28, 0.79, 0.41, 0.78, 0.82, 0.99, 0.91, 1.03, 0.64, 0.43, 0.25, 0.65, 0.49, 562 

0.58, 0.52, 0.94, 0.74, 0.95, 1.00, 0.99, 0.97 & 1.00, respectively. Note that the significance of 563 

anisotropy was averaged out in some degrees by doing so. Using these values, one may 564 
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compare the properties of an objective rock mass to these models to assess the anisotropic 565 

shear behavior, especially to help realize the weakest shearing orientation when stability 566 

assessment problems are encountered.  567 

CONCLUSIONS 568 

In this study, based on the in-situ measurement data, a closely jointed rock mass was 569 

reproduced in a series of 1/3 scale laboratory test models using artificial rock materials, and a 570 

number of laboratory shear tests and in-situ shear tests were conducted. Their numerical 571 

simulations were implemented by means of DEM models, the results of which were in good 572 

agreements with the test results in general. The influence of the orientation of the continuous 573 

joint set on the anisotropic shear behavior of closely jointed rock masses was also studied by 574 

means of a series of numerical models with various dip angles of the set of continuous joints, 575 

the results of which were compared with the results of similar laboratory tests in literature.     576 

The good agreement of the results of laboratory shear tests adopting homogeneous 577 

rock-like material and their numerical simulations adopting Mohr-coulomb failure criterion 578 

suggests that proper estimations of the mechanical properties of intact rock and rock joints, 579 

and proper representation of the geometrical characteristics of rock joint systems are key 580 

issues for reliable numerical modeling of jointed rock masses. Special emphasis has to be 581 

placed on the mechanical properties of rock joints, which play a crucial role in the failure 582 

behavior of jointed rock masses. It requires a well-planed laboratory test procedure, especially 583 

with the employment of servo-controlled direct shear apparatus to estimate their properties. 584 

The numerical simulations of in-situ shear tests, however, slightly overestimated the shear 585 

strength, due mainly to the fact that comparing to the numerical models that adopted the 586 

mechanical properties measured on small-sized intact rock samples, the natural rock masses 587 

may contain various defects in the rock block matrices beside the rock joints, which could 588 
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reduce the strength of the in-situ rock mass. This issue remains still one crucial difficulty in 589 

the estimation of the behavior of jointed rock masses through numerical approaches.   590 

Closely jointed rock masses exhibit strong anisotropic shear behavior in terms of 591 

significant differences in shear strength and shear stiffness when sheared at different 592 

directions, the significance of which varies with the orientation of the sets of continuous joints. 593 

The results obtained from this research show non-linear relations between the shear strength 594 

and the orientation of the single set of continuous joints, due to the various failure 595 

mechanisms involved. The failure mechanism of jointed rock masses subjected to shear can 596 

be classified, in an order from high shear strength towards the low ones, by shearing within 597 

intact rock when θ=-80º & 50º-90º, buckling of intact rock when θ=-10º to -20º, mixing of 598 

shearing and sliding when θ=40º, tensile failure in intact rock accompanied by rotation of 599 

rock blocks when θ=-30º to -70º, and sliding of rock joints when θ=10º-30º. Besides the 600 

geometrical characteristics of rock joints, one may expect more significant anisotropy when 601 

the strength difference between intact rock and rock joints is greater. Such anisotropic 602 

behavior needs to be adequately assessed to reach a mathematical expression using, for 603 

instance, inclination parameter and joint factor to account for the effects of joints, and to 604 

include it in rock mass classification systems in the future studies. 605 
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Figure 1. Results of shear tests conducted by Hayashi and Fujiwara [10] on jointed 
rock masses with positive and negative joint orientation systems. 
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Figure 2. a) An example of borehole sketch of rock joints; b) Lower hemisphere 
stereographic projection of the orientation of continuous rock joints in the rock mass; 
c) A cross-sectional sketch of the geometrical distribution of rock joints at location A. 
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Figure 3. Schematic view of the geometrical distributions of rock joints at location A 
(a) and location B (b).  



 

 

 
 
 
 
 
 

Figure 4. a) Sketch of the direct shear test apparatus designed for jointed rock mass; 
b) Photograph of jointed rock mass model in the apparatus. 

①: Jointed rock mass model                
②: Loading block 
③: Shear load jack 
④: Normal load jack               

⑤: Lateral restraint jack                
⑥: LVDT (normal displacement) 
⑦: LVDT (shear displacement)                 

⑧: Lateral load cell 
⑨: Teflon sheet 
⑩: Metal frame 
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Figure 5. Relationship between shear stress and shear displacement for the artificial 
rock joints tested under normal stresses of 0.098 MPa, 0.196 MPa and 0.392 MPa. 
Straight lines represent the approximations for estimating the properties of the shear 
behavior of the rock joints. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Numerical models for simulating laboratory (Models 1-14) and in-situ 
shear tests (Models 15-17). Sketches for the models 2-17 show the joint distribution 
patterns in the area (dash line) underneath the loading block in model 1. Note that 
the scale of models 15-17 has been reduced to fit the view.    
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Figure 7. Curves of shear stress-shear displacement (a) and normal 
displacement-shear displacement (b) of in-situ shear tests and their numerical 
simulations.      
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Figure 8. Curves of shear stress-shear displacement (a & c), and normal 
displacement-shear displacement (b & d) of Models 1, 2 & 3, with the comparisons 
of experimental and simulation results.     



