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Abstract 

Although stem cells are generally thought to be resistant to oxidative stress, the fact and in 

detail molecular mechanism are still to be clearly identified. We herein tried to understand the overall 

characterization of redox regulatory signaling in hematopoietic stem cells. We purified c-kit-positive 

hematopoietic stem/progenitor cells from the bone marrow of healthy mice, and then evaluated their 

redox regulatory property. Compared to the c-kit-negative matured mononuclear cells, c-kit-positive 

stem/progenitor cells showed lower basic levels of intracellular reactive oxygen species, faster 

clearance of the accumulated intracellular reactive oxygen species, and higher resistant to oxidative 

stress. An overall view on the gene expression profile associated with redox regulation showed to be 

widely differed between cell types. We confirmed that the c-kit-positive stem/progenitor cells 

expressed significantly higher of Nox1and catalase, but less of lactoperoxidase than these matured 

mononuclear cells. Our data suggests that stem cells keep specific redox regulatory property for 

defensing against oxidative stress. 
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Introduction 

Adult stem cells have widely been identified in different tissues/organs, and known to persist 

throughout the lifetime for maintaining the homeostasis of organism, including the physiological 

turnover and the repair/regeneration in case of damage [1]. Several instructive genetic mouse models 

have recently demonstrated the unique susceptibility of stem cells to perturbations in metabolic or 

redox homeostasis [2-4]. In contrast, many recent studies have found that these adult stem cells likely 

to be highly resistant to various stresses, including oxidative stress [5, 6]. Considering the critical roles 

in maintaining the homeostasis of organism for long-term lifetime, stem cells are generally thought to 

be specialized in their redox regulatory signaling for defensing against endogenous and exogenous 

damages/stresses. However, the sensitivity and in detail molecular mechanisms on oxidative resistance 

of stem cells are still to be clearly identified in comparison with these matured tissue cells. 

Reactive oxygen species (ROS) are generally known to play as either physiological or 

pathological roles in different types of cells [7]. Appropriate ROS levels are required for physiological 

cellular functions and maintaining genomic stability, but excess accumulation of ROS may induce 

oxidative stress to damage the cells [4, 8, 9]. It has been reported that hematopoietic stem/progenitor 

cells have relatively low level of endogenous ROS when compared with their mature progeny [10, 11], 

which seems to play critical roles in maintaining the quiescence and ‘‘stemness’’ [12, 13], because the 

increase of ROS level could induce the proliferation, differentiation, and maturation of stem cells [14, 

15]. The relatively low ROS level in stem cells likely to associate with the up-regulated expression of 

numerous enzymes and multiple glutathione-independent antioxidants [16]. Functional loss of redox 

regulatory relevant genes, such as FOXO3a and Mdm2 has been found to contribute an increased 

intracellular ROS levels and the self-renewal defection of hematopoietic stem cells in animal models 

[17, 18]. However, the property on redox regulatory signaling in stem cells has not yet been well 

understood. 

By a directly comparison on the redox regulatory property in the purified c-kit+ hematopoietic 

stem/progenitor cells with that of the c-kit- matured mononuclear cells from bone marrow of healthy 

mice, we tried to uncover the overall characterization on redox regulatory signaling in stem cells.  
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Materials and methods 

Animals 

We used 12-week-old male C57BL/6 mice (SLC, Japan) for the present study. All experiments 

were approved by the Institutional Animal Care and Use Committee of Nagasaki University, and 

experiments were performed in accordance with the institutional and national guidelines. 

 

Separation of c-kit+ stem/progenitor cells and c-kit- matured mononuclear cells from bone marrow 

Bone marrow cells were collected from the femur and tibia of healthy mice. The bone marrow 

mononuclear cells (BM-MNCs) were isolated by density gradient centrifugation [19]. The freshly 

collected BM-MNCs were then incubated with anti-mouse CD117 (c-kit) antibody (Miltenyi Biotec) 

for 30 min [19]. After washing, the c-kit+ stem/progenitor cells and c-kit- matured mononuclear cells 

were separated by using the Magnetic Cell Sorting system (autoMACS, Miltenyi Biotec, Auburn, CA). 

