2	Conformational properties of prion strains can be transmitted to recombinant
3	prion protein fibrils in real-time quaking-induced conversion
4	
5	Kazunori Sano ¹ , Ryuichiro Atarashi ^{1,2#} , Daisuke Ishibashi ¹ , Takehiro Nakagaki ¹ , Katsuya
6	Satoh ¹ , Noriyuki Nishida ¹
7	
8	¹ Department of Molecular Microbiology and Immunology, Nagasaki University
9	Graduate School of Biomedical Sciences, Nagasaki, Japan
10	² Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University,
11	Nagasaki, Japan.
12	
13	[#] Corresponding author: Ryuichiro Atarashi
14	Department of Molecular Microbiology and Immunology, Nagasaki University
15	Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
16	Tel.: +81-95-819-7059, Fax: +81-95-819-7060, E-mail: atarashi@nagasaki-u.ac.jp

18	Running title: Transmission of prion strain-specific properties
19	
20	Word counts: 249 for the abstract; 145 for the importance

22 Abstract

The phenomenon of prion strains with distinct biological characteristics has been 23 24 hypothesized to be involved in the structural diversity of abnormal prion protein (PrP^{Sc}). 25 However, the molecular basis of the transmission of strain properties remains poorly 26 understood. Real-time quaking-induced conversion (RT-QUIC) is a cell-free system that uses E. coli-derived recombinant PrP (rPrP) for the sensitive detection of PrP^{Sc}. To 27 investigate whether properties of various prion strains can be transmitted to amyloid 28 29 fibrils consisting of rPrP (rPrP-fibrils) using RT-QUIC, we examined the secondary 30 structure, conformational stability and infectivity of rPrP-fibrils seeded with PrPSc 31 derived from either the Chandler or 22L strain. In the first round of the reaction there 32 were differences in the secondary structures, especially in bands attributed to β -sheets, as 33 determined by infrared spectroscopy, and conformational stability between Chandler-seeded (1st-rPrP-fib^{Ch}) and 22L-seeded rPrP-fibrils (1st-rPrP-fib^{22L}). Of note, 34 specific identifying characteristics of the two rPrP-fibril-types seen in the β -sheets 35 resembled those of the original PrPSc. Furthermore, the conformational stability of 36 1st-rPrP-fib^{Ch} was significantly higher than that of 1st-rPrP-fib^{22L}, as with Chandler- and 37

38	22L-PrP ^{Sc} . The survival periods in mice inoculated with 1 st -rPrP-fib ^{Ch} or 1 st -rPrP-fib ^{22L}
39	were significantly shorter than those of the mice inoculated with mock 1 st -QUIC mixtures.
40	In contrast, these biochemical characteristics were no longer evident in subsequent
41	rounds, suggesting that nonspecific uninfected rPrP-fibrils became predominant probably
42	because of their rapid growth rate. Together, these findings show that at least some
43	strain-specific conformational properties can be transmitted to rPrP-fibrils and unknown
44	cofactors or environmental conditions may be required for further conservation.
45	
46	Importance
47	The phenomenon of prion strains with distinct biological characteristics is assumed to
48	result from the conformational variations in the abnormal prion protein (PrP ^{Sc}). However,
49	important questions remain about the mechanistic relationship between the

51 strain-specific conformations. In this study, we investigated whether properties of diverse 52 prion strains can be transmitted to amyloid fibrils consisting of *E. coli*-derived 53 recombinant PrP (rPrP) generated in the real-time quaking-induced conversion

50

conformational differences and the strain diversity, including how to transmit

54	(RT-QUIC), a recently-developed in vitro PrPSc formation method. We demonstrate that
55	at least some of the strain-specific conformational properties can be transmitted to
56	rPrP-fibrils in the first round of RT-QUIC by examining the secondary structure,
57	conformational stability and infectivity of rPrP-fibrils seeded with PrP ^{Sc} derived from
58	either the Chandler or 22L prion strain. We believe that these findings will advance our
59	understanding of the conformational basis underlying prion strain diversity.
60	
61	Introduction
62	Prion diseases, or transmissible spongiform encephalopathies (TSE), are infectious and
63	fatal neurodegenerative disorders characterized by progressive spongiform changes and
64	the accumulation of abnormal prion protein (PrPSc) in the central nervous system.
65	Although the pathogenic mechanisms have not been fully elucidated, prion disease is
66	thought to occur through autocatalytic conversion of normal prion protein (PrP ^C) to PrP ^{Sc}
67	(1, 2), known as the protein-only hypothesis. Some biophysical properties are known to
68	differ between PrP^{C} and PrP^{Sc} . PrP^{C} is monomeric, detergent-soluble and
69	protease-sensitive, while PrP ^{Sc} is polymeric, detergent-insoluble and partially

70	protease-resistant (3). These differences are most likely due to the different
71	conformations of the two isoforms. PrP^C is largely $\alpha\text{-helical,}$ whereas PrP^{Sc} is
72	substantially enriched in β -sheets (4, 5), frequently resulting in amyloid fibril formation.
73	The existence of diverse prion strains in mammalian species manifesting in
74	phenotypic differences is well known. The strain-specific characteristics are usually
75	maintained upon serial passage in the same species, and may be explained by
76	conformational variations in the PrPSc. Indeed, strain-dependent differences in
77	β -sheet-rich structures of PrP ^{Sc} have been demonstrated by infrared spectroscopy (6-9).
78	In addition, the conformational stability of PrPSc differed among prion strains, as
79	demonstrated by guanidine hydrochloride (GdnHCl) denaturation assay followed by
80	protease digestion (10, 11). However, the mechanistic relationship between PrP ^{Sc}
81	conformational differences and the molecular basis of prion strains remains poorly
82	understood.
83	Various in vitro PrP ^{Sc} formation methods have been developed to elucidate the
84	pathogenesis of the prion diseases. One of these methods, protein misfolding cyclic
85	amplification (PMCA), enabled an exponential amplification of PrPSc in vitro by

86	sonication-induced fragmentation of large PrP ^{Sc} polymers into smaller units (12). The
87	amplified PrP ^{Sc} was accompanied by an increase in infectivity using normal brain
88	homogenate (BH) as a source of PrP ^C substrates (BH-PMCA) (13). Furthermore, PrP ^{Sc}
89	generated by BH-PMCA from five different mouse prion strains retained the
90	strain-specific properties (14). In addition, prion infectivity could be propagated when
91	purified brain-derived PrP^{C} or baculovirus-derived PrP^{C} was used as substrates in the
92	presence of certain cofactors such as nucleic acids and BH from PrP-deficient mice
93	(15-17). These results provide strong evidence to support the protein-only hypothesis, but
94	the structural basis of prion pathogenesis, including the tertiary structure of PrP ^{Sc} , has not
95	been fully clarified.
96	On the other hand, the use of <i>E. coli</i> -derived purified recombinant PrP (rPrP)
97	offers an advantage over conformational analyses, which generally require a high purity
98	and a large quantity of the target protein. Spontaneously-polymerized amyloid fibrils of
99	rPrP have been reported to induce the accumulation of PrPSc in the brains of
100	PrP-overexpressing transgenic (Tg) mice (18-20) and some wild-type hamsters (21),
101	however the incubation periods spanned no less than several hundred days and none of
	7

102	the wild-type hamsters developed any neurological signs at first passage, indicating that
103	the level of infectivity generated in these studies is very low. More recently, wild-type
104	mice developed clinical disease typical of TSE around 130 days after injection of
105	proteinase K-resistant rPrP fibrils (rPrP-fibrils) generated by unseeded-PMCA in the
106	presence of 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG), a synthetic lipid
107	molecule, and total liver RNA (22). Although these results were reproduced by the same
108	group (23), others have reported that rPrP-fibrils generated by the same method were
109	unable to induce either neuropathological changes or the accumulation of PrPSc (24).
110	Thus, the role of POPG and RNA in the de novo generation of infectious rPrP-fibrils
111	remains controversial.
112	Meanwhile, two different seeded-PMCA reaction studies using rPrP
113	(rPrP-PMCA) as a substrate have demonstrated the propagation of moderate levels of
114	prion infectivity. One study showed that hamster rPrP can be converted to rPrP-fibrils
115	capable of inducing TSE in the presence of SDS, a synthetic anionic detergent, but there
116	were great variations in the attack rate and the incubation period, which ranged from 119
117	to 401 days (25). Another study revealed that phosphatidylethanolamine (PE), a

