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Abstract

Background: Schistosomiasis is still a major public health burden in the tropics and subtropics. Although there is an
effective chemotherapy (Praziquantel) for this disease, reinfection occurs rapidly after mass drug administration (MDA).
Because the entire population do not get reinfected at the same rate, it is possible that host factors may play a dominant
role in determining resistance or susceptibility to reinfection with schistosomes. Here, we systematically reviewed and meta-
analyzed studies that reported associations between reinfection with the principal human-infecting species (S. mansoni, S.
japonicum and S. haematobium) and host socio-demographic, epidemiological, immunological and genetic factors.

Methodology/Principal Findings: PubMed, Scopus, Google Scholar, Cochrane Review Library and African Journals Online
public databases were searched in October 2013 to retrieve studies assessing association of host factors with reinfection
with schistosomes. Meta-analysis was performed to generate pooled odds ratios and standardized mean differences as
overall effect estimates for dichotomous and continuous variables, respectively. Quality assessment of included studies,
heterogeneity between studies and publication bias were also assessed. Out of the initial 2739 records, 109 studies were
included in the analyses, of which only 32 studies with 37 data sets were eligible for quantitative data synthesis. Among
several host factors identified, strong positive association was found with age and pre-treatment intensity, and only slightly
for gender. These factors are major determinants of exposure and disease transmission. Significant positive association was
found with anti-SWA IgG4 level, and a negative overall effect for association with IgE levels. This reconfirmed the concept
that IgE/IgG4 balance is a major determinant of protective immunity against schistosomiasis. Other identified determinants
were reported by a small number of studies to enable interpretation.

Conclusions: Our data contribute to the understanding of host-parasite interaction as it affects reinfection, and is a
potential tool to guide planning and tailoring of community interventions to target high-risk groups.
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Introduction

Schistosomiasis is still an important helminthic infection in terms

of severe morbidity that can result as a consequence of infection.

Over 200 million people are infected and more than 700 million

people are still at risk of getting infected with schistosomiasis [1].

Although the disease can be effectively treated with Praziquantel,

reinfection occurs rapidly after mass drug administration (MDA).

An effective vaccine used singly or in combination with chemo-

therapy is the optimum approach [2]. However, such a vaccine is

presently not available, although some candidates are still in the

development pipeline. Since chemotherapy by MDA is presently

the only available intervention in endemic areas, there is need to

identify the host factors that increase susceptibility to reinfection

with schistosomes for targeted intervention in high-risk groups.

In addition to the demographic, socioeconomic and epidemi-

ological variables that may predispose certain subset of the

population to reinfection, several human studies in endemic areas

have provided insight into the potential resistance inducing

immune response phenotypes [2–8]. Many of these studies have

found associations between reinfection with schistosomes and IgE/

IgG4 balance. Schistosomiasis has previously been shown to be

under the control of the cytokine genes cluster on chromosome

5q31-q33 region, called SM1 [7,9,10]. It is also possible that

several other immunogenetic factors in addition to this cytokine

genes cluster, including the genes controlling IgE levels, may be

associated with reinfection with schistosomiasis [11–15]. However,

it remains to be determined whether variations in these genes or

which of the variations in these genes are potential determinants of

reinfection.

We undertook this meta-analysis to identify and describe studies

that had identified host determinants, including socio-demograph-

ic, epidemiological and immunogenetic factors that are associated

with reinfection with schistosomes.
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Methods

Protocol registration
This study was performed in accordance with the recommen-

dations of the PRISMA statement [16,17]. This statement

summarized in the PRISMA 2009 checklist is supplied as

supplementary information (Figure S1). The protocol for this

study was determined prior to commencement of the study, and

was registered in PROSPERO-International prospective register

of systematic reviews with identification number

CRD42013006582 available from http://www.crd.york.ac.uk/

PROSPERO/display_record.asp?ID = CRD42013006582.

Eligibility criteria
Studies that assessed host factors of reinfection with schisto-

somes were included in this review. While all eligible studies on all

identified host determinants were included in the qualitative

systematic review, only factors reported by more than one study

and whose data can be reliably extracted were included in the

quantitative meta-analysis. All relevant studies were included

irrespective of study type, study design, language and date. We

limited included studies to studies performed on human subjects.

Reports were excluded if the reported information was on a study

performed on animals, if they were case studies, correspondence or

reviews, and if the data could not be reliably retrieved. Decisions

on eligibility were made by two independent reviewers and all

discrepancies and disagreements as regards study and report

eligibility were resolved by discussion or consensus with a third

reviewer, when necessary.

Information source
Studies analyzed in this review were identified by searching

electronic public databases including: PubMed (http://www.ncbi.

nlm.nih.gov/pubmed), Scopus (http://www.scopus.com/), Goo-

gle Scholar (http://scholar.google.com/), Cochrane Review

Library (http://www.cochrane.org/cochrane-reviews) and Afri-

can Journals Online (AJOL) (http://www.ajol.info/index.php/

index/search). The searches were performed in October 2013

with no limit set for the dates of publications. Reference lists of

eligible articles were also checked to obtain supplementary

information and records of potentially relevant studies and reports.