The purity of the c-kit+ cells was around 90%, and the viability was more than 99%. 

 

Detection of intracellular ROS levels 

To measure the intracellular ROS levels, the freshly purified c-kit+ cells (n=5) and c-kit- cells 

(n=5) from different mice were seeded on 96-well culture plate at a density of 1×104 cells/well in 100 

µl IMDM 1640 medium supplemented with 10% fetal bovine serum (HyClone) and incubated at 37°C 

in 5% CO2 for 12 hours. Cells were then incubated with 10 µM CM-H2DCFDA (Molecular Probes 

Inc.), at 37°C for 30 minutes [20]. After washing, the fluorescence intensity in each well was measured 

by plate reader (VICTOR™ X3 Multilabel Plate Reader, PerkinElmer Inc., Waltham, Massachusetts, 

USA). We also stimulated the c-kit+ cells and c-kit- cells with 100 μM H2O2 for 1 hour, and then 

investigated the accumulation and clearance of ROS in cells after stimulation. 

 

Evaluation on oxidative stress resistance 

The freshly purified c-kit+ cells (n=5) and c-kit- cells (n=5) were stimulated with 50 and 200 
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μM H2O2 for 2 hours. Cells were then labeled with propidium iodide (PI) to detect the dead cells. After 

twice washing, apoptotic cells were also staining with ANNEXIN V-FITC Kit according to the 

manufacturer’s instructions (BECKMAN COULTER). Quantitative flow cytometry analysis was 

performed using a FACSCalibur (Becton Dickinson). We analyzed the acquired data using Cell Quest 

software (Becton Dickinson) [19, 20]. 

 

Mouse Oxidative Stress and Antioxidant Defense Pathway Finder RT2 Profiler PCR array 

Total RNA was isolated from freshly purified c-kit+ cells (n=5) and c-kit- cells (n=5), by using 

RNeasy Mini Kit (Qiagen). After the generation of cDNA using RT2 First Strand Kit (SABiosciences), 

PCR array was done according to the manufacturer’s instructions (SABiosciences), and a total of 84 

genes involved in antioxidants and ROS metabolism was included in array (Supporting information 

Table 1). Data from 5 separated samples of c-kit+ cells and c-kit- cells was calculated for the mean fold 

change of expression and significance by using web-based data analysis program (SABiosciences) 

(Supporting information Table 1). 

 

Western blotting 

The expression levels of SOD1, SOD2, and catalase were measured by Western blotting using 

Mini-PROTEAN® Tetra Cell and Trans-Blot® Turbo™ Transfer System (BIO-RAD) according to the 

instruction manual. Briefly, the total proteins purified from the c-kit+ and c-kit- cells were separated by 

SDS-PAGE gels, and then transferred to PVDF membranes. After blocking, the membranes were 

incubated with primary antibodies against SOD1 (500-fold dilution, Santa Cruz Biotechnology, Inc.), 

SOD2 (500-fold dilution, Santa Cruz Biotechnology, Inc.), catalase (500-fold dilution, Santa Cruz 

Biotechnology, Inc.), or β-actin (5000-fold dilution, Sigma-Aldrich), followed by the appropriate 

horseradish peroxidase-conjugated secondary antibodies. The expression was visualized using an 

enhanced chemiluminescence detection kit, and semi-quantitative analysis was done by measuring the 

density of bands using ImageQuant LAS 4000mini (GE Healthcare Life Sciences). 
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Statistical analyses 

All results are presented as the means ± SD. The statistical significance among groups was 

determined by one-way analysis of variance (ANOVA) followed by post hoc test, but statistical 

significance between two groups was done by unpaired t-test (Dr. SPSS II, Chicago, IL). Differences 

were considered significant when p<0.05. 