118	phospholipid found in biological membranes, enhances conversion of mouse rPrP into
119	rPrP-fibrils capable of inducing TSE after around 400 days of incubation periods with a
120	100% attack rate (26, 27). Of note, three different strains used as a seed were converted
121	into a single strain with unique strain properties during the serial rPrP-PMCA
122	experiments (27). These studies suggest that a certain amphipathic molecule such as PE is
123	a required cofactor for the propagation of prion infectivity in vitro, but not for the
124	transmission of strain-specific properties.
125	The recently developed "real-time quaking-induced conversion" (RT-QUIC) is
126	a sensitive prion detection method (28, 29), in which intermittent shaking enhances the
127	conversion of soluble rPrP into amyloid fibrils in the presence of PrP ^{Sc} . The aim of the
128	present research was to investigate whether properties of diverse prion strains can be
129	transmitted to rPrP-fibrils generated in the RT-QUIC. We produced proteinase K-resistant
130	rPrP-fibrils seeded with minute quantities of mouse-adapted scrapie (Chandler or 22L
131	strain) PrPSc and investigated the secondary structure, conformational stability and
132	infectivity.

135 MATERIALS AND METHODS

136 **Recombinant mouse PrP expression and purification**

- 137 Recombinant PrP (rPrP) equivalent to residues 23-231 of the mouse PrP sequence was 138 expressed, refolded into a soluble form, and purified essentially as previously described 139 (30). The concentration of rPrP was determined by measuring the absorbance at 280 nm. The purity of the final protein preparations was \geq 99 %, as estimated by SDS-PAGE, 140 141 immunoblotting and liquid chromatography-mass spectrometry (data not shown). After purification, aliquots of the proteins were stored at -80 °C in 10 mM phosphate buffer, 142 pH6.8 or distilled water. 143 144 145 **Preparation of brain homogenates** Brain tissues were homogenized at 10% (w/v) in ice-cold PBS supplemented with a 146 protease inhibitor mixture (Roche) using a multi-bead shocker (Yasui Kikai, Osaka, 147
- 148 Japan). After centrifugation at 2,000 g for 2 min, supernatants were collected and frozen
- 149 at -80 °C until use. Total protein concentrations were determined by the BCA protein

assay (Pierce). The PrP^{Sc} concentrations in the brain homogenates were estimated by
dot-blot analysis using a reference standard of rPrP, as previously described (31).

152

153 **RT-QUIC experiments**

154 We prepared reaction mixtures in a 96-well, optical, black bottom plate (Nunc 265301) to a final total volume of 100 µl. To avoid contamination, we prepared non-infectious 155 156 materials inside a biological safety cabinet in a prion-free laboratory and used 157 aerosol-resistant tips. The final concentrations of reaction buffer components were 300 158 mM NaCl, 50 mM HEPES pH 7.5, and 10 µM Thioflavin T (ThT). The concentration of rPrP was 50 or 100 µg/ml, and only freshly-thawed rPrP was used. Brain homogenate was 159 160 diluted with reaction buffer prior to the reactions. The 96-well plate was covered with sealing tape (Nunc 236366) and incubated at 40 °C in a plate reader (Infinite M200 161 fluorescence plate reader, TECAN) with intermittent shaking, consisting of 30 s of 162 163 circular shaking at the highest speed and no shaking for 30 s, with a 2 min pause to 164 measure the fluorescence. The kinetics of amyloid formation was monitored by the 165 bottom reading of the fluorescence intensity every 10 min using 440-nm excitation and 166 485-nm emission wavelength of monochromators.

167

168 **RT-QUIC products analysis**

169	For detection of protease-resistant rPrP, 10 μ l of the QUIC samples (1 μ g of rPrP) was
170	diluted with 40μ l of buffer (300 mM NaCl, 50 mM HEPES pH 7.5) and digested with 10
171	$\mu g/ml$ of proteinase K (PK) at 37 $^{o}\!C$ for 1 h. After adding Pefabloc (Roche) at a final
172	concentration of 4 mM and 20 μ g of thyroglobulin, the proteins were precipitated with 4
173	volumes of methanol. The samples were heated in sample buffer (2% SDS, 5%
174	β -mercaptoethanol, 5% sucrose, 0.005% bromophenol blue and 62.5 mM Tris-HCl; pH
175	6.8) at 95 °C for 5 min, and then loaded onto 10% BisTris NuPAGE gels (Invitrogen).
176	Proteins were transferred onto polyvinylidene difluoride membranes (Millipore, Billerica,
177	MA, USA). The membranes were probed with polyclonal anti-PrP antibody R20 (epitope
178	located at mouse PrP amino acids 218-231) or ICSM35 (D-Gen, London, UK).
179	

180 Transmission electron microscopy

181 Negative staining was done on carbon supporting film grids, which were glow-discharged

182	before staining. The 10 μl samples were adsorbed to the grids for 3 min, then the residual
183	solution was absorbed by filter paper. The grids were stained with 20 μl of fleshly filtered
184	stain (2% uranyl acetate). Once dry, the samples were viewed in a transmission electron
185	microscope (JEM-1200EX, JEOL, Japan).
186	
187	Fourier transform infrared spectroscopy (FTIR)
188	FTIR spectra were measured with a Bruker Tensor 27 FTIR instrument (Bruker Optics)
189	equipped with an MCT detector cooled with liquid nitrogen. 300 μ l each of the QUIC
190	samples (30 μ g of rPrP) were pelleted by centrifugation for 1 h at 77,000 g, and
191	resuspended in 20 μl buffer (300 mM NaCl, 50 mM HEPES pH 7.5). The slurry was
192	loaded into BioATRcell II. PrPSc was purified from the brains of mice infected with the
193	mouse-adapted Chandler and 22L prion using a combination of detergent solubilization,
194	centrifugation at ultrahigh speeds and PK digestion (4, 32), and 15 μl of purified PrP^{Sc}
195	were directly loaded. 128 scans at 4 cm^{-1} resolution were collected for each sample under
196	constant purging with nitrogen, corrected for water vapor, and background spectra of
197	buffer were subtracted.

199 Conformational stability assay

200 10 µl of the QUIC products (equivalent to 1 µg of rPrP) and brain homogenates (80 µg of 201 total proteins) were mixed with 22 µl of various concentrations of guanidine 202 hydrochloride (GdnHCl) at a final concentration of 0 to 5 M and 0 to 3.5 M, respectively, 203 and the mixed samples were incubated at 37 °C for 1h. After adjusting the final GdnHCl 204 concentration of the QUIC products to 1 M and the brain homogenates to 0.6 M, the 205 samples were digested with PK (10 µg/ml) at 37 °C for 1h, and analyzed by Western 206 blotting following methanol precipitation. The bands were visualized using Attophos AP 207 Fluorescent Substrate system (Promega) and quantified using Molecular Imager FX 208 (BIO-RAD). The sigmoidal patterns of denaturation curves were plotted using a Boltzmann curve fit. The concentration of GdnHCl required to denature 50% of 209 210 PK-resistant fragments ($[GdnHCl]_{1/2}$) was estimated from the denaturation curves.

211

212 Bioassay

213 Male 4-week-old ddY mice were intracerebrally inoculated with 40 µl of QUIC products

214	(equivalent to 4 μg rPrP). As controls for rPrP-fibrils, we performed a mock QUIC
215	procedure using seed-only solutions that contained the same concentration of PrPSc as 1st-
216	-rPrP-fibril (1 pg/µl) or 5 th -rPrP-fibril (1 × 10 ⁻⁸ pg/µl), then added the same amount of
217	rPrP, and inoculated the mixtures into mice. Brain homogenates were serially diluted
218	with PBS, from 10^0 to 10^{-7} , and $20 \ \mu$ l of each dilution was intracerebrally inoculated.
219	Mice were monitored weekly until the terminal stage of disease or sacrifice. Clinical
220	onset was determined as the presence of 3 or more of the following signs: greasy and/or
221	yellowish hair, hunchback, weight loss, yellow pubes, ataxic gait and nonparallel hind
222	limbs. The 50% lethal dose (LD $_{50}$) was determined according to the Behrens-Karber
223	formula. Animals were cared for in accordance with the Guidelines for Animal
224	Experimentation of Nagasaki University.