Efforts were made to contact authors for full texts, clarification on

data and for supplementary data, when necessary. When responses

with the necessary details were not received from authors during

the duration of the study and after two reminders, such studies

were excluded and classified as ‘‘full text not available’’.

Search strategy
Initial searches were performed on PubMed and Scopus

databases using the broad search term: ‘‘((reinfection OR re-

infection OR resistance OR resistant OR susceptibility OR

susceptible OR haplotype OR allele OR SNP OR ‘‘single

nucleotide polymorphism’’ OR variant OR polymorphism OR

‘‘genetic factors’’ OR HLA OR ‘‘human leucocyte antigen’’) AND

(schistosom* OR bilharzi*))’’ to retrieve socio-demographic,

epidemiological and immunogenetic factors. For Advanced

Google Scholar, we filled in the term ‘‘schistosoma OR

schistosomiasis OR schistosome OR bilharzia OR bilharziasis’’

in the field ‘‘with all of the word’’, and the words ‘‘reinfection OR

re-infection OR resistance OR resistant OR susceptibility OR

susceptible OR ‘‘host factors’’ OR ‘‘genetic factors’’ OR haplotype

OR allele OR SNP OR ‘‘single nucleotide polymorphism’’ OR

variant OR polymorphism, in the field ‘‘with at least one of the

words’’ to search the titles of articles in Google scholar database.

The Cochrane Library and African Journals Online databases

were searched with the broad term ‘‘schistosoma OR schistoso-

miasis OR bilharzia OR bilharziasis’’.

Study selection
Two independent reviewers performed initial eligibility assess-

ments on the retrieved titles and abstracts, for inclusion in the

systematic review. Full texts of eligible articles were then retrieved

and reviewed for inclusion in the systematic review, and further

screened for inclusion in the meta-analysis using the inclusion

criteria. In both steps of the screening, inclusion or exclusion of a

study by both reviewers was considered conclusive, while inclusion

or otherwise of studies judged eligible, controversial or ambiguous

by either of the reviewers was resolved by discussion and consensus

between the two reviewers. When necessary, disagreements and

discrepancies were resolved by consensus with a third reviewer.

Care was taken to identify more than one report describing a

single study. When such was encountered, the overlap was

identified and resolved, with contacts made to the authors when

necessary. The study selection procedure was summarized in a

systematic review flow chart.

Data collection process and data items
We adopted the methodology and data extraction template of

The Review Manager (RevMan v5.2) from The Nordic Cochrane

Centre, Cochrane Collaboration, 2012 for data extraction, in

addition to other relevant data items as determined by the

reviewers. As much as possible, the following pieces of information

were obtained from eligible study reports by two independent

reviewers, in a non-blinded manner: study ID (lead author name

and year), study type, study period, study location, problem

addressed (reinfection with schistosomes), species studied, host

factors assessed, study aim, recruitment, inclusion, exclusion,

informed consent, ethical approval, number of participants, study

completion rate, statistical methods and funding. Given that the

host factors we identified and reviewed were not set a priori, the

factors were included on first observation. Thus, a study assessing

several host factors was included respectively in the meta-analysis

for each of the factors; while overlap from multiple reports

referring to a single study was resolved to avoid duplication. When

studies in different locations were separately reported in a single

Author Summary

One of the major challenges of schistosomiasis control is
that disease prevalence reverts to baseline levels after
mass drug administration due to high rate of reinfection.
Host factors play a major role in determining resistance or
susceptibility to reinfection with schistosomiasis and other
diseases. We systematically searched and analyzed studies
that identified potential host determinants of reinfection
with schistosomes. Among demographic variables, age but
not gender was strongly associated with reinfection with
schistosomes. Pretreatment infection intensity was also
identified as a major determinant of reinfection. Positive
association with IgG4 levels and negative association with
IgE levels reconfirmed the notion that IgE/IgG4 balance is
the major factor controlling protective immunity against
schistosomiasis. Other factors were reported by few
studies to allow correct inferences. These results contrib-
ute to our understanding of host-parasite relationship as it
affects reinfection, and will be useful for planning and
targeting the limited resources for intervention on high-
risk groups.
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article, the study was included twice for each of the areas

differentiated using footnotes.

Quality assessment of included studies
To assess risk of bias within selected studies, we adopted the

quality assessment tool in the Cochrane RevMan v5.2 program.

