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Abstract

Background: Cutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and
Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to
changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Niño
Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission.

Methodology and Findings: We studied association patterns between monthly time series, from January 2000 to December
2010, of: CL cases, rainfall and temperature from Panamá, and an ENSO index. We employed autoregressive models and
cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We
employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and
eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000–2011. We found
that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were
mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and
cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the
cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases.

Conclusion: Association patterns of CL with ENSO and local climatic factors in Panamá indicate that interannual CL cycles
might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases
and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might
increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when
SF abundance shows its highest fluctuations.
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Introduction

Cutaneous leishmaniasis (CL) is a major neglected tropical

disease [1] with a complex ecology [2], whose transmission, in the

New World, requires the co-existence of vectors, reservoirs and

humans [3,4]. In Panamá, detailed studies on the eco-epidemiol-

ogy of the disease [2,5] described parasitological aspects of

reservoirs [6] and vectors [7] and the environmental context of

parasite-reservoir-vector interactions [8]. These studies set several

landmarks for understanding New World CL epidemiology,

including the demonstration of two toed sloths, Choloepus
hoffmanni [9,10] and other mammals [11,12] as reservoirs of

Leishmania spp parasites. Insights on sand fly vector ecology

included: catholic bloodfeeding patterns in dominant vector

species [13,14], very limited dispersal of flying adults [15],

high sensitivity of larval biology to environmental factors

[16,17,18,19,20], differential adult resting behavior with species

segregating along tree height [21], large diversity of co-occurring

sand fly species across CL transmission foci [22,23,24] and

heterogeneities in species composition across landscape gradients

[23]. Currently, the most common parasite causing CL in Panamá

is Leishmania panamensis [25,26] and the resurgence and

exacerbation of disease transmission has led to renewed efforts

aimed at improving vector control [27] as a measure to reduce

transmission at emerging transmission hotspots [25]. However,

larger questions about what is driving the resurgence of the

disease, and how to best predict epidemic outbreaks remain

unanswered [28,29].

The longitudinal nature of eco-epidemiological studies on CL in

Panamá [2] revealed interannual patterns of variability in

reservoir infection and abundance [10] and the sensitivity of sand

fly density to weather fluctuations [30]. Nevertheless, no study has
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addressed if large scale meteorological phenomena, such as El

Niño Southern Oscillation (ENSO), are associated with interan-

nual CL epidemic cycles, as observed in neighboring Costa Rica

[28,29,31,32] nor the impacts of ENSO on Sand Fly populations.

These issues are of special interest, given the increased reports of

direct and indirect impacts of climatic variability patterns

associated with global warming on the disease transmission, both

in the New World [32,33,34,35,36,37,38] and the Old World

[39,40]. Here, we employ an 11 years long (2000–2010) monthly

time series recording CL cases in the República de Panamá to

investigate seasonal and interannual cycles on this disease. During

this time at the coarse spatial scale forest cover has marginally

increased, yet locally some areas have seen deforestation [41], an

activity usually linked with CL outbreaks [42]. We specifically ask

which climatic factors are associated with seasonal and interannual

disease cycles, considering local temperature and rainfall records

and sea surface temperature 4 (SST4), an index associated with

ENSO activity in the region. We also ask whether dominant sand

fly (SF) vector species undergo marked abundance changes

associated with ENSO, that are ultimately reflected in CL

transmission. We employed seasonal autoregressive models and

cross wavelet coherence analysis to depict the association of CL

with climatic factors, and found that while seasonal CL patterns

were mainly associated with temperature and rainfall, interannual

cycles of the disease were associated with SST4. Moreover, SST4

was also associated with interannual cycles in temperature and

rainfall. SF vectors showed marked abundance changes associated

with ENSO, where abundance in general decreased during the hot

and cold phases of ENSO. Our results highlight both the general

association of ENSO and weather patterns with CL dynamics in

Central America, and how changes in SF vector abundance

associated with ENSO might play a role in the emergence of CL

epidemics.

Materials and Methods

Data
Monthly CL cases were compiled by the Epidemiology

Department of Panamá’s Ministry of Health for the period

January 2000 – December 2010. Briefly data consisted of cases

clinically diagnosed [43], and often confirmed by the microscopic

examination of skin lesson scrappings/biopsies, Montenegro skin

tests (MST) [44] or Indirect Immuno-Fluorescent Agglutination

Tests (IFAT) [26]. Data (Figure 1A) were collected from all the

health facilities administered by Panamá’s Ministry of Health and

all data came from passive case detection. Reports were then

compiled at the health area level (the operational geographical

units of Panamá’s Ministry of Health which are slightly different

from Panamá’s provinces and autonomous indigenous comarcas).

Slightly over 80% of the cases came from West Atlantic Panamá,

the area facing the Caribbean Sea, west of the Panamá Canal up

to the border with Costa Rica [25]. Representative samples from

all over Panamá [25] indicate that over 95% (at least 90% for each

reporting health area) of the CL cases in the time series are due to

Leishmania panamensis. Cases due to Leishmania mexicana, Le
amazonensis and Le colombiensis continue to be rare and sporadic,

as observed in earlier epidemiological studies in Panamá [5].

Moreover, all CL cases observed in migrants that likely acquired

the infection in Panamá have been typified as Le panamensis
[45,46]. Temperature data were obtained from the US National

Oceanic and Atmospheric Administration, NOAA (ftp://ftp.ncdc.

noaa.gov/pub/data/ghcn/v2/) for Tocumen (Station 787920),

Albrook (Station 783842 and 788060), Bocas del Toro (Station

787935), David (Station 787930) and Santiago (Station 787950).