 

Results 

Different intracellular ROS level and oxidative stress resistance between c-kit+ and c-kit- cells 

The basic intracellular ROS levels in c-kit+ and c-kit- cells were measured from the freshly 

isolated cells after incubation at 37°C in 5% CO2 for 12 hours. In compare with the c-kit- cells, these 

c-kit+ stem/progenitor cells had relatively lower ROS level (p<0.01, Fig. 1A). After 1 hour stimulation 

with 100 μM H2O2, the intracellular ROS levels were significantly increased to a comparable levels in 

both c-kit+ and c-kit- cells (p<0.01, Fig. 1B). Although the intracellular ROS was returned to the level 

that close to baseline in the c-kit+ stem/progenitor cells within 18 hours after stimulation (p=0.28 vs. 

baseline, Fig. 1B), significant accumulation of ROS was still observed in the c-kit- mononuclear cells 

at18 hours after stimulation (p<0.05 vs. baseline, Fig. 1B). 

We also investigated the survival of cells after oxidative stress stimulation. We found that the 

stimulation with either 50 or 200 μM H2O2 significantly induced more cell death and apoptosis of 

c-kit- cells than that of c-kit+ cells (Fig. 2), suggested a higher oxidative stress resistance of c-kit+ 

stem/progenitor cells in compared with their mature progeny of the c-kit- mononuclear cells. 

 

Expression of genes involved in antioxidants and ROS metabolism 

By pathway focused PCR array analysis, we widely compared the expression of genes 

involved in antioxidants and ROS metabolism between the c-kit+ and c-kit- cells (Supporting 

information Table 1). The top 20 genes that up- or down-regulated were presented in Figure 3 (Fig. 

3A). We noticed that some genes involved in superoxide metabolism, including Nox1 and Noxa1, 

were up-regulated in the c-kit+ stem/progenitor cells. However, the expression of genes associated 
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other peroxidases, including the LPO, was down-regulated in the c-kit+ stem/progenitor cells. We have 

also confirmed these data by semi-quantitative RT-PCR analysis (Fig. 3B). 

 

Expression of antioxidant enzymes of SOD1, SOD2, and catalase 

Western blot analysis showed that the expression of antioxidant enzymes of SOD1 and SOD2 

did not significantly different between the c-kit+ stem/progenitor cells and the c-kit- matured 

mononuclear cells (Fig. 4A, B). However, the expression of catalase was significantly higher in the 

c-kit+ cells than the c-kit- cells (p<0.01, Fig. 4C). 

 

Discussion 

Although ROS can serve as critical signaling mediators and antimicrobial host defenses [7, 21], 

the excessive accumulation of ROS is generally known to induce the cellular damage that eventually 

lead to aging, cardiovascular diseases, inflammation, and carcinogenesis [22]. To protect against 

oxidative stress-induced injuries, all mammalian have been developed powerful antioxidant 

mechanisms for maintaining redox homeostasis. Therefore, the understanding on the complex network 

of redox regulation will be helpful for the prevention and treatment of various diseases and disorders. 

As the small population tissue-specific stem/progenitor cells has been well recognized to play 

critical roles in carcinogenesis and the repair/regeneration of damaged tissues [1, 21, 23, 24], redox 

regulation signaling in stem cells warrants specific attention in the past decade. A number of recent 

studies have reported the important role of redox homeostasis in regulating the self-renewal, 

differentiation, and genomic stability of stem cells [2-6, 8-18]. It has demonstrated that moderately 

high H2O2 levels promote the differentiation of hematopoietic progenitors through JNK and FOXO 

activation [13, 14]. We have also recently found that ROS likely plays dual roles in the genomic 

stability of stem cells [8], of that, a physiological level of ROS is required for effective DNA repair, 

but high ROS induces DNA damage. However, the characterization of redox regulatory property in 

stem cells has not yet been well understood. 