Briefly, this method takes into account four factors: selection bias

by evaluating the sampling and randomization procedure,

performance bias by assessing the level of blinding of personnel,

detection bias by evaluating the level of blinding of outcome

assessment, and reporting bias by assessing the presence of

selective reporting in data presentation. We created a quality

scoring system based on these RevMan v5.2 quality assessment

items, with levels of risk of bias scored as ‘‘21’’ for high risk, ‘‘0’’

for unclear risk and ‘‘1’’ for low risk of bias. These parameters

(n = 4), in addition to availability of descriptions of (n = 8): host

determinants, outcomes definitions, inclusion criteria, exclusion

criteria, method of diagnosis, mass chemotherapy, confirmation of

cure prior to inclusion and follow-up period, were used to create a

quality score based on 12 items on a scale of 100% for each

included study (Table S1).

Assessment of risk of bias across studies
To assess the risk of bias across studies, Begg’s funnel plots were

generated to assess publication bias across the reviewed studies

[18,19]. Funnel plots were created for each factor by plotting the

effects measure (odds ratio) against the standard error of its

logarithm. The symmetries of the funnel plots were first assessed

visually. When potential publication bias was identified, the trim

and fill method proposed by Duvall and Tweedie [20] was applied.

No further test of bias or symmetry of the funnel was performed

since no publication bias was apparent.

Definition of outcomes and risk factors
The outcomes definitions were pre-determined by the review-

ers, and all included studies sufficiently satisfy these criteria.

Briefly, ‘‘resistance to reinfection’’ was defined as absence of

parasite egg in multiple parasitological examinations after

treatment (and confirmation of cure), followed by a follow-up

period (for uniformity, data on ,12 months follow-up were

pooled) despite exposure to the parasite. Conversely, ‘‘susceptibil-

ity to reinfection’’ was defined as positive parasitological exami-

nation within 6 to 12 months after chemotherapy and cure.

Among the risk factors identified, we adopted ,10 years old as the

definition for younger children. This was because all the included

studies defined younger children as either ,9 or ,10 years old,

apart from three studies that defined younger children as ,13, ,

14 and ,15 years old, respectively (Table S1). High (moderate to

high) pretreatment infection intensities was defined as .50 eggs/

10 ml of urine for S. haematobium, and .100 eggs/g of feces for

S. mansoni and S. japonicum. For antibody levels, only data from

studies utilizing the predetermined established method (ELISA)

were pooled. While slight variations exist in the methods adopted

in each study for estimation of antibody levels, these were ignored

since similar conditions apply for the comparator in each study.

Only data from studies satisfying these definitions were pooled in

data synthesis.

Quantitative data synthesis (meta-analyses)
Data from eligible studies were combined using meta-analysis

performed on The Review Manager (RevMan v5.2) from The

Nordic Cochrane Centre, Cochrane Collaboration, 2012 [21]. We

meta-analyzed and interpreted all host factors reported in more

than one studies without setting any cut off for the minimum

number of studies required for valid interpretation. For each

identified host factor reported as dichotomous outcome, 262

contingency tables were generated and the odds ratio (OR) with

the corresponding 95% confidence intervals (95% CI) were

calculated. For studies reporting continuous outcomes (such as

antibody levels), the input data was mean and standard deviation

(SD) with the standardized mean difference (SMD) as the effect

measure. When the standard deviation was not reported, it was

computed with the calculator function in RevMan v5.2, using

other supplied data (e.g. mean, SEM, p-value etc.). For each factor

analyzed, a forest plot showing the respective odds ratios or

standardized mean differences with their corresponding 95%

confidence interval for each study and for the pooled data were

generated. The test of overall effect was assessed using the Z-

statistics on RevMan v5.2 with statistical significance set at p,

0.05. Subgroup analysis based on species studied was performed

when necessary, especially for host factors with sufficient number

of included studies.

Test of heterogeneity between studies
Heterogeneity (inconsistency) between studies was evaluated

using the Cochrane Q (Chi2 test) and I2 statistics in RevMan v5.2

[22]. The statistical significance for heterogeneity using the Chi2

test was set as p,0.10. Estimates of degree of heterogeneity using

I2 were made by setting 25%, 50%, or 75% as limits for low,

moderate or high heterogeneity, respectively [22]. The fixed-

effects model with weighting of the studies was used when there

was a lack of significant heterogeneity (p.0.10), while the random-

effects model with weighting of the studies was used when there

was heterogeneity between studies (p,0.10) and I2 values of over

50%. A major drawback of the random-effects model is that it

assigns relatively equal weight to studies. Therefore, fixed-effects

model was preferred over random-effects, although random-effects

model was still applied when significant heterogeneity was

recorded between studies.

Sensitivity analysis
For sensitivity analysis, we adopted the methods recommended

for Cochrane systematic reviews. Each meta-analysis of the

association of reinfection with a host factor was reanalyzed with

the exclusion of each individual study to examine the effect of a

single study on the outcome of meta-analysis. In addition, to

examine the effect of the largest and smaller studies on the

outcome of the meta-analysis, cumulative meta-analysis was

performed with studies ordered according to the sample size.

Also, sensitivity testing to identify the effect of subgroups was

performed by subgroup analysis. This was achieved by comparing

the results of the meta-analysis after exclusion of each subgroup.