226 Histopathology and Lesion Profiles

The brain tissue was fixed in 4% paraformaldehyde, and 5 µm paraffin sections prepared on PLL coat slides using a microtome. After deparaffinization and rehydration, the tissue sections were stained with hematoxylin and eosin. The pattern of vacuolation was

230	examined in 8 fields per slice from the hippocampus, cerebral cortex, hypothalamus, pons
231	and cerebellum. Spongiform degeneration was scored using the following scale: 0, no
232	vacuoles; 1, a few vacuoles widely and unevenly distributed; 2, a few vacuoles evenly
233	scattered; 3, moderate numbers of vacuoles evenly scattered; 4, many vacuoles with some
234	confluences; 5, dense vacuolation.
235	
236	Statistical Analysis
237	The fibril-length or width determined by electron microscopy analysis was subjected to
238	one-way analysis of variance (ANOVA) followed by Tukey-Kramer test. The data of the
239	conformational stability test was analyzed by one-way ANOVA followed by student's

- *t*-test. The data analysis of the survival times was evaluated by Logrank test. The data of
- 241 the vacuolation score was analyzed by Mann-Whitney's U test.

243 **Results**

244 Conversion of the soluble form of mouse recombinant PrP into amyloid fibrils by
245 RT-QUIC

246	We first tested whether formation of mouse rPrP amyloid fibrils could be
247	induced in the RT-QUIC by monitoring levels of ThT fluorescence. We observed positive
248	ThT fluorescence in the presence of diluted Chandler-brain homogenate (BH) or 22L-BH
249	containing 100 pg of PrPSc (Fig. 1A), whereas negative control reactions seeded with
250	comparable dilutions of normal brain homogenate (NBH) or without seed resulted in no
251	increase in ThT fluorescence over 72 h (Fig. 1A). However, because an inverse
252	correlation existed between the rate of fibril formation and the concentration of rPrP (28,
253	33), spontaneous formation of rPrP-fibrils (rPrP-fib ^{spon}) was induced by decreasing the
254	concentration of rPrP from 100 to 50 μ g/ml (Fig. 1A).

We next examined the PK-resistance of rPrP-fibrils by immunoblotting using anti-PrP antibody R20 directed toward C-terminal residues 218–231. Although the ThT-negative reactions seeded with NBH or without seed produced no PK-resistant bands (Fig. 1B middle panel), the Chandler-seeded rPrP-fibrils (rPrP-fib^{Ch}) and

22L-seeded rPrP-fibrils (rPrP-fib^{22L}) produced several (21-, 18-, 12-, 11-and 10-kDa) 259 PK-resistant fragments (Fig. 1B, left panel). In contrast, the PK digestion of rPrP-fib^{spon} 260 261 generated only 10-12 kDa fragments. It should be noted that anti-PrP monoclonal 262 antibody ICSM35 (directed toward an epitope consisting of residues 93-102) specifically recognized the 21- and 18 kDa fragments derived from PrPSc-seeded rPrP-fibrils in the 263 first round (1st-rPrP-fib^{Sc}), indicating that they contained mouse PrP from about residues 264 265 93-231 (Fig. 1B, right panel). To further characterize the structure of 1st-rPrP-fib^{Sc} and rPrP-fib^{spon}, the 266 267 samples were examined using a negative-stained transmission electron microscope (TEM). The electron micrographs of 1st-rPrP-fib^{Ch} and 1st-rPrP-fib^{22L} revealed bundles of 268 irregularly rod-shaped and branched fibrils, while most rPrP-fib^{spon} displayed smooth and 269 non-branched rod-shaped fibrils (Fig. 1C). Moreover, the lengths of 1st-rPrP-fib^{Ch} and 270 1st-rPrP-fib^{22L} were significantly longer than that of rPrP-fib^{spon} (Fig. 1D). Thus, the 271

272 results of TEM analysis suggest that 1st-rPrP-fib^{Sc} is structurally distinct from
273 spontaneous rPrP-fib^{spon}.

274

We next examined the morphology of PrPSc-seeded rPrP-fibrils in the second

and fifth round reactions (2nd- and 5th-rPrP-fib^{Sc}) by TEM. In contrast to 1st-rPrP-fib^{Sc},
2nd- and 5th-rPrP-fib^{Sc} displayed spindly and non-branched fibrils or amorphous
aggregates (Fig. 2). These data support the view that 1st-rPrP-fib^{Sc} are structurally distinct
from those of 2nd- and 5th-rPrP fib^{Sc}.

279

280 Structural characterization of rPrP-fibrils by FTIR

We next examined the secondary structure of rPrP-fibrils and purified PrP^{Sc} from brains 281 282 of mice infected with Chandler or 22L scrapie by FTIR. A silver-stained SDS-PAGE gel analysis revealed that Chandler- and 22L-PrP^{Sc} preparations were highly purified (Fig. 283 3A). Furthermore, TEM analysis demonstrated that the PrP^{Sc} preparations consisted 284 exclusively of amyloid-like fibrils (Fig. 3B). FTIR analysis showed that Chandler-PrPSc 285 286 was characterized by a major band at 1630 cm⁻¹ in the β -sheet region of second-derivative spectra, while 22L-PrP^{Sc} was characterized by two absorbance bands at 1631 and 1616 287 288 cm⁻¹ (Fig. 4A), indicating that there were conformational differences in β -sheet structures between Chandler- and 22L-PrPSc, as previously reported (7). Consistent with previous 289 reports (6-9), bands of around 1656-1658 cm⁻¹ were observed in both Chandler- and 290

291	22L-PrP ^{Sc} . Although these bands were formerly attributed to α -helix, recent studies using
292	direct mass spectrometric analysis of hydrogen/deuterium exchange and FTIR analysis
293	have suggested that purified PrP^{Sc} has little α -helix content, and the bands probably result
294	from turns (9, 34). Native rPrP had maximum absorbance at 1653 cm ⁻¹ , which was
295	congruent with that of prominent α -helical structures. In contrast, all rPrP-fibrils
296	displayed prominent bands at lower wavenumbers (1630-1610 cm ⁻¹), indicating
297	predominantly β -sheet content (Fig. 4A). The β -sheet spectra revealed conformational
298	differences among rPrP-fib ^{spon} , 1 st -rPrP-fib ^{Ch} and 1 st -rPrP-fib ^{22L} . The rPrP-fib ^{spon} had a
299	prominent band at 1623 cm ⁻¹ and a modest band at 1610 cm ⁻¹ . While the 1 st -rPrP-fib ^{Ch}
300	was characterized by a single major band at 1624 cm ⁻¹ , the 1 st -rPrP-fib ^{22L} had two major
301	maxima at 1629 and 1617 cm ⁻¹ (Fig. 4A). Although 1 st -rPrP-fib ^{Sc} lacked the bands around
302	1656–1658 cm ⁻¹ , the strain-specific shapes (one peak in Chandler versus two peaks in
303	22L) in the β -sheet spectrum of the purified PrP ^{Sc} resembled those of 1 st -rPrP-fib ^{Sc} .
304	To test whether the strain-specific IR spectra observed in 1st-rPrP-fib ^{Ch} and
305	1 st -rPrP-fib ^{22L} are transmitted to sequential QUIC reactions, we performed 5 serial rounds

306 of QUIC (Supplementary Fig. 2). There was little difference in β -sheet spectra between