These daily time series were averaged per month, considering all

values and the monthly maxima and minima (Figure 1B). Rainfall

data, an average considering all weather stations, were obtained

from ETESA, Panamá’s electrical company (Figure 1C). Monthly

SST 4, often referred as El Niño 4 (Figure 1D), was obtained from

(http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.

81-10.ascii). The NOAA data for SST4 were collected from the

area delimited by 5uNorth-5uSouth and 160uEast-150uWest of the

Pacific Ocean. We also classified each month from the time

series into the ENSO phases following the Oceanic Niño Index

(ONI) from NOAA (http://www.cpc.ncep.noaa.gov/products/

analysis_monitoring/ensostuff/ensoyears.shtml). Briefly, the ONI

is estimated by detrending the monthly Sea Surface Temperature

3.4 (collected in the area defined by 5uN-5uS, 120u-170uW) over

periods of 30 years, with residues with a value over 0.5

corresponding to the warm (or hot) ENSO phase, residues below

20.5 corresponding to the cold ENSO phase and residues in the

interval [20.5,0.5] being normal conditions [47].

SF abundance data came from six studies performed either at

Universidad de Panamá or Instituto Conmemorativo Gorgas de

Estudios de la Salud (ICGES). All these studies were performed

within the República de Panamá (Figure S1A). All the studies used

a common sand fly sampling method, which consisted in the use of

unbaited light traps placed at 1.5–2.0 m height above ground,

with traps operating from 6 pm to 6 am (a sampling effort referred

as trap-night), and placed in three well defined eco-epidemiolog-

ical environments: (i) domiciliary for samples from inside houses;

(ii) peridomiciliary for samples collected in a radius of 100 m from

a house; and (iii) forested areas for samples collected in areas with

primary/secondary vegetation and outside a 100 m radius from a

house. This standardized sampling, in principle, renders the

comparison of the different datasets plausible. In most of the

studies sand fly sampling was done with the purpose of describing

the fauna at endemic locations [48,49,50], as part of the evaluation

of SF control trials [27] and we also report unpublished data from

entomological surveillance of endemic CL locations in 2007, 2009,

2010 and 2011. We focused our analysis in the abundance of

Lutzomyia trapidoi, Lu gomezi and Lu panamensis (Figure S1B),

the dominant vector species for CL in the República de Panamá

[2,7]. This was done given the proven vectorial role of these

species [2,7], and the lack of abundant records for other sand fly

species. Figure S1C shows the eco-epidemiological environments

sampled in each location and Figure S1D the year when samples

Author Summary

In this study we analyze data on sand fly (SF) abundance
and cutaneous leishmaniasis (CL) cases from Panamá. We
asked whether weather patterns and climatic variability
could have an impact on vector abundance that is
ultimately reflected in CL transmission. We found that
large epidemics of CL occur during the cold phase of El
Niño Southern Oscillation (ENSO), with regular cycles
coinciding with the oscillation patterns of ENSO. By
contrast, and counterintuitively, we found that during
the hot and cold phase of ENSO the average number of SF
was reduced when compared with the normal phase of
ENSO. Nevertheless, the cold ENSO phase also shows the
largest variability in vector abundance, which is a likely
indicative of sudden and extraordinary increases in SF
abundance. We, therefore, propose that marked SF
abundance changes, triggered by anomalous weather
patterns associated with ENSO, likely play a major role in
shaping CL interannual transmission cycles in Panamá.
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were collected at each location. A total of 12580 SF were collected

over 640 trap-nights. In all the studies, the spermathecae or

genitalia were inspected for species identification using the key by

Young and Duncan [51].

Statistical Analysis
Leishmaniasis seasonality, interannual cycles and non-

stationary associations with weather records and ENSO.

Seasonality in the CL cases time series was assessed with monthly

boxplots [52] and seasonal time series plot depicting the ENSO

phase. The correlation structure in the CL time series was assessed

by inspecting both the autocorrelation function, ACF, i.e., the time

series correlation with itself through time, and the partial

autocorrelation function, PACF, i.e., the correlation between

consecutive time lags [53]. Information from the ACF and PACF

was used to choose the time lags necessary to fit a null model, i.e.,

without climatic covariates, of the CL time series. The null model

coefficients were used to pre-whiten the climatic covariates SST4,

Rain, TMAX and TMIN. Pre-whitening is a process that removes

the common autoregressive structure of an ancillary time series

(often referred as filtering) thus easing the study of association

patterns with a focal time series [53]. Null model residuals together

with pre-whitened residuals from the climatic time series were then

used to estimate cross-correlation functions, CCF, of CL with each

one of the climatic covariates. This information was employed to

build a full model that was simplified to avoid having more

parameters than what is necessary to understand the dynamics of

the CL time series, i.e., to avoid over-parameterization [54]. We

used backward elimination of climatic covariates for model

simplification, i.e., taking the least significant covariate by rounds

[53]. We used the Akaike Information Criterion, AIC, to choose

the best model in each round of backward elimination. AIC is a

model selection criterion that picks the best model, in a group,

once a trade-off function between the number of parameters and

likelihood is minimized [53]. Finally, in all cases, assumptions

about model error, normality and independence, were verified

using standard procedures for time series analysis [53]. To better

understand the process of model association we studied the

correlation of the variables considered in the full model by

estimating the correlation between all variables pairs and plotting

the correlations in color and size categories according to their and

magnitude, building a corrgram [55]. Finally, time-frequency

association of CL with climatic covariates was studied using

continuous wavelet transforms [56] to estimate a cross-wavelet

coherence. This analysis depicts the nonstationary association

between time series [56,57], i.e., their non-constant association

through time, specially by depicting the coherence, i.e., association

of cycles between two time series over time [28].