Results

Study selection
Using the broad search terms, initial screening of public

databases yielded 2739 study reports. Out of these studies, 295

were included for full text reading based on initial title and abstract

screening using the inclusion criteria. The two reviewers agreed

with 284 decisions and 11 discrepancies were resolved by

discussion and consensus. For some reasons that are outlined in

Figure 1, further 186 study reports were excluded and a total of

109 studies identifying 39 host factors were included for the data

synthesis. However, some of the identified host determinants were

reported by only 1 study and were further excluded in the final

meta-analysis. Finally, 32 study reports on 26 host determinants of

Host Determinants of Reinfection with Human Schistosomes
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reinfection were included in the final quantitative data synthesis

(meta-analysis). Five of these study reports were on two

independent data sets [23–27], thus, a total of 37 datasets were

included in the meta-analysis (Figure 1).

Characteristics of included studies
The characteristics of the 32 studies included in the meta-

analysis were fully described in Table S1. This table outlined the

study ID, study location, study period, sample size, gender ratio,

age range and species studied. Out of the 32 included studies; 13

were on reinfection with Schistosoma mansoni, 7 were on S.
japonicum, 10 studies assessed reinfection with S. haematobium,

and 2 studies were on both S. mansoni and S. haematobium. Based

on the population of subjects studied; 20 studies were on both

children and adults, 11 studies were on children alone, while only

1 study was on adult subjects alone. All included studies were

cohort studies (n = 32), with prospective data collection method

(Table S1).

Quality assessment of included studies
Assessment of risk of bias within selected studies was performed

using the quality assessment tool in Cochrane RevMan v5.2

program, modified as detailed in the Method section. The result of

the quality assessment based on the 12 items on a scale of 100%

showed that only 2 studies scored the maximum points (100%).

The other included studies scored over 75% points in the study

quality assessment, indicating their suitability for inclusion in the

meta-analysis (Table S1).

Synthesis of results and meta-analysis
A total of 39 host factors comprising socio-demographic,

epidemiological, immunological, genetic variants and other

variables were identified from the included studies. However, 13

of these host determinants were reported in only one study and

were subsequently excluded in the meta-analysis. The full list of 39

identified host factors with their corresponding statistics and effect

Figure 1. Flow diagram for the search and systematic review process.
doi:10.1371/journal.pntd.0003164.g001
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Table 1. Host determinants of reinfection with schistosomes identified in this study.

Host Factors No Reps Model Heterogeneity Association Study References

X2 (p-val.) I2 OR/SMD (95% CI) Z (p-val.)

1. Demographic factors

Age (,10) 19 Rand. p,0.0001 74 1.91 [1.41, 2.60] p,0.0001 [24,26,28–42]

Gender (M) 20 Rand. p,0.0001 88 1.45 [1.02, 2.05] p = 0.04 [24–26,28–32,34–36,39,40,42–46]

2. Epidemiological factors

PTI 7 Rand. p = 0.006 67 2.85 [1.97, 4.12] p,0.0001 [26,27,30,36,40]

Exposure 4 Rand. p,0.0001 91 2.34 [0.93, 5.85] p = 0.07 [36,40,42,44]

HTA 5 Rand. p,0.0001 91 2.24 [0.63, 7.91] p = 0.21 [37,42,44,47]

3. Antibodies

? IgE

SWA 7 Rand. p,0.0001 88 20.06 [20.59, 0.46] p = 0.82 [23,31,39,44,49,53]

SEA 8 Rand. p = 0.001 71 20.03 [20.38, 0.32] p = 0.88 [23,31,39,44,48–51]

? IgG4

SWA 5 Fixed p = 0.38 5 0.47 [0.26, 0.68] p,0.0001 [23,31,39,44,49]

SEA 9 Rand. p,0.0001 89 0.41 [20.13, 0.95] p = 0.14 [23,31,39,44,48–51]

? IgG1

SWA 4 Rand. p,0.0001 89 0.71 [0.06, 1.37] p = 0.03 [23,31,45,49]

SEA 5 Rand. p = 0.005 73 0.56 [0.10, 1.03] p = 0.02 [23,31,48,49,51]

? IgG2

SWA 3 Rand. p,0.0001 90 0.67 [20.15, 1.49] p = 0.11 [23,31,49]

SEA 4 Rand. p,0.0001 92 0.87 [0.02, 1.71] p = 0.04 [23,31,49,51]

? IgG3

SWA 2 Rand. p = 0.04 77 20.22 [20.85, 0.42] p = 0.51 [31,49]

SEA 3 Fixed p = 0.70 0 0.04 [20.21, 0.29] p = 0.77 [31,49,51]

? IgA

SWA 3 Rand. p,0.0001 95 0.50 [20.67, 1.67] p = 0.40 [23,31,49]

SEA 5 Rand. p,0.0001 93 0.54 [20.42, 1.50] p = 0.27 [23,31,48,49,51]

