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Abstract 

A validated, simple and sensitive HPLC method was developed for the 

simultaneous determination of lipoperoxidation relevant reactive aldehydes; 

glyoxal (GO), acrolein (ACR), malondialdehyde (MDA) and 4-Hydroxy-2-

nonenal (HNE) in human serum.  The studied aldehydes were reacted with  

2,2'-furil to form fluorescent difurylimidazole derivatives that were separated on 

C18 column using gradient elution and fluorescence detection at excitation and 

emission wavelengths of 250 and 355 nm, respectively. The method showed 

good linearity over the concentration ranges of 0.100–5.00, 0.200–10.0,  

0.200-40.0 and 0.400–10.0 nmol/mL for GO, ACR, HNE and MDA, 

respectively, with detection limits ranged from 0.030 to 0.11 nmol/mL. The % 

RSD of intra-day and inter-day precision didn't exceed 5.0% and 6.2%, 

respectively, and the accuracy (%found) ranged from 95.5 to 103%. The 

proposed method was applied for monitoring the four aldehydes in sera of 

healthy, diabetic and rheumatic human subjects with simple pretreatment steps 

and without interference from endogenous components. By virtue of its high 

sensitivity and accuracy, our method enabled detection of differences between 

analytes concentrations in sera of human subjects at different clinical conditions.  

  

Keywords: Lipoperoxidation; aldehydes; HPLC-fluorescence detection;  

2,2'-furil; diabetes; rheumatoid arthritis. 
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1. Introduction 

Oxidative stress has been implicated in a range of diseased conditions, 

including diabetes [1], hypertension [2], atherosclerosis [3], Alzheimer's disease 

[4] and rheumatoid arthritis [5]. Oxidants, including reactive oxygen species 

(ROS), are constantly produced in cells through normal metabolic processes. 

Oxidative stress occurs when the balance of oxidants within the cell exceeds the 

levels of antioxidants [6]. The hallmarks of oxidative stress include 

lipoperoxidation, protein oxidation and DNA oxidation. The peroxidation of 

membrane-derived lipid molecules is known to give rise to many products 

through a series of iterative oxidation and cleavage reactions. The most 

commonly characterized products are aldehydes. Damage caused by aldehydes 

can disturb the function of proteins and enzymes, initiates further damage to 

lipids and lead to the formation of DNA adducts. In addition, some reactive 

aldehydes such as glyoxal (GO), acrolein (ACR), malondialdehyde (MDA) and 

4-Hydroxy-2-nonenal (HNE) can reduce intracellular glutathione levels, thereby 

leading to increased oxidant imbalance within the cell [6, 7]. These types of 

molecular distresses may lead to cell death [8]. 

Among the carbonyl compounds produced as a result of lipoperoxidation, 

alkanals are the least reactive. Alkenals containing unsaturated bond, such as 

ACR, are usually an order of magnitude more reactive than the alkanals. 4-

Hydroxy-2-alkenals, such as HNE, are extremely reactive due to increased 

reactivity of the α,β-unsaturated bond by the close proximity of the electron-

withdrawing hydroxyl at C4 and the C1-carbonyl group [6]. The di-aldehydes, 

such as GO and MDA, are also very reactive since the two aldehydic moieties 

can form Schiff bases with amino acids [6]. In consequence, these four 

lipoperoxidation relevant reactive aldehydes (LPRRAs) namely; GO, ACR, 

MDA and HNE are considered the most reactive and harmful, and could be 
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used as good biomarkers of oxidative damage and disease progression [9]. So 

there is a strong need for a method that could simultaneously determine 

LPRRAS to investigate their pattern in healthy and diseased condition.  

Levels of these LPRRAs have been determined in different matrices 

either individually or in combination with each other or other carbonyl 

compounds as has been reviewed by Shibamoto [10]. Some methods were 

recently published for determination of GO such as GC-MS [11], GC-flame 

ionization detection [12] and HPLC-FL following derivatization with 5,6-

diamino-2,4-hydroxypyrimidine sulfate [13] or 4-methoxy-o-phenylenediamine 

[14]. ACR has been determined by HPLC-FL after derivatization with 

luminarin [15] or 3-aminophenol [16]. MDA has also been determined by LC 

and GC methods [17], HPLC-CL using potassium permanganate/formaldehyde 

system [18], capillary electrophoresis-FL after derivatization with thiobarbituric 