307	5 th -rPrP-fib ^{Ch} and 5 th -rPrP-fib ^{22L} (Fig 3), suggesting that strain-specific conformations
308	were lost in the 5 th -rPrP-fib ^{Sc} . Furthermore, additional experiments revealed that infrared
309	spectra of rPrP-fibrils produced in the presence of low amount of PrP ^{Sc} (1 pg) or under
310	acidic conditions (pH 4) displayed little differences between strains (Fig. 4B).
311	
312	Conformational stability analysis of rPrP-fibrils and PrP ^{Sc}
313	To examine the biochemical differences of rPrP-fibrils and PrP ^{Sc} in BH
314	between strains, we performed a conformational stability assay, which combines GdnHCl
315	denaturation with PK digestion. The $[GdnHCl]_{1/2}$ values for Chandler- and 22L-PrP ^{Sc}
316	were 3.3 \pm 0.4 and 1.7 \pm 0.3 M, respectively (Fig. 5A and Table 1), indicating that the
317	conformational stability of Chandler-PrP ^{Sc} was significantly higher than that of
318	22L-PrP ^{Sc} . Consistent with previous work (11), Chandler-PrP ^{Sc} bands treated with more
319	than 1.5 M GdnHCl were approximately 5 kDa smaller than those treated with lower
320	concentrations (Fig. 5A, upper panel). The [GdnHCl] _{1/2} of 1 st -rPrP-fib ^{Ch} and
321	1^{st} -rPrP-fib ^{22L} were 3.3 ± 0.1 and 2.3 ± 0.6 M, respectively (Fig. 5B and Table 1),
322	showing that the stability of 1st-rPrP-fib ^{Ch} was significantly higher than that of

1st-rPrP-fib^{22L}, as with Chandler- and 22L-PrP^{Sc}. Thus, the relationship between Chandler
and 22L in terms of conformational stability was common to both the original PrP^{Sc} and
1st-rPrP-fib^{Sc}. In contrast, the [GdnHCl]_{1/2} of rPrP-fib^{spon} was more than 5 M, which was
markedly higher than those of the 1st-rPrP-fib^{Sc} (Fig. 5B and Table 1). Additionally, we
tested the conformational stability of 2nd- and 5th-rPrP-fib^{Sc}, but found no significant
differences between strains (Fig. 5C, D and Table 1).

329

Bioassay for rPrP-fibrils generated in QUIC reactions

331 To determine whether the infectivity was transmitted to the rPrP-fibrils, we 332 performed a bioassay using wild-type mice. To prepare the control materials, seed-only solutions containing the same concentration of PrP^{Sc} as 1st- or 5th-rPrP-fib^{Sc} were 333 334 subjected to a mock RT-QUIC procedure and then mixed with the same amount of soluble rPrP (Table 2). The survival periods in mice inoculated with 40 µl aliquots 335 containing rPrP-fibrils were 185.5 ± 4.0 days post-inoculation (dpi) for 1^{st} -rPrP-fib^{Ch} and 336 213.0 ± 8.9 dpi for 1st-rPrP-fib^{22L} (Table 2). In contrast, the attack rate of these control 337 338 mice was only 50% (2/4) for Chandler and 20% (1/5) for 22L. Moreover, the survival

339	periods of the affected mice were much longer than that of the mice inoculated with
340	1^{st} -rPrP-fib ^{Sc} (Table 2). For comparison with the 50% lethal dose (LD ₅₀) of the original
341	PrP ^{Sc} , the LD ₅₀ of 1 st -rPrP-fib ^{Sc} was determined by the linear regression relationship
342	between infectious titers and survival periods. The infectious titers (per 40 $\mu l)$ of
343	1^{st} -rPrP-fib ^{Ch} and 1^{st} -rPrP-fib ^{22L} were estimated to be 407.2 ± 226.6 and 1067.0 ± 678.7
344	LD_{50} , respectively, whereas the titers of Chandler and 22L prion were 20.2 and 28.9 LD_{50}
345	units/40 pg of PrP ^{Sc} , respectively. Because QUIC reaction in the first round resulted in a
346	20- to 37-fold increase in the infectious titer, a seed contribution to the infectivity is
347	estimated to be around 3–5%. In contrast, none of the mice inoculated with 5 th -rPrP-fib ^{Sc}
348	developed symptoms related to TSE (Table 2), suggesting that the 5 th -rPrP-fib ^{Sc} has no
349	substantial infectivity.
350	We analyzed the levels of PrPSc in the brain tissues of terminal-stage mice
351	inoculated with 1st-rPrP-fibSc or control materials (Mock 1st-QUIC) by Western blotting
352	and found no apparent differences in the accumulation of PrPSc between them and the
353	Mock 1 st -QUIC (Fig. 6A). In addition, a conformational stability assay with GdnHCl

354 revealed that the strain-specific digestion pattern was preserved in mice inoculated with

$355 \quad 1^{st}$ -rPrP-fib^{Sc} (Fig. 6B).

356	Next, the degree of vacuolation in brain sections including the hippocampus
357	(HI), cerebral cortex (Cx), thalamus (TH), pons (Po) and cerebellum (CE) from affected
358	mice inoculated with 1 st -rPrP-fib ^{Sc} or Mock 1 st -QUIC and those in the second passage of
359	1 st -rPrP-fib ^{Sc} was examined histologically (Fig. 6C, D). Of note, we found that
360	spongiform change of 1 st -rPrP-fib ^{Sc} -inoculated mice was less severe in HI and CE than
361	that of Mock 1 st -QUIC (Fig. 6C, D). Furthermore, these different lesion profiles observed
362	in 1 st -rPrP-fib ^{Sc} -inoculated mice were preserved upon second passage (Fig. 6D),
363	suggesting that 1 st -rPrP-fib ^{Sc} are partially distinct from the original strains. These
364	findings support the notion that 1 st -rPrP-fib ^{Sc} provoke the emergence of a mutant strain
365	beyond seed-derived infectivity.

366

367 **DISCUSSION**

Recent studies show that RT-QUIC assays are useful for the sensitive detection of PrP^{Sc} in most species and strains, including Creutzfeldt-Jakob disease (CJD) in humans (28, 35-37), scrapie in rodents (29, 38), and chronic wasting disease (CWD) in cervids

371	(39). In the RT-QUIC reaction, soluble rPrP is converted to amyloid fibrils in a
372	seed-dependent fashion in the presence of PrPSc. Previous studies using FTIR and
373	hydrogen/deuterium exchange have shown that there are structural differences between
374	PrP ^{Sc} -seeded and spontaneous rPrP-fibrils generated in the rPrP-PMCA (7, 40). We also
375	found that the structural morphology (Fig. 1C), secondary structure (Fig. 3) and
376	conformational stability (Fig. 4B and Table 1) distinguish 1 st -rPrP-fib ^{Sc} from rPrP-fib ^{spon} .
377	However, it has been unknown whether rPrP retains the conformational properties of the
378	original PrP ^{Sc} in the RT-QUIC. Consistent with previous reports (7, 11), we observed
379	strain differences in β -sheet structure and conformational stability of PrP^{Sc} between
380	Chandler and 22L strains. Likewise, the differences in β -sheet spectrum shape between
381	strains were common to both PrP ^{Sc} and 1 st -rPrP-fib ^{Sc} . Furthermore, the conformational
382	stability of 1 st -rPrP-fib ^{22L} was significantly lower than that of 1 st -rPrP-fib ^{Ch} , as with
383	Chandler- and 22L-PrP ^{Sc} . Since the original PrP ^{Sc} remaining in the 1 st -rPrP-fib ^{Sc} was
384	equivalent to only about 0.01–0.02% of PK-resistant 1^{st} -rPrP-fib ^{Sc} (1–2 µg/10 µg of total
385	PrP) in our estimation, the contribution to the FTIR spectra and the conformational
386	stability of 1 st -rPrP-fib ^{Sc} is considered to be negligible. Taken together, these studies

387 demonstrate that at least some strain-specific conformational features, especially in the 388 β -sheet region, are conserved between PrP^{Sc} and 1st-rPrP-fib^{Sc}. However, these unique 389 structural features disappeared in subsequent rounds.