? IgM

SWA 3 Rand. p,0.0001 98 1.84 [21.11, 4.79] p = 0.22 [23,31,49]

SEA 3 Rand. p,0.0001 96 1.19 [20.50, 2.89] p = 0.17 [23,31,51]

4. Cytokines

IFN-g 4 Fixed p = 0.36 1 20.22 [20.52, 0.08] p = 0.15 [6,44,45,48]

IL-10 4 Fixed p = 0.08 56 20.15 [20.44, 0.13] p = 0.29 [6,44,45,48]

TNF-a 2 Rand. p = 0.03 79 20.27 [20.77, 0.22] p = 0.28 [6,51]

IL-5 3 Rand. p = 0.004 82 20.17 [21.38, 1.04] p = 0.78 [6,44,48]
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estimates were included as supplementary information (Table S2).

The summary of the meta-analyses on 26 host factors, including:

the number of pooled studies, data analyses model adopted, the

tests of heterogeneity, association analyses and the study

references were presented in Table 1. Several demographic,

epidemiological and immunological variables were identified,

with some of the variables showing strong association with

reinfection with schistosomes. These are further described in

subsequent sections.

Association of demographic factors with reinfection with
schistosomes

1. Age (,10 years old). Age was identified as a major factor

that may predispose certain subsets of the population to reinfection

with schistosomes. In this review, we assessed the odds of

reinfection among children less than 10 years old as compared

to the rest of the population (Figure 2). Significant heterogeneity

was observed among the included studies (p,0.0001, I2 = 74%),

therefore, random effects model was applied for the meta-analysis.

This heterogeneity was probably due to the variability of the

studied populations. While some of the studies were on school-

aged children (5–18 years range), others included the whole

population (Table S1). Pooled odds ratio showed that younger age

(,10 years old) was positively associated with reinfection with

schistosomes (OR = 1.91, 95% CI = 1.41–2.60, Z = 4.15,

p,0.0001) (Figure 2).

Sensitivity analysis by analysis of subgroups based on the species

studied showed that while reinfection with S. mansoni [28–32] and

S. haematobium [26,33–40] showed strong association with age,

such association was not observed when only studies on S.
japonicum [24,41,42] were considered (Figure 2). The positive

association between reinfection and age (,10 years old) lost its

statistical significance (p = 0.13) when all the studies on S.
haematobium subgroup were excluded from the meta-analysis

(Table S3). Also, sensitivity analysis by exclusion of a single study

from the analysis (Table S3) or cumulative meta-analysis (Table

S4) showed that the result of the meta-analysis was robust as the

inclusion or exclusion of any single study did not affect the

outcome of the odds ratio, Z-score and p-value.

2. Gender (male). We also assessed whether gender (being

male) was a predisposing factor of reinfection with schistosomes.

Because there was significant heterogeneity among the studies (p,

0.0001, I2 = 88%), random effects model was applied. Pooled odds

ratio showed that although there was a positive association of male

gender and reinfection with schistosomes, the association was only

slightly statistically significant (OR = 1.45, 95% CI = 1.02–2.05,

Z = 2.09, p = 0.04). Sensitivity analysis by subgroup analysis based

on the species studied showed that statistically significant positive

association was observed for association of male gender with

reinfection with S. mansoni (p = 0.02) [25,28–32,43–45] and S.
japonicum (p = 0.002) [24,42,46], while the association for

reinfection with S. haematobium [26,34–36,39,40] was not

statistically significant (p = 0.30) (Figure 3). The exclusion of S.
mansoni or S. japonicum subgroups in the meta-analysis yielded

effect measures which were not statistically significant (p = 0.22

and p = 0.23, respectively). Conversely, the exclusion of data from

S. haematobium subgroup significantly affected the result of the

meta-analysis (OR = 1.85, 95% CI = 1.34–2.55, Z = 3.76,

p = 0.0002) (Table S3). Furthermore, sensitivity analyses by

exclusion of single studies (Table S3) and cumulative meta-analysis

(Table S4) showed that two large studies [26,34] significantly

affected the result of the pooled effect estimate (Z-score and p-

value).
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Association of epidemiological factors with reinfection
with schistosomes

Three major epidemiological factors of reinfection were

identified, including: pre-treatment infection intensity

[26,27,30,36,40], rate of exposure [36,40,42,44] and levels of

transmission in the studied area [37,42,44,47]. There was strong

positive association between high (moderate to high) pretreatment

infection intensities (.50 eggs/10 ml of urine for S. haematobium,

and .100 eggs/g of feces for S. mansoni and S. japonicum) and

reinfection with schistosomes (OR = 2.85, 95% CI = 1.97–4.12,

Z = 5.57, p,0.0001). (Figure 4A). The positive association be-

tween high rates of exposure (we defined high rate of exposure as

‘‘above average’’ exposure rate for a specific population as

determined by authors) and reinfection with schistosomes was

not statistically significant (OR = 2.34, 95% CI: 0.93–5.85,

Z = 1.81, p = 0.07) (Figure 4B). Although there was also a positive

correlation between residence in high transmission area and

reinfection, the association was not statistically significant

(OR = 2.24, 95% CI = 0.63–7.91, Z = 1.25, p = 0.21) (Figure 4C).