In this study, we tried to investigate the redox regulatory property in the c-kit+ stem/progenitor 



Urata Y. et al.   Page 8 

cells by directly comparison with the c-kit- matured mononuclear cells from the bone marrow of 

healthy mice. Agreed well with previous study [10], the basic ROS level in c-kit+ stem/progenitor cells 

was detected relatively lower than the c-kit- matured mononuclear cells. Although the stimulation with 

H2O2 increased the intracellular ROS levels to a comparable levels in both of the c-kit+ and c-kit- cells, 

these c-kit+ stem/progenitor cells showed a faster clearance of accumulated ROS. This provides a 

reasonable explanation to the higher resistant to oxidative stress. Therefore, it would be critical to 

understand how the stem cells were metabolically differed from the more differentiated cells. 

By screening the expression of genes involved in antioxidants and ROS metabolism, we found 

that the gene-expression profiling was widely varied between the c-kit+ and c-kit- cells. Our data 

showed that the c-kit+ stem/progenitor cells were highly expressed with Nox1 and Noxa1 than the 

c-kit- mononuclear cells. Redox homeostasis is known to be regulated by a number of oxidases, among 

which the plasma membrane NADPH oxidase (NOX) is recognized to be one of the major players [15]. 

Previous study has demonstrated that bone marrow derived hematopoietic stem cells express the 

catalytic subunits of Nox1, Nox2, and Nox4 isoforms of the NADPH oxidase family along with the 

complete battery of the regulatory subunits of Noxo1 and Noxa1, which contribute to produce 

constitutively low levels of ROS [25]. It has been suggested that the existence of different types of 

ROS-generators might provide a fine mechanism of tuning redox signaling to control the delicate 

balance between cell growth, proliferation, and differentiation of hematopoietic stem cells [26]. This 

provides reasonable explanation on the higher expression of Nox1 and Noxa1 in these c-kit+ 

hematopoietic stem/progenitor cells than the matured c-kit- mononuclear cells. 

Interestingly, some genes involved in antioxidants and ROS metabolism, such as 

lactoperoxidase (Lpo), was largely down-regulated in the c-kit+ stem/progenitor cells. The Lpo is 

functionally known to play a key role in the innate immune defense by oxidizing thiocyanate into 

hypothiocyanite [27], which serve to kill the bacterium and fungi. Therefore, the relatively lower Lpo 

in the c-kit+ stem/progenitor cells from bone marrow more likely due to the specificity of enhanced 

Lpo expression in the matured c-kit- mononuclear cells for immune defense, rather than the 

down-regulation of Lpo in general in stem cells.  
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Peroxiredoxin 1 (Prxd1), an antioxidant that well known to protect cells from metabolically 

produced ROS, was also down-regulated in the c-kit+ stem/progenitor cells. It has recently been 

reported that the incubation of Prxd1 with immature bone marrow-derived dendritic cells resulted in 

TLR4-dependent secretion of TNF-alpha and IL-6 and dendritic cell maturation, suggest that Prxd1 

may act as danger signal similar to other TLR4-binding chaperone molecules such as HSP72 [28]. 

Similarly, the relatively lower expression of Prxd1 in c-kit+ stem/progenitor cells may also simply due 

to the highly expression of Prxd1 in the matured c-kit- mononuclear cells, rather than in general from 

the view of stem cell biology. 

In conclusion, c-kit+ hematopoietic stem/progenitor cells likely resistant to oxidative stress 

when compared with the more differentiated c-kit- mononuclear cells in bone marrow. Although 

widely different in the expression of genes involved in antioxidants and ROS metabolism was detected 

between two cell types, it is still required to understand the significance of redox regulatory property 

in stem cell biology. 
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Figure Legends 

Fig. 1. ROS levels in c-kit+ stem/progenitor cells and c-kit- matured mononuclear cells. A) Cells were 

incubated for 12 hours and then labeled with 10 µM CM-H2DCFDA for 30 minutes. The ROS level 

was evaluated by measuring the fluorescence intensity within cells. B) Cells were stimulated with 

100µM H2O2 for 1 hour and then followed the changes of ROS levels at 0, 1, 2, 3, and 18 hours after 

stimulation. 