390 One of the reasons for the loss of strain-specificity may be due to differences between E. coli-derived rPrP and brain-derived PrP^C. Studies using circular dichroism 391 392 and ¹H-NMR spectroscopy showed that the tertiary structure and the thermal stability of bovine rPrP(23-230) are essentially identical to those of healthy calf brain-derived PrP^{C} 393 394 (41). However, it should be noted that E. coli-derived rPrP lacks posttranslational modifications of PrP^C such as glycosylation and a glycosylphosphatidylinositol 395 396 (GPI)-anchor. PrP has two N-linked glycosylation sites at amino acids 180 and 196, resulting in di-, mono- and unglycosylated forms. Mature PrP^C is rich in the 397 di-glycosylated form, whereas the glycoform ratio of PrP^{Sc} is known to vary among 398 399 strains (42-44). Studies using PrP glycan-lacking Tg mice revealed that the 400 strain-specific characteristics of 79A strain were affected in by the glycosylation status of PrP^C, but ME7 and 301C strains were not (45). Meanwhile, enzymatic deglycosylation of 401 PrP^C failed to affect strain-specific pathological changes in serial PMCA experiments 402

403	seeded with two murine strains, RML and 301C (46). However, the same two strains
404	were converted into a new single strain during serial rPrP-PMCA in the presence of
405	synthetic PE (27). Similarly, the emergence of mutant strains whose lesion profiles differ
406	from that of the seed strain was also observed in the bioassay using hamster rPrP-fibrils
407	generated in seeded rPrP-PMCA (25) or 1 st -rPrP-fib ^{Sc} (Fig. 6C, D). These results raise the
408	possibility that the lack of a GPI-anchor in rPrP leads to alterations in the strain-specific
409	characteristics. Furthermore, the cell tropisms determined by the Cell Panel Assay were
410	altered in RML, 139A, 79A and ME7 strains but not in 22L when propagated in Tg mice
411	expressing PrP devoid of a GPI-anchor (47). These studies demonstrate that
412	glycosylation and a GPI-anchor are not necessarily required for the propagation of prion
413	infectivity, but can influence the strain properties. Although the molecular basis of the
414	emergence of mutant strains remains elusive, we can speculate that the posttranslational
415	changes to PrP might affect the conformation of PrP ^{Sc} or the interaction with some
416	cofactor(s) in a strain-specific manner.

417 Another possible explanation is that nonspecific rPrP-fibrils are generated418 during the serial RT-QUIC, and replicate more rapidly than the fibrils with strain-specific

419	conformation. The term "nonspecific rPrP-fibrils" arises from our findings that there was
420	little difference in IR spectra and conformational stability of 5 th -rPrP-fib ^{Sc} between
421	strains. It has been reported that the propagation of prion strains in cells cultured under
422	different environments often leads to the formation of quasi-species that are assumed to
423	be composed of a variety of conformational variants (48, 49). Once generated, the
424	competition among the variants is thought to occur during propagation. Indeed, two
425	conformational variants of rPrP-fibrils have been shown to be mutually exclusive and
426	compete for monomeric rPrP as a substrate in the fibril formation (30). Furthermore,
427	competitive amplification of two prion strains was demonstrated by BH-PMCA (50).
428	Similarly, nonspecific rPrP-fibrils would be expected to become the majority if they had a
429	selective growth advantage in the RT-QUIC. We found that the β -sheet spectra of
430	rPrP-fibrils generated in the presence of low amount (1 pg) of PrPSc or rPrP-fibrils
431	generated at pH 4 in the first round were similar to those seen in 5 th -rPrP-fib ^{Sc} (Fig. 4B).
432	These observations also support this hypothesis and suggest that the amplification of
433	nonspecific rPrP-fibrils is accelerated by certain conditions such as an acidic environment.
434	Further studies are needed to investigate whether unknown cofactors or environmental

435	conditions are required to maintain the strain-specific conformations in subsequent
436	rounds. On the other hand, this hypothesis also explains why prion infectivity was lost in
437	the fifth round of RT-QUIC, as nonspecific rPrP-fibrils generated during the serial
438	RT-QUIC would be non-infectious. Although there remains the question as to what
439	exactly are the conformational differences between the non-infectious and infectious
440	forms of rPrP-fibrils, the lack of cofactor molecules such as SDS and synthetic PE in the
441	RT-QUIC might enhance the amplification of nonspecific rPrP-fibrils lacking prion
442	infectivity. Moreover, the facts that prion infectivity is sometimes too low to be detected
443	and, more frequently, declines in the serial rPrP-PMCA (24, 25) or BH-PMCA (51-53)
444	are consistent with the hypothesis.
445	
446	ACKNOWLEDGMENTS
447	We thank Takashi Suematsu for help with the electron microscopy study, and Matsuo
448	Atsuko and Ayumi Yamakawa for technical assistance.
449	This work was supported by a grant-in-aid for young scientists (B; grant no.
450	21790846) from the Ministry of Education, Culture, Sports, Science and Technology of

451	Japan, a grant for BSE research, and a grant-in-aid of the Research Committee of Prion
452	Disease and Slow Virus Infection from the Ministry of Health, Labor and Welfare of
453	Japan.
454	

References

457	1.	Prusiner SB. 1991. Molecular biology of prion diseases. Science 252:1515-1522.
458	2.	Weissmann C, Enari M, Klohn PC, Rossi D, Flechsig E. 2002. Molecular
459		biology of prions. Acta Neurobiol Exp (Wars) 62:153-166.
460	3.	Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner
461		SB. 1986. Separation and properties of cellular and scrapie prion proteins. Proc
462		Natl Acad Sci U S A 83:2310-2314.
463	4.	Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS. 1991.
464		Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water
465		by infrared spectroscopy. Biochemistry 30: 7672-7680.
466	5.	Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I,
467		Huang Z, Fletterick RJ, Cohen FE, Prusiner SB. 1993. Conversion of
468		alpha-helices into beta-sheets features in the formation of the scrapie prion
469		proteins. Proc Natl Acad Sci U S A 90:10962-10966.
470	6.	Caughey B, Raymond GJ, Bessen RA. 1998. Strain-dependent differences in
471		beta-sheet conformations of abnormal prion protein. J Biol Chem

273:32230-32235.

473	7.	Atarashi R, Sim VL, Nishida N, Caughey B, Katamine S. 2006. Prion
474		strain-dependent differences in conversion of mutant prion proteins in cell culture.
475		J Virol 80: 7854-7862.
476	8.	Thomzig A, Spassov S, Friedrich M, Naumann D, Beekes M. 2004.
477		Discriminating scrapie and bovine spongiform encephalopathy isolates by
478		infrared spectroscopy of pathological prion protein. J Biol Chem
479		279: 33847-33854.
480	9.	Baron GS, Hughson AG, Raymond GJ, Offerdahl DK, Barton KA, Raymond
481		LD, Dorward DW, Caughey B. 2011. Effect of glycans and the
482		glycophosphatidylinositol anchor on strain dependent conformations of scrapie
483		prion protein: improved purifications and infrared spectra. Biochemistry
484		50: 4479-4490.
485	10.	Peretz D, Scott MR, Groth D, Williamson RA, Burton DR, Cohen FE,
486		Prusiner SB. 2001. Strain-specified relative conformational stability of the
487		scrapie prion protein. Protein Sci 10:854-863.

488	11.	Shindoh R, Kim CL, Song CH, Hasebe R, Horiuchi M. 2009. The region
489		approximately between amino acids 81 and 137 of proteinase K-resistant PrPSc is
490		critical for the infectivity of the Chandler prion strain. J Virol 83:3852-3860.
491	12.	Saborio GP, Permanne B, Soto C. 2001. Sensitive detection of pathological
492		prion protein by cyclic amplification of protein misfolding. Nature 411: 810-813.
493	13.	Castilla J, Saa P, Hetz C, Soto C. 2005. In vitro generation of infectious scrapie
494		prions. Cell 121: 195-206.
495	14.	Castilla J, Morales R, Saa P, Barria M, Gambetti P, Soto C. 2008. Cell-free
496		propagation of prion strains. EMBO J 27:2557-2566.
497	15.	Deleault NR, Harris BT, Rees JR, Supattapone S. 2007. Formation of native
498		prions from minimal components in vitro. Proc Natl Acad Sci U S A
499		104: 9741-9746.
500	16.	Imamura M, Kato N, Yoshioka M, Okada H, Iwamaru Y, Shimizu Y, Mohri
501		S, Yokoyama T, Murayama Y. 2011. Glycosylphosphatidylinositol
502		anchor-dependent stimulation pathway required for generation of
503		baculovirus-derived recombinant scrapie prion protein. J Virol 85:2582-2588.