Sand fly vector abundance and ENSO. We fitted a Poisson

Rate Generalized Linear Mixed Model (PRGLMM) [58] to

Figure 1. Monthly time series data (2000–2010). (A) Cutaneous Leishmaniasis cases in the Republic of Panamá (B) Rainfall (C) Temperature. The
solid line indicates the averages and dashed lines the extremes. (D) Sea Surface Temperature 4 (El Niño 4 Index). All time series start in January 2000
and end in December 2010. In the plots colors indicate the ENSO phase, for details refer to the inset legend in panel A.
doi:10.1371/journal.pntd.0003210.g001
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PLOS Neglected Tropical Diseases | www.plosntds.org 3 October 2014 | Volume 8 | Issue 10 | e3210



abundance records from each of the dominant SF vector species

(Lu gomezi, Lu trapidoi and Lu panamensis). We chose

PRGLMMs given the counting nature of our data [58] and to

consider the lack of independence that emerges from observations

collected across different studies [59]. The model was a rate model

given that for a couple of studies [30,49] we had records that came

from several traps and, therefore, for parameter estimation we

needed to include an offset variable to account for the

heterogeneous number of traps generating the counts [60]. In

the models we considered the following fixed factors: (a) ENSO

phase, to quantify patterns of interannual variability in SF

abundance; (b) sampling month, to account for seasonal changes

in SF abundance and (c) the sampling eco-epidemiological

environment, to account for variability that can be attributed.

We considered as random factors the variability that can be

attributed to: (d) each study and the nested variability that can be

attributed to each location within each study in order to consider

the spatial variability that emerges from observations across

different locations; (e) the temporal variability that could have

emerged from samples collected in different years. For the

analyses, we only considered SF abundance from traps used in

the control treatment of the SF vector control trial study [27], i.e.,

records from houses no subjected to any pesticide, while we used

data from all the light traps used in the other studies [47,48,49]

and from unpublished vector surveillance records.

Sand fly vector abundance and cutaneous leishmaniasis

cases. To study the relationship between CL incidence and SF

vector abundance, we employed the SF trap records employed to

study the relationship between SF abundance and ENSO and

estimated average numbers of SF/trap-night/month. We were

able to obtain 35 Lu gomezi monthly abundance estimates

(MAES), 36 Lu trapidoi MAES and 37 Lu panamensis MAES,

in the period January 2000 – December 2010. We employed this

data together with data from the CL time series to study their

cross-correlation patterns [53]. From our previous mathematical

modelling efforts we expected a positive relationship between the

number of cases and vector abundance [4,61,62,63,64], with the

abundance of vectors leading the number of cases with a time lag

[29].

Results

Figure 2 shows CL case seasonality. Figure 2A shows how CL

cases peak at the beginning of the rainy season in Panamá, in April

and May [41]. From January 2000 to December 2010 a total of

26140 CL cases were recorded in Panamá. Figure 2B shows how

ENSO phases have been uniformly distributed across the year,

and how peaks in CL cases tend to occur during the cold ENSO

phase, a pattern also shown in Figure S2 when pooling all months.

Given the monthly nature of our data and the focus on the total

number of reported CL cases, with observations spanning 132

months, we employed a battery of tools for time series analysis in

the time domain, including temporal correlation functions and

seasonal autoregressive models, and time-frequency domain, i.e.,

wavelets [65]. Figure S3 show the different correlation functions

employed to fit seasonal autoregressive models to the CL time

series. The PACF (Figure S3A) suggested a seasonal autoregressive

structure in the CL time series, where up to the first three lags and

the seasonal lag (12 months) were associated with CL number at

any time. The autoregressive pattern was also suggested by the

ACF (Figure S4). Indeed a 3rd order seasonal autoregressive model

was selected as the best null model (Table S1) and employed for

pre-whitening climatic covariates and for subsequent estimation of

Cross Correlation Functions (CCFs) between CL and climatic

covariates (Figure S3B, S3C, S3D, S3E, S3F). CL was negatively

correlated with SST4 at lags 4 and 5 and positively correlated with

temperature at lag 12 (Figure S3B). CL was negatively correlated

with rainfall (Rain) at lag 15 (Figure S3C). CL was positively

correlated with average (Temp) and maximum temperature at lag

13 (Figure S3D & S3E) autonomous from minimum temperature

(Figure S3F). Thus, based on the significant correlations observed

in Figure S3 the following null model was fitted:

CLt~mzw1 CLt{1{mð Þzw2 CLt{2{mð Þzw3 CLt{3{mð Þ

zw12 CLt{12{mð Þzw1w12 CLt{13{mð Þzw2w12 CLt{14{mð Þ

zw3w12 CLt{15{mð Þzb1 SST4t{4ð Þzb2 SST4t{5ð Þ

zb3 SST4t{12ð Þza Tempt{13ð Þzc Raint{15ð Þzet

ð1Þ

Where m is the mean value of the time series, w’s indicate

autoregressive parameters, b, c and a are parameters for climatic

covariates and e indicates an error normally distributed and with

variance s2
e . After several rounds of backward elimination (Table

S1) the following model was selected as best:

CLt~mzw1 CLt{1{mð Þzw2 CLt{2{mð Þzb2 SST4t{5ð Þ

zb3 SST4t{12ð Þza Tempt{13ð Þzet

ð2Þ

Whose parameter estimates are presented in Table 1. The

impacts of Temp(t-13) and SST4(t-12) on CL were positive, in

contrast with SST4(t-5) which was negative, and assumptions

about the error were met, ensuring a sound inference. The process

of model selection (Table S1) left out variables that were strongly

correlated (Figure 3) with the ones present in equation (2). For

example, SST4(t-5), SST4(t-4) and Rain (t-15) were positively

associated between them (Figure 3) and negatively with CL(t).