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

: new cracks 
: opening of joints 

Figure 9. Cracking processes and opening of joints in the models of cases E-2-1 
(left) and E-3-1 (right) with updated shear stresses during shear. For simplicity, the 
joints with measured apertures larger than 0.1 mm were judged as “opening”. Except 
a) & e), others sketches only show the rectangular part marked in dash line in a) & e) 
to save the space, since there are no cracks being generated in the lower part of the 
models.    
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Figure 10. Comparisons of the peak shear stress-normal stress relations of Models 1, 
2 & 3, their numerical simulation results and the failure envelopes of intact rock and 
rock joints. Straight fine lines and dash lines are linear approximations of the test and 
simulation results at failure, respectively.      
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Figure 11. Schematic view of the forces acting on the continuous joint set in the 
models with positive (a) or negative (b) dip angles.      
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Figure 12. Curves of shear stress-shear displacement (a) and normal 
displacement-shear displacement (b) of cases E-2-1 & E-3-1 with rock block 
dimension of 20 mm×60 mm, cases E-8-1 & E-9-1 with rock block dimension of 10 
mm×30 mm and cases E-10-1 & E-11-1 with mixed rock block dimensions of both.      
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Figure 13. Curves of shear stress-shear displacement and normal displacement-shear 
displacement of numerical models with positive dip angles (a & b) and negative dip 
angles (c & d), respectively. The initial normal stress is 0.39 MPa.      

a) 

b) 

c) 

d) 



 
 

Figure 14. Peak shear stress-normal stress relations of the cases θ=±10º, ±30º, ±50º, 
±70º & 90º, and the strength envelopes of the intact rock and rock joints.     



 
 

Figure 15. Comparisons of the relations of normalized shear strength τθ /τ90º at 
various dip angels of the joints of Set 1, among the model tests and numerical 
simulations conducted in this study and other laboratory model tests in literature.    



Table 1. Properties of artificial rock specimens adopted in laboratory tests (Lab) and of 
intact rocks in locations A and B. 

 
Property  Unit Lab A B 

Density g/cm3 1.68 2.66 2.66 

Modulus of elasticity GPa 5.8 14.8 71.0 

Poisson’s ratio - 0.18 0.19 0.18 

Tensile strength MPa 0.5 1.4 10.2 

Cohesion MPa 0.7 3.0 22.3 

Internal friction angle ° 54.6 46.0 62.0 



 
Table 2. Mechanical properties of artificial rock joints adopted in laboratory tests (Lab) 
and of rock joints in locations A and B. 

Property Unit Lab A B 

Normal stiffness  GPa /m Eq. (1) 18.3 31.8 

Shear stiffness GPa /m 1.0 0.9 3.2 

Cohesion force  MPa 0 0 0.03 

Friction angle  ° 34.0 34.3 35.9 

Tension strength MPa 0 0 0 



Table 3. Laboratory shear test and simulation results (at failure) for the jointed rock 
mass models. (E: Experiment, S: Simulation and R: Correlation coefficient) 

 

Case 
No. 

Size 
of 

blocks 
(mm) 

Lateral 
restraint 

stress  

(MPa) 

Dip 
angle 
(set 1) 

Initial 
normal 
stress 
(MPa) 

Normal 
stress 
(MPa) 

Shear 
stress 
(MPa) 

Shear 
displacement 

(mm) 

Normal 
displacement 

(mm) 

     E S E S E S E S 
1-1 

- 0.082 - 
0.082 0.44 - 1.32 - 0.21 - 0.04 - 

1-2 0.29 0.77 - 1.78 - 0.33 - 0 - 
1-3 0.49 1.11 - 2.30 - 0.45 - 0.01 - 
2-1 

20×60 0.082 

+70° 

0.082 0.36 0.35 1.03 0.99 1.35 1.56 0.33 0.94 
2-2 0.2 0.50 0.56 1.12 1.33 1.30 1.80 0 0.45 
2-3 0.29 0.72 0.68 1.59 1.47 1.61 1.96 -0.22 0.12 
2-4 0.49 1.04 0.95 2.06 1.71 2.01 2.24 0.06 -0.18 
2-5 0.98 1.53 1.56 2.06 2.18 1.51 2.83 -0.62 -0.46 
3-1 