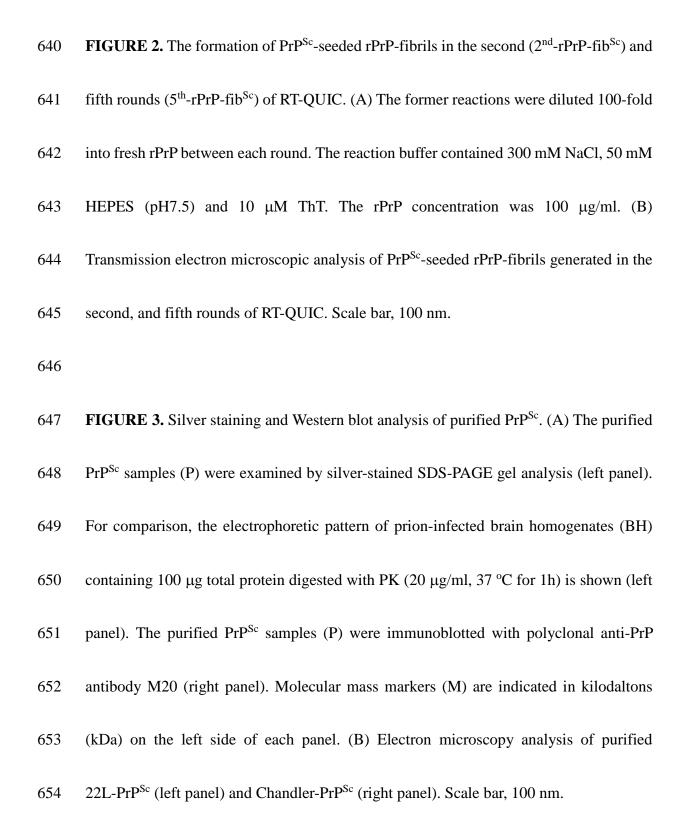
504	17.	Imamura M, Kato N, Okada H, Yoshioka M, Iwamaru Y, Shimizu Y, Mohri
505		S, Yokoyama T, Murayama Y. 2013. Insect Cell-Derived Cofactors Become
506		Fully Functional after Proteinase K and Heat Treatment for High-Fidelity
507		Amplification of Glycosylphosphatidylinositol-Anchored Recombinant Scrapie
508		and BSE Prion Proteins. PLoS One 8:e82538.
509	18.	Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ,
510		Prusiner SB. 2004. Synthetic mammalian prions. Science 305:673-676.
511	19.	Colby DW, Giles K, Legname G, Wille H, Baskakov IV, DeArmond SJ,
512		Prusiner SB. 2009. Design and construction of diverse mammalian prion strains.
513		Proc Natl Acad Sci U S A 106:20417-20422.
514	20.	Raymond GJ, Race B, Hollister JR, Offerdahl DK, Moore RA, Kodali R,
515		Raymond LD, Hughson AG, Rosenke R, Long D, Dorward DW, Baron GS.
516		2012. Isolation of novel synthetic prion strains by amplification in transgenic
517		mice coexpressing wild-type and anchorless prion proteins. J Virol
518		86: 11763-11778.
519	21.	Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H,

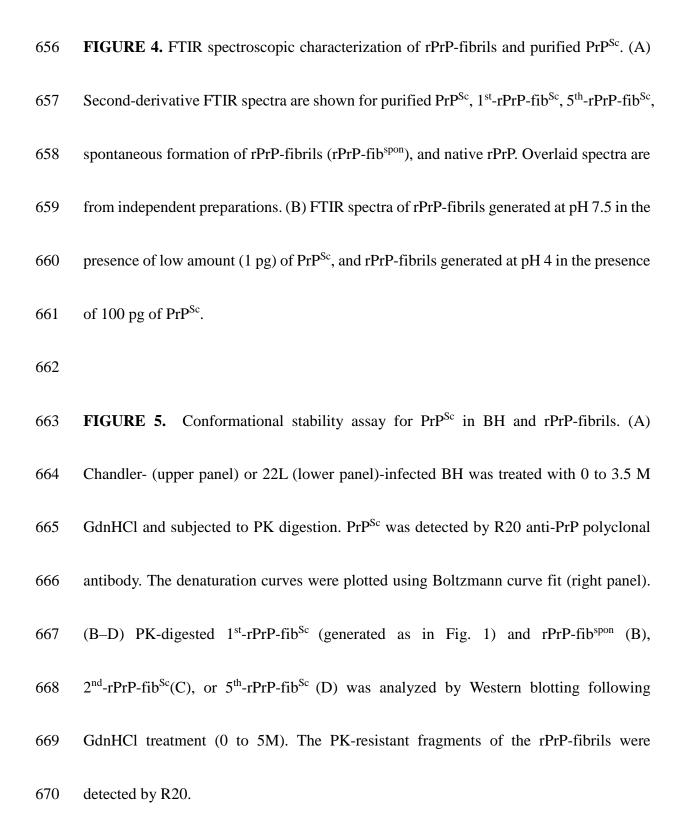
520		Rohwer RG, Baskakov IV. 2010. Recombinant prion protein induces a new
521		transmissible prion disease in wild-type animals. Acta Neuropathol 119:177-187.
522	22.	Wang F, Wang X, Yuan CG, Ma J. 2010. Generating a prion with bacterially
523		expressed recombinant prion protein. Science 327: 1132-1135.
524	23.	Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H, Yu G, Yuan C, Ma J.
525		2013. De novo generation of infectious prions with bacterially expressed
526		recombinant prion protein. FASEB J 27:4768-4775.
527	24.	Timmes AG, Moore RA, Fischer ER, Priola SA. 2013. Recombinant prion
528		protein refolded with lipid and RNA has the biochemical hallmarks of a prion but
529		lacks in vivo infectivity. PLoS One 8:e71081.
530	25.	Kim JI, Cali I, Surewicz K, Kong Q, Raymond GJ, Atarashi R, Race B, Qing
531		L, Gambetti P, Caughey B, Surewicz WK. 2010. Mammalian prions generated
532		from bacterially expressed prion protein in the absence of any mammalian
533		cofactors. J Biol Chem 285: 14083-14087.
534	26.	Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, Supattapone
535		S. 2012. Isolation of phosphatidylethanolamine as a solitary cofactor for prion

536		formation in the absence of nucleic acids. Proc Natl Acad Sci U S A
537		109: 8546-8551.
538	27.	Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J, Rees JR,
539		Supattapone S. 2012. Cofactor molecules maintain infectious conformation and
540		restrict strain properties in purified prions. Proc Natl Acad Sci U S A
541		109: E1938-1946.
542	28.	Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, Matsubara
543		T, Nakagaki T, Yamanaka H, Shirabe S, Yamada M, Mizusawa H, Kitamoto
544		T, Klug G, McGlade A, Collins SJ, Nishida N. 2011. Ultrasensitive human prion
545		detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat
546		Med 17: 175-178.
547	29.	Wilham JM, Orru CD, Bessen RA, Atarashi R, Sano K, Race B,
548		Meade-White KD, Taubner LM, Timmes A, Caughey B. 2010. Rapid
549		end-point quantitation of prion seeding activity with sensitivity comparable to
550		bioassays. PLoS Pathog 6:e1001217.
551	30.	Atarashi R, Moore RA, Sim VL, Hughson AG, Dorward DW, Onwubiko HA,

552		Priola SA, Caughey B. 2007. Ultrasensitive detection of scrapie prion protein
553		using seeded conversion of recombinant prion protein. Nat Methods 4:645-650.
554	31.	Fujihara A, Atarashi R, Fuse T, Ubagai K, Nakagaki T, Yamaguchi N,
555		Ishibashi D, Katamine S, Nishida N. 2009. Hyperefficient PrP Sc amplification
556		of mouse-adapted BSE and scrapie strain by protein misfolding cyclic
557		amplification technique. FEBS J 276:2841-2848.
558	32.	Kocisko DA, Lansbury PT, Jr., Caughey B. 1996. Partial unfolding and
559		refolding of scrapie-associated prion protein: evidence for a critical 16-kDa
560		C-terminal domain. Biochemistry 35: 13434-13442.
561	33.	Atarashi R, Sano K, Satoh K, Nishida N. 2011. Real-time quaking-induced
562		conversion: a highly sensitive assay for prion detection. Prion 5: 150-153.
563	34.	Smirnovas V, Baron GS, Offerdahl DK, Raymond GJ, Caughey B, Surewicz
564		WK. 2011. Structural organization of brain-derived mammalian prions examined
565		by hydrogen-deuterium exchange. Nat Struct Mol Biol 18:504-506.
566	35.	McGuire LI, Peden AH, Orru CD, Wilham JM, Appleford NE, Mallinson G,
567		Andrews M, Head MW, Caughey B, Will RG, Knight RS, Green AJ. 2012.