Thus, SST4(t-5) was able to capture a common impact of ENSO

on both rainfall and CL. Similarly, Temp(t-13) and CL(t-12) were

positively associated between them and with CL(t) (Figure 3),

rendering the inclusion of the former, in addition to SST4(t-5),

enough to account for seasonality in CL(t).

The cross wavelet coherence analysis (Figure 4) confirms the

outcome of autoregressive models, showing that CL was associated

with: SST4 (Figure 4A), rainfall (Figure 4B) and temperature

(Figure 4C) during the study period, all the three variables

associated with the inter-annual variability in CL, specifically

cycles with period between 2–4 years, the latter two also associated

with the seasonal cycles (period of 1 year). Similarly, rainfall

(Figure 4D) was associated with SST4 at inter-annual scales; and

both rainfall (Figure 4D) and temperature (Figure 4E) were

seasonally associated with SST4. In synthesis, ENSO, measured

through SST4, shows an imprint on CL transmission robustly

revealed by both the autoregressive model and the cross wavelet

coherence analysis, where SST4 also impacts Rainfall and

Temperature, which are, as well, associated with CL.

Data on SF vectors showed a common pattern where Lu gomezi
(Figure 5A), Lu trapidoi (Figure 5B) and Lu panamensis (Fig-

ure 5C) reduced their average abundance during the hot and cold

ENSO phases. Nevertheless, these three dominant SF vector

species showed an increased variability in abundance during the

cold ENSO phase, i.e., the boxes in the boxplots were longer, and

large outliers were more frequent during the cold ENSO phase.

After controlling for differences related to heterogeneity in

Climate, Sand Flies and Cutaneous Leishmaniasis in Panamá
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eco-epidemiological sampling environment, and for seasonality

associated with different sampling months, the GLMPMs for Lu
trapidoi and Lu panamensis showed that abundance reductions

were significant during both the hot and cold ENSO phases (P,

0.05), but not for Lu gomezi, (Table 2). The abundance across eco-

epidemiological environments showed a similar pattern for Lu
gomezi (Figure 5D) and Lu trapidoi (Figure 5E), where abundance

was slightly larger in domiciliary than in peridomiciliary or forest

environments, a pattern statistically significant (Table 2). By

contrast, Lu panamensis (Figure 5F) was, respectively, about 9

and 2.5 times more abundant in forests and peridomiciles than

inside the houses (P,0.05, Table 2). Table 2 shows that, in

general, the unexplained variance in the SF abundance GLMPMs

associated with spatial heterogeneity (Location Var) was about one

order of magnitude higher than the unexplained temporal

variance (Year Var). Similarly, model selection with AIC and

BIC showed that it was not necessary to nest the spatial random

effects within each study (Table S2).

Monthly CL case records were positively associated with the

abundance of Lu gomezi (Figure 5SA) and Lu trapidoi (Figure

5SB) with the CCF peaking at three months lag, i.e., after a peak

in SF vector abundance there was a peak in CL cases three months

later. For Lu gomezi (Figure 6A) the 3 month-lagged pattern of

association with CL cases was mainly linear, but for Lu trapidoi
(Figure 6B) the number of cases seemed to flatten out at high SF

abundances. By contrast, monthly CL cases and Lu panamensis
abundance were negatively and significantly associated with a one

and a two month lag (Figure 5SC). As expected from the CCF, the

association between CL cases and the 3 month-lagged abundance

of Lu panamensis had no clear pattern (Figure 6C). When the

abundance of Lu gomezi and Lu trapidoi were added together the

maximum positive association occurred at three months of lag, but

the positive association was also significant at 2 and 4 months of

lag (Figure 5SD). The 3 month-lagged pattern of association

between CL cases and the combined abundance of Lu gomezi and

Lu trapidoi (Figure 6D) resembled the one observed for Lu
trapidoi alone (Figure 6B) with the number of cases flattening out

at high SF abundance.

Discussion

A general criticism for studies addressing the impact of climate

change on vector-borne disease transmission is that little to no

attention has been given to what changes, if any, occur in

entomological risk patterns [66], e.g., what happens to the vectors

during ENSO?. Here, we tried to address that knowledge gap for

CL by going beyond the description of the association between

ENSO and weather patterns and CL epidemics in Panamá, we

inquired whether SF vectors change their abundance during

ENSO. Our data showed that interannual cycles of CL

transmission, as inferred from a CL case time series from Panamá,

were associated with ENSO, a pattern observed in neighboring

Costa Rica [29], and also observed for malaria in the República de

Panamá [67], highlighting the impacts of ENSO on vector-borne

diseases in Central America. Large CL Epidemics were observed

during the cold ENSO phase or shortly after it, where the delay

might reflect the delay between transmission and clinical

symptoms in American CL [29,43,68], a possibility further re-

inforced by the 3 month delayed association between vector

abundance and CL incidence.

Seasonal (intrannual time scale) changes in CL transmission

were associated with temperature, a weather component with low

variability, i.e., low amplitude fluctuations, in the Panamá isthmus.