Association of immunological factors with reinfection
with schistosomes

Among the immunological factors identified in this review, most

studies reported association between humoral responses and

probability of reinfection with schistosomes. An interesting finding

was a negative standardized mean difference observed in the

Figure 2. Association of younger age (,10 years old) with reinfection with schistosomes. Presented here is the meta-analysis forest plot
showing the pooled odds ratio and the corresponding 95% CI, subgroup analysis by species, and assessment of heterogeneity among studies. There
was a strong statistically significant positive association between younger age (,10 years old) and reinfection with schistosomes.
doi:10.1371/journal.pntd.0003164.g002
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association between IgE levels and reinfection with schistosomes

(Figure 5 and Figure S2) inferred from meta-analysis on 8 studies

[23,31,39,44,48–51]. However, subgroup analyses of these asso-

ciations with IgE levels against adult worm antigen (SWA)

(Figure 5A) and egg antigen (SEA) (Figure 5B) were not statisti-

cally significant (For anti-SWA IgE, SMD = 20.06, 95% CI = 2

0.59–0.46, Z = 0.23, p = 0.82; for anti-SEA IgE, SMD = 20.03,

95% CI = 20.38–0.32, Z = 0.15, p = 0.88). Sensitivity analysis by

exclusion of individual studies showed that the exclusion of any of

the included studies in this meta-analysis did not affect the pooled

effect estimates (Table S3).

Conversely, strong positive association was observed between

IgG4 levels and reinfection with schistosomes (Figure 6 and Figure

S2). However, while the association between reinfection and anti-

SWA IgG4 levels was statistically significant (SMD = 0.47, 95%

CI = 0.26–0.68, Z = 4.35, p,0.0001) (Figure 6A); the association

between reinfection and anti-SEA IgG4 levels was not statistically

significant (SMD = 0.41, 95% CI = 20.13–0.95, Z = 1.48,

p = 0.14) (Figure 6B). Sensitivity analysis showed that while the

exclusion of any single study did not affect the result of the

association between reinfection with schistosomes and anti-SWA

IgG4 levels, the exclusion of one study [39] resulted in positive

association with statistical significance for the association of anti-

SEA IgG4 with reinfection with schistosomes (Table S3).

Equally, positive associations were observed for association of

reinfection with schistosomes with levels of IgG1, IgG2, IgA and

Figure 3. Association of gender (male) with reinfection with schistosomes. Presented here is the meta-analysis forest plot showing the
pooled odds ratio and the corresponding 95% CI, subgroup analysis by species, and assessment of heterogeneity among studies. The observed
positive association between reinfection and gender was only slightly significant.
doi:10.1371/journal.pntd.0003164.g003
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IgM against SWA (Figure S3A, B, D and E) and SEA (Figure S4A,

B, D and E); while negative association was observed between

reinfection and levels of IgG3 (Figure S3C and Figure S4C).

However, there were limited number of studies reporting these

factors and the associations were not statistically significant except

for IgG1.

Some cellular immune response factors were also identified.

However, there were consistently small number of studies

reporting these factors, and the associations were not statistically

significant (Table 1 and Table S2). We observed negative

standardized mean differences from the associations of reinfection

with levels of IFN-c, IL-5, IL-10, IL-13, TNF-a and CD4+ T-

helper cells; and positive effect estimates from the association of

reinfection with proportions of CD8, CD19 and CD16 positive

cells. Other factors including the HLA gene polymorphisms, levels

of total protein, albumin, total cholesterol, low-density lipoproteins

and very low-density lipoproteins were also identified. However,

these factors were all reported by only one study (Table S2).

Risk of bias across studies
To assess outcome reporting bias and publication bias across

studies, we generated funnel plots for two representative host

Figure 4. Association of epidemiological factors with reinfection with schistosomes. (A) Meta-analysis forest plot for the association of
reinfection with high pretreatment intensity showing positive association with reinfection. (B) Forest plot for the association of reinfection with high
rate of exposure showing association with reinfection without statistical significance. (C) Meta-analysis forest plot for the association of reinfection
with residence in high transmission area did not show statistically significant association with reinfection.
doi:10.1371/journal.pntd.0003164.g004
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factors with sufficient number of included studies (age and gender)

by plotting the odds ratio (OR) on the x-axis, and the standard

error of the log of odds ratio (SE(log[OR]) on the y-axis (Figure 7).