 

Fig. 2. Oxidative stress resistance of c-kit+ stem/progenitor cells and c-kit- matured mononuclear cells. 

Cells were incubated with 50 and 200µM H2O2 for 2 hours and then stained with PI (A) and Annexin 

V (B) for evaluating cell death and apoptosis by flow cytometry.  

 

Fig. 3. The expression of genes that involved in antioxidants and ROS metabolism in c-kit+ 

stem/progenitor cells and c-kit- matured mononuclear cells. A) The top 20 genes that up- or 

down-regulated in c-kit+ stem/progenitor cells. B) Quantitatively PCR analysis on the top two genes of 

Nox and Lpo. 

 

Fig. 4. Western blot analysis on SOD1, SOD2, and the catalase. Although the expression of catalase 

was significantly higher in c-kit+ stem/progenitor cells than the c-kit- matured mononuclear cells (A), 

the expression of SOD1 (B) and SOD2 (C) was comparable between two cell types. 
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Symbol Description Fold Regulation p value
Gpx8 Glutathione peroxidase 8 (putative) -1.7279 0.537659
Aass Aminoadipate-semialdehyde synthase -1.0119 0.553957
Als2 Amyotrophic lateral sclerosis 2 (juvenile) homolog (human) 1.5105 0.331765
Apc Adenomatosis polyposis coli -1.1591 0.78127
Apoe Apolipoprotein E -1.1196 0.854769
Aqr Aquarius 1.2354 0.621664
Atr Ataxia telangiectasia and rad3 related -1.2737 0.576012
Cat Catalase 1.3426 0.798307
Ccs Copper chaperone for superoxide dismutase -1.0119 0.658527
Xirp1 Xin actin-binding repeat containing 1 2.6629 0.024872
Ctsb Cathepsin B 1.232 0.763823
Cyba Cytochrome b-245, alpha polypeptide 1.1884 0.762498
Cygb Cytoglobin 2.5368 0.031982
Dnm2 Dynamin 2 -1.1867 0.716822
Duox1 Dual oxidase 1 -3.315 0.158261
Ehd2 EH-domain containing 2 -4.231 0.152518
Epx Eosinophil peroxidase 1.3223 0.436183
Ercc2 Excision repair cross-complementing rodent repair deficiency, complementation group 2 1.7691 0.351231
Ercc6 Excision repair cross-complementing rodent repair deficiency, complementation group 6 -1.2968 0.584172
Fancc Fanconi anemia, complementation group C 1.089 0.904312
Fmo2 Flavin containing monooxygenase 2 -1.7666 0.624024
Gab1 Growth factor receptor bound protein 2-associated protein 1 1.8213 0.353137
Gpx1 Glutathione peroxidase 1 1.3519 0.561085
Gpx2 Glutathione peroxidase 2 1.4938 0.33233
Gpx3 Glutathione peroxidase 3 -1.59 0.562552
Gpx4 Glutathione peroxidase 4 -1.5659 0.209898
Gpx5 Glutathione peroxidase 5 1.5681 0.873103
Gpx6 Glutathione peroxidase 6 1.1917 0.454657
Gpx7 Glutathione peroxidase 7 1.1196 0.42285
Gsr Glutathione reductase 1.8391 0.090625
Gstk1 Glutathione S-transferase kappa 1 -1.7399 0.771422
Hbq1a Hemoglobin, theta 1A 1.0432 0.799041
Idh1 Isocitrate dehydrogenase 1 (NADP+), soluble -1.3095 0.330409
Ift172 Intraflagellar transport 172 homolog (Chlamydomonas) 1.6713 0.093488
Il19 Interleukin 19 2.6629 0.024872
Il22 Interleukin 22 1.459 0.519359
Kif9 Kinesin family member 9 -1.4369 0.915931
Lpo Lactoperoxidase -32.4242 0.028386
Mb Myoglobin 1.2719 0.963656
Mpo Myeloperoxidase 1.3407 0.546767
Mpp4 Membrane protein, palmitoylated 4 (MAGUK p55 subfamily member 4) 8.1511 0.22942
Ncf2 Neutrophil cytosolic factor 2 1.2457 0.439396
Ngb Neuroglobin 4.7733 0.361269
Nos2 Nitric oxide synthase 2, inducible 1.2201 0.533308
Nox1 NADPH oxidase 1 10.1471 0.258432
Nox4 NADPH oxidase 4 2.6629 0.024872
Noxa1 NADPH oxidase activator 1 4.7076 0.346893
Noxo1 NADPH oxidase organizer 1 2.6081 0.065078
Nqo1 NAD(P)H dehydrogenase, quinone 1 1.6783 0.21507
Nudt15 Nudix (nucleoside diphosphate linked moiety X)-type motif 15 1.1672 0.640345
Nxn Nucleoredoxin -1.3278 0.311265