This pattern may make sense in light of Schmalhausen’s law, the

notion that biological systems are more sensitive to small changes

in low variability factors when stressed by other environmental

components [65]. SF population dynamics may become more

sensitive to changes in temperature given their need to cope with

more marked changes in other weather factors, e.g., rainfall which

has a more marked seasonal imprint than temperature in Panamá

[41]. Indeed, the pattern of higher sensitivity to changes in

temperature in places with marked seasonality in rainfall has been

observed for other disease vectors [69]. Here, we want to also note

that large CL epidemics occurred during or shortly after the cold

ENSO phase, a time when, on average, SF vector abundance is

the smallest across ENSO phases. Nevertheless, as observed in the

raw data, the cold ENSO phase is a time when SF vectors are also

prone to show extremely large abundance records per trap-night,

which might reflect insect population outbreaks [70,71], i.e.,

Figure 2. Cutaneous Leishmaniasis cases (CL) seasonality. (A) Boxplots of monthly incidence. Boxes contain data within the 25th to 75th

quantiles. Lines inside the boxes show the median of the distribution for each month. (B) Seasonal (year-long) time series. Colors indicate the ENSO
phase, see inset legend for details.
doi:10.1371/journal.pntd.0003210.g002
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sudden extraordinary increases in vector abundance [72]. Thus,

the occurrence of large CL epidemics during or shortly after the

cold ENSO phase might indicate a role for SF vector outbreaks on

CL epidemics. Indeed, a detailed study in Venezuelan village

showed that CL cases in an endemic village were associated with

vector abundance [63,64]. Nevertheless, the abundance of SF

vectors in those studies didn’t show potential ‘‘outbreaks’’ [63,64]

in SF abundance, thus not allowing to assess whether CL case

incidence flattens out with large vector abundance. This informa-

tion is necessary to properly understand the role of climate on the

entomological risk for CL transmission [29,62]. This goal will

require new longitudinal studies on vector abundance in Panamá

[30] where Leishmania spp infection in the vectors is also tracked

[40], in order to better understand the relationship between vector

abundance and vector infection, since constant or nearly constant

infections rates in vectors have different implications to understand

Table 1. Parameter estimates for the best model.

Symbol Parameter (Lag)
Estimate ±
S.E.

m
_ Intercept 210623

ŵw1
AR(1) 0.41460.086

ŵw2
AR(2) 0.36460.088

b̂b2
SST4(5) 256.20611.73

b̂b3
SST4(12) 33.82613.21

âa T(13) 32.9668.42

ŝse Error S.D. 57.18

AR, SST4 and T stand, respectively, for Autoregressive, Sea Surface Temperature
4 (El Niño 4 Index) and Temperature.
doi:10.1371/journal.pntd.0003210.t001

Figure 3. Correlation between selected lags of the Cutaneous
Leishmaniasis cases from Republic of Panamá time series, and
climatic covariates. Time lags are indicated inside parenthesis ‘‘()’’
and SST4, Temp and Rain are, respectively, abbreviations for Sea Surface
Temperature 4 (El Niño 4 Index), Temperature and Rainfall. Circle size
indicates the magnitude of the association, while color indicates the
sign of the correlation, a scale is presented in the right margin of the
figure.
doi:10.1371/journal.pntd.0003210.g003

Figure 4. Cross-wavelet coherence analysis. Coherence between
(A) Cutaneous Leishmaniasis cases in the Republic of Panamá, Leish,
and Sea Surface Temperature 4, a.k.a., El Niño 4 index, SST4 (B) Leish
and Rainfall, Rain (C) Leish and Average Temperature, Temp (D) Rain
and SST4 (E) Temp and SST4. A cross wavelet coherence scale is
presented at the bottom of the figure, which goes from zero (blue) to
one (red). Red regions in the plots indicate frequencies and times for
which the two series share power (i.e., variability). The cone of influence
(within which results are not influenced by the edges of the data) and
the significant coherent time-frequency regions (p,0.05) are indicated
by solid lines.
doi:10.1371/journal.pntd.0003210.g004
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PLOS Neglected Tropical Diseases | www.plosntds.org 6 October 2014 | Volume 8 | Issue 10 | e3210



the role of vectors on transmission patterns. For example, if

infection rate decreases with vector abundance, such a density-

dependent pattern might partially explain the flattening relation-

ship between vector abundance and cases, such as observed with

bloodfeeding success by SF vectors, which decreases with density

[73]. Nevertheless, the flattening can also emerge by, or in synergy

with, the regulation in the recruitment of susceptible hosts [29]

and/or the zoonotic reservoirs, some of which might also

experience population outbreaks with ENSO [74,75] which can

ultimately be linked to ENSO mediated changes in the resources

sustaining wildlife reservoir populations in the neotropics [76,77].

Indeed, the most studied wildlife spp reservoir in Panamá, the two

toed sloth, has shown relatively large interannual fluctuations in

Leishmania (Viannia) sp. infection [10].

Our results also support the major role of Lu gomezi and Lu
trapidoi as dominant SF vectors of CL in Panamá [2,43], given

their ubiquity across domestic, peridomestic and forest environ-

ments. This ubiquity has implications for the role of these species

in both the transmission to humans and as bridge of pathogens

across vertebrate Leishmania spp hosts and eco-epidemiological

environments [78]. By contrast, Lu panamensis was mainly

present in forest environments, which suggests that it might not

be heavily involved in domiciliary/peridomiciliary CL transmis-

sion, a possibility also put forward by recent studies on spatial

patterns of human infections [43] and dogs (unpublished data),

which were mainly associated, respectively, with Lu gomezi and Lu

trapidoi abundance, but not Lu panamensis. Nevertheless, our

inferences are limited given our focus on acknowledged dominant

vectors species, which is an approach that potentially biases the

identification of other vectors present at CL transmission foci, a

problem that can only be solved when studying the whole SF

community [79].