The funnel plot showed the typical cone appearance with good

symmetry, with the studies apparently distributed on either side of

the pooled outcome effect estimate (Figure 7). Two outlier studies

[29,32] observed from the association of reinfection with age were

of significantly small size (Figure 7A). To exclude potential small

study effect, these studies were excluded and their exclusion did

not affect the result of the pooled effect size. Equally, we also

applied the trim and fill method proposed by Duvall and Tweedie

[20] by adding studies equivalent to these outliers, which appear to

be missing. Again, this did not affect the symmetry and the result

of the pooled effect estimate. Also, subgroup analysis showed that

all studies on S. japonicum were on the left side of the cone unlike

the other species. However, exclusion of this subgroup (Table S3),

or trim and fill method did not affect the results of the combined

effect estimates. These indicate that there is minimal publication

bias in these studies and no further test of bias was carried out.

Discussion

Identification of host factors that predispose certain subsets of

the population to reinfection with schistosomes, and indeed any

other disease, is a major strategy that will guide planning and

tailoring of community interventions to target high-risk groups. It

is also important for targeting health education and limited

resources for disease prevention. Our meta-analysis has identified

some of the host determinants of reinfection with schistosomes.

The outcomes showed strong positive association with age, and

pretreatment intensity of infection, and only slight association with

gender. Also, the IgE/IgG4 balance, which is well recognized as a

major determinant of reinfection [2–5], was again reconfirmed by

our meta-analysis. Our results showed that younger age and

pretreatment intensity of infection, which are connected with

behavioral differences in population subsets and disease transmis-

sion, play predominant role in determining the probability of

reinfection with schistosomes. This is due to differences in rate of

exposure, but not necessarily absence of protective immunity [52].

Conversely, the immunological parameters related with protective

immunity, which may itself be associated with age and accumu-

lated experience [40,52–56]; also play major role in determining

protection from infection but not exposure to the pathogen. It can

therefore be inferred that exposure and age-related factors play a

predominant role in disease transmission, while immunological

factors control protective immunity against reinfection.

Younger age was positively associated with the rate of

reinfection. Schistosomes are transmitted through skin penetration

by the infective cercariae during water contact activities. Given

that younger children are mainly involved in such high-risk water

Figure 5. Association of IgE levels with reinfection with schistosomes. (A) Meta-analysis forest plot for the association of reinfection with
anti-SWA IgE levels showing the pooled standardized mean difference and the corresponding 95% CI and assessment of heterogeneity among
studies. The observed negative overall effect was not statistically significant. (B) Meta-analysis forest plot for the association of reinfection with anti-
SEA IgE levels showing the pooled standardized mean difference and the corresponding 95% CI and assessment of heterogeneity among studies. The
observed negative overall effect was not statistically significant.
doi:10.1371/journal.pntd.0003164.g005
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contact activities like domestic chores and recreation, this result is

expected and is consistent with the results of other big intervention

studies [26,30,34,36]. However, species based subgroup analysis

did not show positive association between age and reinfection with

S. japonicum. It is not clear whether this is related to differences in

the study cultural settings since unlike S. haematobium and S.
mansoni; the distribution of S. japonicum is limited to South East

Asia. However, limited number of studies assessed reinfection with

S. japonicum, and unlike studies on the other species which

sometimes involved only children, all studies on S. japonicum
involved both adults and children; a major source of heterogeneity

among the included studies. Also, S. japonicum has some

peculiarities that may also contribute to the observed heterogene-

ity, including: its zoonotic nature, the generally much lower

prevalence (especially in recent decades) and the fact that exposure

is often mainly during occupational activities instead of domestic

and recreational ones.

Our analyses showed only slight association between gender and

reinfection with schistosomes. Although boys and girls may have

major behavioral but not biological differences that can affect rate

of reinfection [28], this distinction is very minimal among the

younger age group. Even among the older children, there are only

changes in the kind of water contact activities, which may not

necessarily translate to major change in rate of exposure to the

disease. Surprisingly, subgroup analysis showed strong positive

association between gender and reinfection with S. japonicum.

Although this may be due to differences in gender role in various

cultural settings, the observed association may not be very reliable

since the analysis was based on only four studies on S. japonicum.

Also on cultural differences, Fulford et al. (1996) and other workers

identified that patterns of water contact vary dramatically between

even culturally rather similar communities [57,58]. Therefore,

absence of strong association with gender even with apparent

behavioral differences between genders remains inconclusive. This

implies that gender difference in reinfection pattern varies in

difference cultural settings [58].