Supporting information table 1. The expression of genes involved in antioxidants

and ROS metabolism in the c-kit-positive hematopoietic stem/progenitor cells.

 (vursus to the c-kit-negative matured mononuclear cells)



Park7 Parkinson disease (autosomal recessive, early onset) 7 1.457 0.438266
Ppp1r15b Protein phosphatase 1, regulatory (inhibitor) subunit 15b 1.3315 0.153989
Prdx1 Peroxiredoxin 1 -3.7555 0.717836
Prdx2 Peroxiredoxin 2 1.2772 0.380663
Prdx3 Peroxiredoxin 3 1.0607 0.637005
Prdx4 Peroxiredoxin 4 -1.35 0.958124
Prdx5 Peroxiredoxin 5 1.5252 0.216977
Prdx6 Peroxiredoxin 6 1.244 0.605289
Prdx6-ps1Peroxiredoxin 6, pseudogene 1 1.9386 0.111394
Prnp Prion protein -1.4132 0.657341
Psmb5 Proteasome (prosome, macropain) subunit, beta type 5 -1.0519 0.864667
Ptgs1 Prostaglandin-endoperoxide synthase 1 1.6923 0.444438
Ptgs2 Prostaglandin-endoperoxide synthase 2 3.9641 0.744237
Rag2 Recombination activating gene 2 -3.1016 0.31582
Recql4 RecQ protein-like 4 1.21 0.591574
Scd1 Stearoyl-Coenzyme A desaturase 1 1.0905 0.832077
Serpinb1b Serine (or cysteine) peptidase inhibitor, clade B, member 1b 1.0403 0.684418
Slc38a1 Solute carrier family 38, member 1 1.2406 0.545556
Slc41a3 Solute carrier family 41, member 3 -1.2066 0.778015
Sod1 Superoxide dismutase 1, soluble 1.2033 0.316591
Sod2 Superoxide dismutase 2, mitochondrial -1.0622 0.703126
Sod3 Superoxide dismutase 3, extracellular -2.7001 0.1568
Srxn1 Sulfiredoxin 1 homolog (S. cerevisiae) -1.215 0.649599
Tmod1 Tropomodulin 1 1.1623 0.500341
Tpo Thyroid peroxidase -2.7683 0.244458
Txnip Thioredoxin interacting protein 6.9983 0.754999
Txnrd1 Thioredoxin reductase 1 -1.3651 0.499423
Txnrd2 Thioredoxin reductase 2 1.1416 0.471114
Txnrd3 Thioredoxin reductase 3 1.9225 0.530422
Ucp3 Uncoupling protein 3 (mitochondrial, proton carrier) -1.3822 0.221578
Vim Vimentin -1.2509 0.388304
Xpa Xeroderma pigmentosum, complementation group A 1.9413 0.074048
Zmynd17 Zinc finger, MYND domain containing 17 1.6575 0.183099
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