-70° 

0.082 0.18 0.16 0.38 0.28 1.95 3.00 0.98 1.86 
3-2 0.2 0.31 0.30 0.43 0.38 1.59 2.91 0.42 1.43 
3-3 0.29 0.43 0.42 0.50 0.47 2.28 4.83 1.11 2.50 
3-4 0.49 0.68 0.65 0.71 0.62 1.66 3.67 0.52 1.84 
3-5 0.98 1.21 1.17 0.85 0.71 7.63 1.11 2.61 0.41 
2-6 

20×60 

0.16 
+70° 

0.082 0.43 - 1.30 - 1.55 - 0.47 - 
2-7 0.33 0.082 0.44 - 1.32 - 1.38 - 0.32 - 
3-6 0.16 

-70° 
0.082 0.18 - 0.35 - 1.34 - 0.45 - 

3-7 0.33 0.082 0.17 - 0.29 - 1.47 - 0.59 - 
4-1 

20×60 0.082 

+70° 0.082 0.37 0.35 1.08 0.99 1.92 1.90 0.81 0.94 
5-1 -70° 0.082 0.21 0.16 0.47 0.28 2.59 3.01 1.14 1.59 
6-1 +70° 0.082 0.42 0.36 1.23 1.04 1.36 1.95 0.37 1.05 
7-1 -70° 0.082 0.19 0.15 0.39 0.24 3.15 2.04 1.69 1.07 
8-1 

10×30 0.082 
+70° 

0.082 0.40 0.35 1.18 0.99 2.78 4.57 0.69 4.16 
8-2 0.49 0.92 0.93 1.59 1.66 2.32 3.09 -0.56 -0.75 
9-1 

-70° 
0.082 0.14 0.13 0.21 0.19 5.92 6.10 2.03 2.73 

9-2 0.49 0.63 0.59 0.52 0.38 8.75 2.99 2.97 1.07 
10-1 

mixed 0.082 
+70° 0.082 0.36 - 1.03 - 1.89 - 0.40 - 

11-1 -70° 0.082 0.17 - 0.33 - 2.24 - 0.99 - 
12-1 

20×60 0.082 +90° 
0.082 0.36 - 1.03 - 1.63 - 0.49 - 

12-2 0.29 0.62 - 1.21 - 1.12 - 0.05 - 
12-3 0.49 0.89 - 1.50 - 2.04 - 0.13 - 
13-1 

20×60 0.082 

+50° 
0.082 0.30 - 0.83 - 2.44 - 2.51 - 

13-2 0.29 0.64 - 1.28 - 1.51 - 1.39 - 
13-3 0.49 0.93 - 1.65 - 2.21 - 1.77 - 
14-1 

-50° 
0.082 0.13 - 0.19 - 1.83 - 1.08 - 

14-2 0.29 0.38 - 0.33 - 2.74 - 1.44 - 
14-3 0.49 0.66 - 0.64 - 2.17 - -0.05 - 

R     0.99 0.98 0.15 0.39 



 
Table 4. Numerical simulation results (at failure) of in-situ shear tests based on the 
properties of jointed rock mass at location A with various dip angles of continuous joint 
set. 

Initial normal 
stress (MPa) 

Dip angle 
of Set 1 (º) 

Normal 
stress 
(MPa) 

Shear 
stress 
(MPa) 

Shear 
disp. 
(mm) 

Normal 
disp. 
(mm) 

0.39 

10 0.52 0.47 18.15 3.25 
20 0.55 0.58 18.53 6.50 
30 0.60 0.79 21.27 11.18 
40 0.77 1.42 34.70 25.85 
50 0.99 2.21 46.27 41.42 
60 1.20 3.00 47.23 42.19 
70 1.26 3.37 37.09 22.47 
80 1.44 3.90 48.61 25.45 
90 1.44 3.90 35.65 4.86 
-80 1.25 3.21 48.25 10.61 
-70 0.59 0.74 28.32 11.22 
-60 0.52 0.47 22.35 12.66 
-50 0.56 0.63 20.40 16.34 
-40 0.63 0.90 9.80 8.75 
-30 0.79 1.48 12.88 10.89 
-20 1.28 3.32 31.67 11.90 
-10 0.94 2.05 18.04 -3.27 

0.98 

10 1.25 1.00 33.28 6.21 
20 1.29 1.16 32.79 11.19 
30 1.36 1.42 27.49 12.88 
40 1.63 2.42 46.21 30.94 
50 1.88 3.37 57.68 44.77 
60 2.19 4.46 60.20 40.27 
70 2.28 4.85 53.36 23.98 
80 2.52 5.74 45.91 6.13 
90 2.41 5.32 52.24 6.87 
-80 2.24 4.69 67.70 13.25 
-70 1.31 1.21 43.66 16.45 
-60 1.22 0.90 23.44 12.34 
-50 1.31 1.21 10.94 6.79 
-40 1.49 1.90 11.31 7.17 
-30 1.87 3.32 38.66 31.71 
-20 2.15 4.37 39.59 -12.00 
-10 1.59 2.27 18.42 -3.48 
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