568		Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic
569		Creutzfeldt-Jakob disease. Ann Neurol 72:278-285.
570	36.	Orru CD, Wilham JM, Raymond LD, Kuhn F, Schroeder B, Raeber AJ,
571		Caughey B. 2011. Prion disease blood test using immunoprecipitation and
572		improved quaking-induced conversion. MBio 2:e00078-00011.
573	37.	Sano K, Satoh K, Atarashi R, Takashima H, Iwasaki Y, Yoshida M, Sanjo N,
574		Murai H, Mizusawa H, Schmitz M, Zerr I, Kim YS, Nishida N. 2013. Early
575		detection of abnormal prion protein in genetic human prion diseases now possible
576		using real-time QUIC assay. PLoS One 8:e54915.
577	38.	Vascellari S, Orru CD, Hughson AG, King D, Barron R, Wilham JM, Baron
578		GS, Race B, Pani A, Caughey B. 2012. Prion seeding activities of mouse scrapie
579		strains with divergent PrPSc protease sensitivities and amyloid plaque content
580		using RT-QuIC and eQuIC. PLoS One 7:e48969.
581	39.	Henderson DM, Manca M, Haley NJ, Denkers ND, Nalls AV, Mathiason CK,
582		Caughey B, Hoover EA. 2013. Rapid antemortem detection of CWD prions in
583		deer saliva. PLoS One 8:e74377.


584	40.	Smirnovas V, Kim JI, Lu X, Atarashi R, Caughey B, Surewicz WK. 2009.
585		Distinct structures of scrapie prion protein (PrPSc)-seeded versus spontaneous
586		recombinant prion protein fibrils revealed by hydrogen/deuterium exchange. J
587		Biol Chem 284: 24233-24241.
588	41.	Hornemann S, Schorn C, Wuthrich K. 2004. NMR structure of the bovine
589		prion protein isolated from healthy calf brains. EMBO Rep 5:1159-1164.
590	42.	Clarke AR, Jackson GS, Collinge J. 2001. The molecular biology of prion
591		propagation. Philos Trans R Soc Lond B Biol Sci 356:185-195.
592	43.	Lawson VA, Collins SJ, Masters CL, Hill AF. 2005. Prion protein glycosylation.
593		J Neurochem 93: 793-801.
594	44.	Aguzzi A, Heikenwalder M, Polymenidou M. 2007. Insights into prion strains
595		and neurotoxicity. Nat Rev Mol Cell Biol 8:552-561.
596	45.	Cancellotti E, Mahal SP, Somerville R, Diack A, Brown D, Piccardo P,
597		Weissmann C, Manson JC. 2013. Post-translational changes to PrP alter
598		transmissible spongiform encephalopathy strain properties. EMBO J 32: 756-769.
599	46.	Piro JR, Harris BT, Nishina K, Soto C, Morales R, Rees JR, Supattapone S.


600		2009. Prion protein glycosylation is not required for strain-specific neurotropism.
601		J Virol 83: 5321-5328.
602	47.	Mahal SP, Jablonski J, Suponitsky-Kroyter I, Oelschlegel AM, Herva ME,
603		Oldstone M, Weissmann C. 2012. Propagation of RML prions in mice
604		expressing PrP devoid of GPI anchor leads to formation of a novel, stable prion
605		strain. PLoS Pathog 8:e1002746.
606	48.	Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C. 2010. Darwinian
607		evolution of prions in cell culture. Science 327: 869-872.
608	49.	Weissmann C, Li J, Mahal SP, Browning S. 2011. Prions on the move. EMBO
609		Rep 12: 1109-1117.
610	50.	Shikiya RA, Ayers JI, Schutt CR, Kincaid AE, Bartz JC. 2010. Coinfecting
611		prion strains compete for a limiting cellular resource. J Virol 84:5706-5714.
612	51.	Bieschke J, Weber P, Sarafoff N, Beekes M, Giese A, Kretzschmar H. 2004.
613		Autocatalytic self-propagation of misfolded prion protein. Proc Natl Acad Sci U S
614		A 101: 12207-12211.
615	52.	Klingeborn M, Race B, Meade-White KD, Chesebro B. 2011. Lower specific

616		infectivity of protease-resistant prion protein generated in cell-free reactions. Proc
617		Natl Acad Sci U S A 108: E1244-1253.
618 53	3.	Gonzalez-Montalban N, Lee YJ, Makarava N, Savtchenko R, Baskakov IV.
619		2013. Changes in prion replication environment cause prion strain mutation.
620		FASEB J 27: 3702-3710.
621		

623 FIGURE LEGENDS

FIGURE 1. The formation of rPrP-fibrils in RT-QUIC reactions. (A) The formation of 624 rPrP-fibrils in the presence of diluted Chandler- or 22L-BH containing 100 pg of PrP^{Sc}, a 625 626 comparable amount of NBH, or in the absence of seed (No-seeded) was monitored by ThT fluorescence. The graphs depict a representative of the RT-QUIC reactions. 627 No-seeded reactions were performed at two different concentrations (100 or 50 µg/ml) of 628 629 rPrP. (B) The QUIC reactions were digested with PK and immunoblotted using polyclonal anti-PrP antibody R20 (epitope located at mouse PrP amino acids 218-231) or 630 ICSM35 (epitope 93-102). For comparison, 1st-rPrP-fib^{Ch} (50 ng of total rPrP) without 631 632 PK digestion (PK (-)) is shown. Molecular mass markers are indicated in kilodaltons (kDa) on the left side of each panel. (C) Samples (1st-rPrP-fib^{Ch}, 1st-rPrP-fib^{22L} and 633 634 rPrP-fib^{spon}) were examined with transmission electron microscopy (TEM). Scale bar, 100 nm. (D) The bar graph shows the length and width of rPrP-fib^{spon}, 1st-rPrP-fib^{Ch} and 635 1^{st} -rPrP-fib^{22L}. The results are the mean \pm SD of thirty rPrP-fibrils each. Statistical 636 significance was determined using one-way analysis of variance (ANOVA) followed by 637 638 Tukey-Kramer test. *, p < 0.01.

672	FIGURE 6. Bioassay of rPrP-fibrils in mice. (A) PrP ^{Sc} in the brains of prion-affected
673	mice inoculated with 1st-rPrP-fib ^{Ch} or 1st-rPrP-fib ^{22L} was analyzed by Western blotting
674	using anti-PrP antibody M20. M, Mock 1 st -QUIC(Ch) or Mock 1 st -QUIC(22L). (B)
675	Strain-specific properties of PrPSc in the brains of 1st-rPrP-fibSc-inoculated mice were
676	examined by a conformational stability assay with GdnHCl (0 to 3.5M). (C) Sections of
677	the hippocampus (HI)) and cerebellum (CE), stained with hematoxylin and eosin, from
678	normal mice, 1st-rPrP-fibSc-inoculated mice, and Mock 1st-QUIC-inoculated mice at
679	terminal stages are shown. Scale bar, 50 μ m. (D) Lesion profiles of spongiform changes
680	in the hippocampus (HI), cerebral cortex (Cx), thalamus (TH), pons (Po) and cerebellum
681	(CE) were compared. Data are expressed as means \pm SD (n=3). Statistical significance
682	was determined using Mann-Whitney's U test. **, p < 0.01; *, p < 0.05.
683	

		rPrP-fibrils		
Strain	Purified PrP ^{Sc}	1 st	2^{nd}	5 th
Chandler	3.3 ± 0.4 **	3.3 ± 0.1 *	3.7 ± 0.1	3.3 ± 0.3
22L	1.7 ± 0.3	2.3 ± 0.6	3.8 ± 0.2	3.5 ± 1.0
Spontaneous		> 5		

TABLE 1. Conformational stabilities of purified PrP^{Sc} and rPrP-fibrils^{*a*}

^a The [GdnHCl]_{1/2} values (mol/l) are means ± SD of three independent experiments.
Statistical significance was determined using one-way ANOVA followed by student's *t*-test. **, p < 0.01; *, p < 0.05 (compared with 22L).