Finally, our study has some limitations related to the nature of

the data and its countrywide geographical scale. Although our CL

and SF data have a consistent quality, there is ample room to

improve CL and SF surveillance. For CL surveillance, an urgent

need is to standardize diagnostics across the country using sensitive

and specific methods [1,26]. Even if it is impossible to standardize

diagnostics at the health post level, an effort should be made to

estimate the error in diagnostics, as done for malaria, where all

clinically diagnosed cases are confirmed at the ICGES, and quality

controls on the specificity of diagnosis are equally performed [67].

The non-spatial nature of our analysis precludes the identification

of transmission hotspots requiring attention [80] or zones were

biases in case report might be occurring [81]. Similarly, the role

that patterns of socio-economic inequity might have in the impacts

of climate change and weather variability on CL transmission [32]

cannot be estimated. Nevertheless, the relative low variability in

rainfall patterns across human inhabited zones in Panamá [41]

suggests that a country-wise analysis is a sound method to make

inferences about the relationship between CL transmission, ENSO

and weather patterns. The CL cases time series showed no trend

Figure 5. Sand Fly vector species abundance during the different ENSO phases and by eco-epidemiological environment.
Abundance by ENSO phase: (A) Lutzomyia gomezi (B) Lu trapidoi (C) Lu panamensis. Abundance by eco-epidemiological environment: (D) Lu gomezi
(E) Lu trapidoi (F) Lu panamensis. Panels A, B and C show data only for April, October and November where the number of trap-nights was above 30.
In all panels the y-axis is in a logarithmic scale.
doi:10.1371/journal.pntd.0003210.g005
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Table 2. Generalized linear mixed Poisson rate model parameter estimates.

Vector species Lutzomyia gomezi Lutzomyia trapidoi Lutzomyia panamensis

Parameter PAC Est S.E. z Pr(.|z|) PAC Est S.E. z value Pr(.|z|) PAC Est S.E. z Pr(.|z|)

ENSO-Nomal, January and Domicile 1(3.21") 1.17 0.35 3.35 0.001* 1(3.86") 1.35 0.49 2.75 0.006* 1(2.17") 0.78 0.41 1.89 0.058

ENS0-Hot 0.81 20.21 0.13 21.63 0.103 0.25 21.37 0.19 27.38 1.55E-13* 0.21 21.57 0.11 214.12 ,2e-16*

ENSO-Cold 0.95 20.05 0.10 20.49 0.622 0.60 20.51 0.15 23.52 ,0.001* 0.15 21.91 0.09 222.28 ,2e-16*

Peridomicile 0.55 20.59 0.08 27.58 3.57E-14* 0.31 21.16 0.08 213.78 ,2e-16* 2.54 0.93 0.08 11.07 ,2e-16*

Forest 0.48 20.73 0.18 24.11 4.03E-05* 0.47 20.75 0.20 23.81 ,0.001* 9.96 2.30 0.11 21.53 ,2e-16*

February 2.95 1.08 0.12 9.22 ,2e-16* 8.78 2.17 0.13 17.17 ,2e-16* 3.39 1.22 0.09 13.90 ,2e-16*

March 1.56 0.45 0.12 3.86 ,0.001* 0.71 20.35 0.13 22.62 0.009* 0.90 20.10 0.10 21.02 0.310

April 2.54 0.93 0.12 7.48 7.36E-14* 0.68 20.38 0.17 22.31 0.021* 0.75 20.29 0.09 23.05 0.002*

May 1.63 0.49 0.16 3.04 0.002* 0.21 21.57 0.24 26.62 3.51E-11* 0.45 20.80 0.11 27.47 7.78E-14*

June 2.62 0.97 0.16 5.95 2.71E-09* 0.41 20.89 0.25 23.61 ,0.001* 0.53 20.63 0.12 25.11 3.23E-07*

July 0.69 20.38 0.13 22.97 0.003* 0.34 21.07 0.17 26.35 2.12E-10* 1.91 0.65 0.08 7.91 2.58E-15*

August 1.78 0.58 0.12 4.94 7.99E-07* 1.33 0.29 0.14 2.01 0.045* 3.13 1.14 0.08 14.69 ,2e-16*

September 1.64 0.50 0.12 4.28 1.9E-05* 0.61 20.49 0.16 23.06 0.002* 1.99 0.69 0.09 8.09 6.11E-16*

October 1.15 0.14 0.12 1.12 0.263 1.40 0.34 0.15 2.31 0.021* 4.16 1.42 0.08 17.72 ,2e-16*

November 2.04 0.72 0.17 4.28 1.87E-05* 4.60 1.53 0.18 8.45 ,2e-16* 3.01 1.10 0.08 13.17 ,2e-16*

December 0.39 20.95 0.23 24.03 5.64E-05* 1.27 0.24 0.17 1.40 0.162 1.43 0.36 0.10 3.51 ,0.001*