Apart from the demographic factors, three major epidemiolog-

ical factors were positively correlated with reinfection: high pre-

treatment intensity, high rate of exposure and residence in high

transmission area. High pretreatment intensity is related to

possibility of failed or incomplete treatment [36], especially when

studies did not include a follow up study dedicated to confirming

cure in the treated population. As would be expected, there was

also a positive correlation between reinfection and high exposure

rate as inferred from the four studies assessing this factor, but

the association was not statistically significant. Although some

studies distinguished between high transmission areas and low

transmission areas based on relative availability of potable

water and sanitation [36], there was no association between

residence in either of these areas, and rate of reinfection with

schistosomes. This could be because water contact activities do

not depend exclusively on lack of domestic water or sanitation,

Figure 6. Association of IgG4 levels with reinfection with schistosomes. (A) Meta-analysis forest plot for the association of reinfection with
anti-SWA IgG4 levels showing the pooled standardized mean difference and the corresponding 95% CI and assessment of heterogeneity among
studies. IgG4 level was highly significantly associated with reinfection with schistosomes. (B) Meta-analysis forest plot for the association of
reinfection with anti-SEA IgG4 levels showing the pooled standardized mean difference and the corresponding 95% CI and assessment of
heterogeneity among studies. The observed positive overall effect was not statistically significant.
doi:10.1371/journal.pntd.0003164.g006
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Figure 7. Funnel plots for assessment of publication bias. (A) Funnel plots for assessment of publication bias for studies assessing association
of reinfection with age showing lack of significant publication bias in the included studies. (B) Funnel plots for assessment of publication bias for
gender.
doi:10.1371/journal.pntd.0003164.g007
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but is a function of several interrelated factors, including:

perception, distinct cultural practices and the need for

recreation. These render residence in either high or low

transmission areas less important as a risk factor of reinfection

with schistosomes.

Among the immunological factors identified, most studies

reported association between different antibody isotype levels

and probability of reinfection with schistosomes. Interestingly, a

negative association was recorded from the association between

IgE levels and reinfection with schistosomes. On the other hand,

strong positive association was observed between IgG4 levels and

reinfection with schistosomes. These observations are consistent

with the consensus perspective that IgE/IgG4 balance plays

central role in controlling protective immunity against infection or

reinfection with schistosomes [2–5,8,31,38,39,41,44,56,59–63].

While increased IgE levels are protective against infection and

reinfection, elevated IgG4 levels increase predisposition to

infection and reinfection. Recent studies have found strong

association between IgE levels and certain loci in the human

genome, including: the cytokine gene cluster on chromosome

5q31-q33 (SM1), which also controls infection with schistosomiasis

[7,64–67]; FCER1A on chromosome 1q23, which is the gene

encoding the alpha chain of the high affinity receptor for IgE

[11,14]; STAT4 on chromosome 2q32 [12,64] which controls Th1

development; STAT6 on chromosome 12q13 [12,13,15,64] and

GATA3 on chromosome 10p15 [12,64] which control Th2

development; and the Th2 cytokine receptor cluster in 16p12

region of the human genome [7,64]. We had expected to identify

studies assessing association between reinfection and several

immunogenetic factors including variations in these loci; however,

there were few or no studies on the host immunogenetic factors of

reinfection with schistosomes, an important theme for further

research. We are presently proposing a study that will identify

association between major single nucleotide polymorphisms

(SNPs) in these loci, and reinfection with schistosomes and other

helminthic infections.

Our analyses on cellular immune response factors showed

negative effect estimates for the associations of reinfection with

levels of IFN-c, IL-5, IL-10, TNF-a and CD4+ T-helper cells; and

positive effect estimates for the association of reinfection with the

proportions of CD8+, CD19+ and CD16+ cells. However, these

inferences are not very reliable since there was consistently limited

number of studies reporting these host factors, and the associations

were not statistically significant (Table 1 and Table S2). An

interesting observation though is the negative effect estimate

recorded from the association of reinfection with schistosomes with

levels of IFN-c. Studies in both human and animal models have

shown that protective immunity against schistosomiasis is mainly

Th1 dependent [2,4,6,68–75]. The egg antigen drives a dominant

Th2 response. Thus, induction and sustenance of a Th1

environment at the acute phase of infection thru onset of egg

deposition is required for sterile and anti-pathology protection

[68,69,75–78]. Negative effect estimates were also recorded from

the association of reinfection with levels of IL-5 and IL-13. This is

consistent with the notion that these cytokines control release and

survival of eosinophil [31], which has been shown to induce antibody

dependent protective immunity against schistosomiasis [79,80].

Other factors including the HLA gene polymorphisms, levels of total

protein, albumin, total cholesterol, low-density lipoproteins and very

low-density lipoproteins were also identified. However, these factors

were all reported by only one study (Table S2).

In conclusions, this study has identified the major host determi-

nants of resistance or susceptibility to reinfection with schistosomes;

although we had anticipated studies on immunogenetic factors in

addition to the identified socio-demographic, epidemiological

and immunological factors. Therefore, there is need to explore

the association between reinfection with schistosomes and host

immunogenetic factors, especially the variations in the genes

controlling immune response against schistosomiasis. This will

be an interesting subject for further studies. Strong association

with age and water contact related factors has reaffirmed that

these factors play dominant role in determining exposure to

pathogen and disease transmission. We also reconfirmed the

major role played by IgE/IgG4 balance in controlling protective

immunity against infection and reinfection with schistosomes.
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