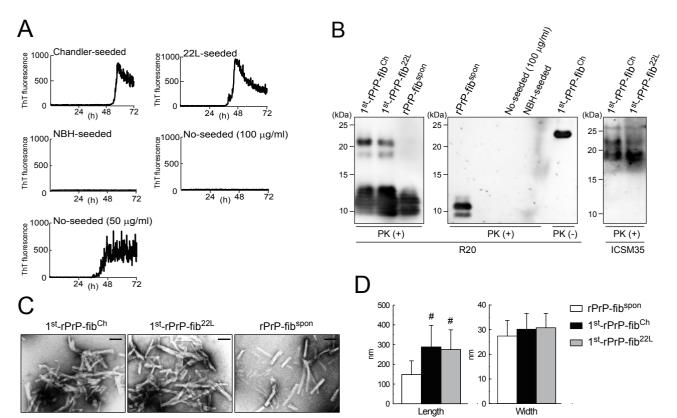
Inoculum	Concentration of seed PrP ^{Sc} (pg/µl)	Survival periods (dpi ^b)	Mortality (no. dead/total)
1 st -rPrP-fib ^{Ch}	1	$185.5 \pm 4.0^{* d}$	4/4
Mock 1 st -QUIC(Ch) ^c	1	201, 220 ^e	2/4
1 st -rPrP-fib ^{22L}	1	$213.0 \pm 8.9^{** d}$	6/6
Mock 1 st -QUIC(22L) ^c	1	333 ^e	1/5
5 th -rPrP-fib ^{Ch}	1×10^{-8}	> 660 ^f	0/4
Mock 5 th -QUIC(Ch) ^c	1×10^{-8}	> 660 ^f	0/4
5 th -rPrP-fib ^{22L}	1×10^{-8}	> 660 ^f	0/6
Mock 5 th -QUIC(22L) ^c	1×10^{-8}	> 660 ^f	0/6
rPrP-fib ^{spon}	0	> 660 ^f	0/6
Second passage of 1 st -rPrP-fib ^{Ch}		152.0 ± 8.5 ^d	5/5
Second passage of Mock 1 st -QUIC(Ch) ^g		148.4 ± 5.9^{d}	5/5
Second passage of 1 st -rPrP-fib ^{22L}		153.5 ± 0.6^{d}	5/5
Second passage of Mock 1 st -QUIC(22L) ^h		149.6 ± 10.4^{d}	4/4

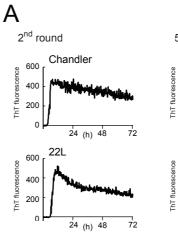
690 **TABLE 2.** Bioassay for rPrP-fibrils generated in QUIC reactions in wild-type mice^a

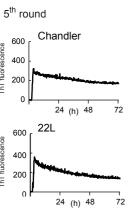
^{*a*} Mice were intracerebrally inoculated with 40 μ l of each inoculum. For the second passage, 10% BH was used. Statistical significance was determined using Logrank test. **, p < 0.01; *, p < 0.05 (compared with the controls).

^{*b*} Days post-inoculation (dpi).

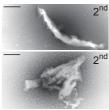
 c After subjecting seed-only mixtures containing the same concentration of PrP^{Sc} as 1st- or


⁶⁹⁶ 5th-rPrP-fib^{Sc} to a mock QUIC procedure, the same amount of rPrP was added. The

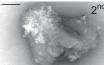

697 solutions were inoculated into mice as controls for rPrP-fibrils.

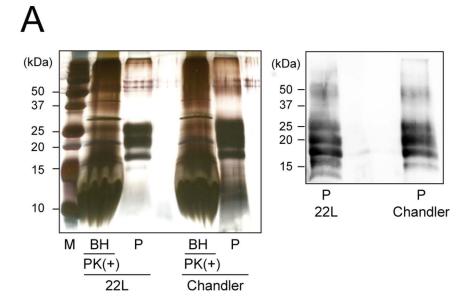

698 ^{*d*} Numbers represent means \pm SD.

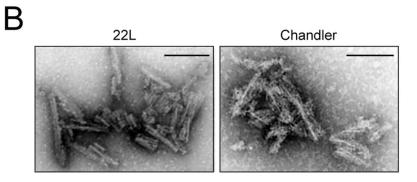
^e Numbers represent the survival periods of the TSE-positive mice. All non-symptomatic

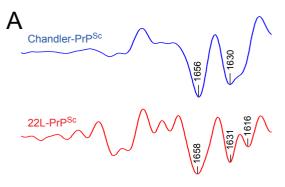

- 700 mice were negative for PrP^{Sc} at 660 dpi.
- 701 ^{*f*} Numbers represent dpi when the experiment was ended.
- 702 ^g A 201-dpi mouse was used.
- h A 333-dpi mouse was used.

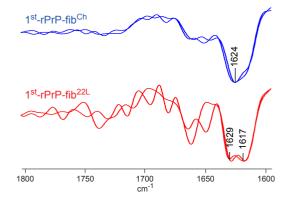
B Chandler

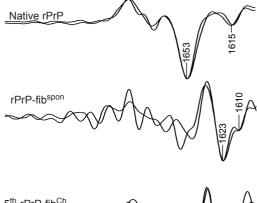


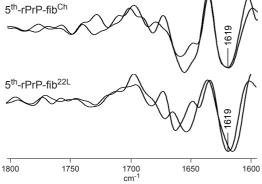

22L

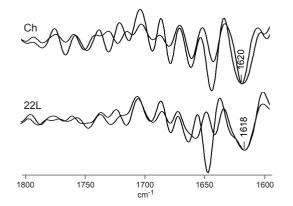


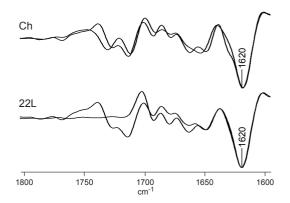


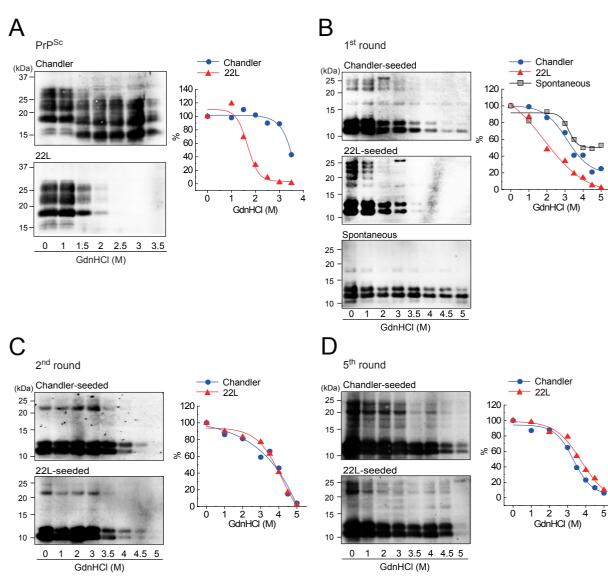


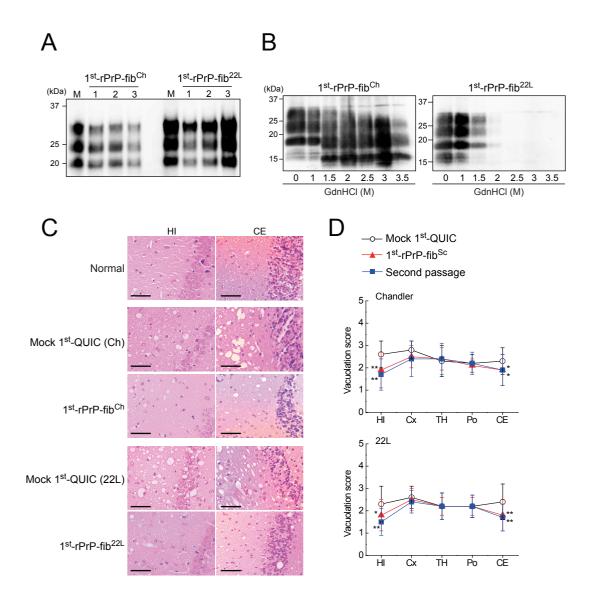









В


1 pg PrP^{Sc}-seeded at pH 7.5

100 pg PrP^{Sc}-seeded at pH 4