Location Var 1.68 4.85 3.00

Year Var 0.25 0.36 0.23

PAC = proportional abundance change, Est = Estimate, Var = Variance. Model assumptions were met, thus ensuring a sound inference.
*Statistically significant (P,0.05);
"Estimated Abundance/trap-night/month for domiciliary samples, collected in January during the normal phase of ENSO.
doi:10.1371/journal.pntd.0003210.t002
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which allowed us to ignore a denominator for the cases,

nevertheless we cannot assert whether the lack of trends is due

to stationary population patterns in the population at risk, or if

they reflect other unknown changes in the populations at risk and/

or transmission. This point could be further clarified by the

establishment of health demographic surveillance systems that

could both improve the understanding of disease transmission

patterns and the demography of populations living in CL endemic

areas. Similarly, SF monitoring can be improved and more

systematically done at endemic areas. This is an issue of major

importance, since, given the delay between transmission and

clinical CL, an early prediction of CL epidemics will be more

robust if based on the monitoring of SF abundance and

Leishmania sp. infection [29]. Although each SF abundance

estimate came, on average, from ten trap-nights, locations were

variable and in some instances SF estimates came from as few as

three tree-trap nights and one location, yet these scarce records are

abundant in the context of entomological surveillance for CL, and

for most neglected tropical diseases. In that sense, an effort could

be made to establish sentinel posts in highly endemic counties, thus

rendering feasible a highly standardized estimation of SF

abundance across endemic areas, where ideally vector infection

is also tracked and this information used for prediction and pro-

active vector control [31].

Conclusion

Our data clearly supports that changes in SF abundance and

CL cases reported at health facilities in Panamá are associated

with ENSO. Interannual variability in CL cases is associated with

ENSO, where large epidemics follow the cold ENSO phase, while

seasonal patterns are associated with temperature and rainfall

variability. CL cases were positively associated with 3-month

lagged Lu gomezi and Lu trapidoi abundance estimates from light

traps. SF vector abundance, on average, decreased during the hot

and cold ENSO phases, when compared with the normal ENSO

phase, yet variability in SF was largest during the cold ENSO

phase suggesting that SF population outbreaks might play a role in

CL epidemics, a subject deserving further research.

Supporting Information

Figure S1 Sand fly sampling locations in the República
de Panamá. (A) República de Panamá location in the neotropics

(B) Species composition at each sampling point (C) Eco-

epidemiological sampling environments at each location (D)

Sampling year. In each panel the legend indicates the color

coding for points.

(PDF)

Figure 6. Cutaneous Leishmaniasis (CL) cases as function of dominant Sand Fly (SF) vector species abundance per trap-night and
per month. (A) Lutzomyia gomezi (B) Lu trapidoi (C) Lu panamensis (D) Lu gomezi and Lu trapidoi. Panels show CL cases as function of SF abundance
three months earlier.
doi:10.1371/journal.pntd.0003210.g006
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Figure S2 Boxplots of monthly Cutaneous Leishmania-
sis cases as function of El Niño Southern Oscillation
(ENSO) phase. Boxes contain data within the 25th to 75th

quantiles. Lines inside the boxes show the median of the

distribution for each month.

(PDF)

Figure S3 Cutaneous leishmaniasis cases and climatic
covariates correlation functions. (A) Cutaneous Leishman-

iasis cases, Leish, from Republic of Panamá partial autocorrelation

function, PACF. Cross-Correlation Functions, CCFs, between

Leish and (B) Sea Surface Temperature 4, i.e., El Niño 4 Index (C)

Rainfall (D) Maximum Temperature (E) Minimum Temperature

and (F) Average Temperature. Blue dashed lines indicate the 95%

confidence limits for correlations that can be expected by random.

(PDF)

Figure S4 Cutaneous Leishmaniasis cases from Repub-
lic of Panamá autocorrelation function (ACF). The ACF is

based on monthly data from January 2000 to December 2010.

Blue dashed lines indicate the 95% confidence limits for

correlations that can be expected by random.

(PDF)

Figure S5 Cutaneous Leishmaniasis cases and Sand Fly
vector abundance Cross Correlation Functions (CCFs).
CCFs between the number of monthly CL cases and sand fly

vector abundance/trap night/month: (A) Lutzomyia gomezi (B)

Lutzomyia trapidoi (C) Lutzomyia panamensis (D) Lutzomyia
gomezi and Lutzomyia trapidoi. Blue dashed lines indicate the

95% confidence limits for correlations that can be expected by

random.

(PDF)

Table S1 Cutaneous Leishmaniasis time series model
selection. Columns indicate the type of model (models): Null, full

or the backward elimination round, the autoregressive (Auto-

regressive) and seasonal (Seasonal) order, the covariates, including

inside parenthesis the lag (Covariates(Lag)) and The best model for

the null and full models and each selection round are bolded. o

and x indicate, respectively, the presence or absence of a variable

in a model. SST4, Temp and Rain are, respectively, abbreviations

for Sea Surface Temperature 4 (El Niño 4 Index), Temperature

and Rainfall.

(PDF)

Table S2 Sand Fly vector species abundance model
selection. AIC and BIC stand, respectively, for Akaike and

Bayesian Information Criteria. Best model selection is guided by

their minimization. Best models are bolded.

(PDF)
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1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, et al. (2012) Leishmaniasis

Worldwide and Global Estimates of Its Incidence. PLoS ONE 7: e35671.

2. Christensen HA, Fairchild GB, Herrer A, Johnson CM, Young DG, et al. (1983)

The ecology of cutaneous leishmaniasis in the republic of Panama. Journal of

Medical Entomology 20: 463–484.

3. Garnham PCC (1965) The Leishmanias, with Special Reference to the Role of

Animal Reservoirs. American Zoologist 5: 141–151.

4. Chaves LF, Hernandez M-J, Dobson AP, Pascual M (2007) Sources and sinks:

revisiting the criteria for identifying reservoirs for American cutaneous

leishmaniasis. Trends in Parasitology 23: 311–316.

5. Christensen HA, de Vasquez AM, Petersen JL (1999) Short report epidemiologic

studies on cutaneous leishmaniasis in eastern Panama. The American Journal of

Tropical Medicine and Hygiene 60: 54–57.

6. Herrer A, Christensen HA (1976) Epidemiological Patterns of Cutaneous

Leishmaniasis in Panama: III. Endemic Persistence of the Disease. The

American Journal of Tropical Medicine and Hygiene 25: 54–58.

7. Dutari L, Loaiza J (2014) American cutaneous leishmaniasis in Panama: a

historical review of entomological studies on anthropophilic Lutzomyia sand fly

species. Parasites & Vectors 7: 218.

8. Christensen HA, de Vasquez AM (1982) The Tree-Buttress Biotope: a

Pathobiocenose of Leishmania braziliensis. The American Journal of Tropical

Medicine and Hygiene 31: 243–251.

9. Herrer A, Telford SR, Jr. (1969) Leishmania braziliensis Isolated from Sloths in

Panama. Science 164: 1419–1420.

10. Herrer A, Christensen HA (1980) Leishmania braziliensis in the Panamanian

Two-Toed Sloth, Choloepus hoffmanni. The American Journal of Tropical

Medicine and Hygiene 29: 1196–1200.

11. Herrer A, Telford Jr SR, Christensen HA (1971) Enzootic cutaneous

leishmaniasis in Eastern Panama. I. Investigation of the infection among forest

mammals. Annals of Tropical Medicine and Parasitology 65: 349–358.

12. Telford Jr SR, Herrer A, Christensen HA (1972) Enzootic cutaneous

leishmaniasis in eastern Panama. 3. Ecological factors relating to the

mammalian hosts. Annals of Tropical Medicine and Parasitology 66: 173–179.

13. Tesh RB, Chaniotis BN, Aronson MD, Johnson KM (1971) Natural Host

Preferences of Panamanian Phlebotomine Sandflies as Determined by Precipitin

Test. The American Journal of Tropical Medicine and Hygiene 20: 150–156.

14. Tesh RB, Chaniotis BN, Carrera BR, Johnson KM (1972) Further studies on the

natural host preferences of Panamanian phlebotomine sandflies. American

Journal of Epidemiology 95: 88–93.

15. Chaniotis BN, Correa MA, Tesh RB, Johnson KM (1974) Horizontal and

vertical movements of phlebotomine sandflies in a Panamanian rain forest.

Journal of Medical Entomology 11: 369–375.

16. Hanson WJ (1961) The Breeding Places of Phlebotomus in Panama (Diptera,

Psychodidae). Annals of the Entomological Society of America 54: 317–322.

17. Rutledge LC, Mosser HL (1972) Biology of Immature Sandflies (Diptera:

Psychodidae) at the Bases of Trees in Panama. Environ Entomol 1: 300–309.

18. Rutledge LC, Ellenwood DA (1975) Production of Phlebotomine Sandflies on

the Open Forest Floor in Panama: The Species Complement. Environ Entomol

4: 71–77.

19. Rutledge LC, Ellenwood DA (1975) Production of Phlebotomine Sandflies on

the Open Forest Floor in Panama: Phytologic and Edaphic Relations. Environ

Entomol 4: 83–89.

20. Rutledge LC, Ellenwood DA (1975) Production of Phlebotomine Sandflies on

the Open Forest Floor in Panama: Hydrologic and Physiographic Relations.

Environ Entomol 4: 78–82.

21. Chaniotis BN, Tesh RB, Correa MA, Johnson KM (1972) Diurnal resting sites

of phlebotomine sandflies in a Panamanian tropical forest. Journal of Medical

Entomology 9: 91–98.

22. Rutledge LG, Ellenwood DA, Johnston L (1975) An analysis of Sand Fly Light

trap collections in the Panama canal zone (Diptera: Psychodidae) Journal of

Medical Entomology 12: 179–183.

23. Rutledge LC, Walton BC, Ellenwood DA, Correa MA (1976) A Transect Study

of Sand Fly Populations in Panama (Diptera, Psychodidae). Environ Entomol 5:

1149–1154.

24. Chaniotis BN (1983) Improved trapping of phlebotomine sand flies (Diptera:

Psychodidae) in light traps supplemented with dry ice in a neotropical rain forest.

Journal of Medical Entomology 20: 222–223.

25. Miranda A, Carrasco R, Paz H, Pascale JM, Samudio F, et al. (2009) Molecular

Epidemiology of American Tegumentary Leishmaniasis in Panama. The

American Journal of Tropical Medicine and Hygiene 81: 565–571.
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38. Alessi CÁC, Galati EAB, Alves JR, Corbett CEP (2009) American cutaneous
leishmaniasis in the Pontal of Paranapanema - SP, Brazil: ecological and

entomological aspects. Revista do Instituto de Medicina Tropical de São Paulo
51: 277–282.

39. Toumi A, Chlif S, Bettaieb J, Alaya NB, Boukthir A, et al. (2012) Temporal

Dynamics and Impact of Climate Factors on the Incidence of Zoonotic
Cutaneous Leishmaniasis in Central Tunisia. PLoS Negl Trop Dis 6: e1633.

40. Anderson JM, Samake S, Jaramillo-Gutierrez G, Sissoko I, Coulibaly CA, et al.
(2011) Seasonality and Prevalence of Leishmania major Infection in Phlebotomus
duboscqi Neveu-Lemaire from Two Neighboring Villages in Central Mali. PLoS
Negl Trop Dis 5: e1139.

41. Autoridad Nacional del Ambiente (2010) Atlas Ambiental de la República de
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67. Hurtado LA, Cáceres L, Chaves LF, Calzada JE (2014) When climate change
couples social neglect: malaria dynamics in Panamá. Emerging Microbes &
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