acid [19] and surface-enhanced Raman spectroscopy after derivatization with 

thiobarbituric acid also [20]. As for HNE, HPLC-UV detection based on 

derivatization with 2,4-dinitrophenylhydrazine [21] and GC-electron capture 

detection [22] have been reported for its determination. Only one GC method 

with nitrogen phosphorous detection was developed for the simultaneous 

determination of ACR, MDA and HNE in lipids following derivatization with 

n-methylhydrazine [23]. Another LC-MS method has been developed for 

simultaneous determination of several classes of aldehydes including ACR, 

MDA and HNE in exhaled breath condensate after derivatization with 2,4-

dinitrophenylhydrazine [24]. These methods involved the use of expensive 

sophisticated instrumentation that are not available in many laboratories and are 

applied to either lipids [23] or exhaled breath condensate only [24]. This 

initiates the present study to develop and validate a new analytical method for 

the simultaneous determination of these LPRRAs in human serum and 

estimation of their pattern in diseased conditions. 
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In the present study, a sensitive and selective derivatizing reagent,  

2,2'-furil, was used in the presence of ammonium acetate for pre-column 

derivatizaion of LPRRAs to convert them to highly fluorescent difurylimidazole 

derivatives. A reaction scheme illustrating the mechanism of fluorogenic 

derivatization reaction of the targeted aliphatic aldehydes with 2,2'-furil is 

presented in Fig. 1. 2,2'-Furil has been applied in our laboratory as a new 

fluorogenic derivatizing agent for the determination of medium chain-length 

aliphatic aldehydes in human serum [25]. This reagent has been proven to be 

selective for aldehydes; also it is stable and safe compared with other 

fluorescence derivatization reagents such as hydrazine based reagents [25]. In 

this study, we adopted the gradient elution to separate the peaks of LPRRAs 

derivatives from blank peaks within short time. Hence, the proposed method 

was applied for the determination of LPRRAs in sera of diabetic and 

rheumatoid arthritis patients with simple pre-treatment steps without 

interference from biological components. The patterns of these oxidative stress 

biomarkers in sera of healthy, diabetic and rheumatic patients were investigated.   

2. Experimental  

2.1. Materials and reagents 

All reagents were of analytical grade and used as received. Acrolein 

monomer (90%, w/v) and 2,2'-furil were obtained from Tokyo Chemical 

Industries (Tokyo, Japan). Glyoxal (40%, w/v) and malondialdehyde 

tetrabutylammonium salt (96%, w/w) were supplied from Sigma Aldrich (St. 

Louis, MO, USA). 4-Hydroxy-2-nonenal (1%, w/v) was purchased from 

Cayman Chemical Company (Ann Arbor, MI, USA). Ammonium acetate, citric 

acid monohydrate and phosphate buffer saline (PBS) powder were purchased 

from Wako Pure Chemical Industries (Osaka, Japan). Methanol (HPLC grade) 

was obtained from Kanto Chemical Company (Tokyo, Japan). Glacial acetic 

acid and di-sodium hydrogen phosphate dodecahydrate were purchased from 
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Nacalai Tesque (Kyoto, Japan). The water used was purified by a Simpli Lab 

UV (Millipore, Bedford, MA, USA). Stock solutions of GO, ACR, MDA and 

HNE (5.0 mM) were prepared in methanol. To obtain reproducible results, a 

mixed standard solution containing the four aldehydes (200.0 µM of each 

aldehyde) was daily prepared by diluting the stock solutions with methanol then 

diluted with the same solvent as needed to obtain the required concentrations. 

8.0 mM 2,2'-furil and 3.0 M ammonium acetate were prepared in methanol and 

glacial acetic acid, respectively. 0.01 M PBS was prepared in water. All 

solutions were kept in the refrigerator at 4 °C except for the HNE stock solution 

and the mixed standard solution containing the four aldehydes were kept  

at -80 °C. 

2.2. Instruments  

The HPLC system consisted of  two Shimadzu LC-20AD pumps (Kyoto, 

Japan), a Rheodyne injector (Cotati, CA, USA) with a 20  µL sample loop, a 

Shimadzu RF-20AXS fluorescence detector and an EZ Chrom Elite 

chromatography data acquisition system (Scientific software, Pleasanton, CA, 

USA). The fluorescence spectra were recorded on a Shimadzu RF-1500 

spectrofluorophotometer. Horiba F22 pH-meter was used to adjust buffer pH. 

The samples were centrifuged using Himac CR 15 refrigerated centrifuge 

(Hitachi Koki Co., Ltd., Tokyo, Japan). Yamato HF-41 heating block (Tokyo, 

Japan) was used in derivatization process. The solutions were evaporated in 

Eyela CVE-3100 solvent centrifugal evaporator (Tokyo Rikakikai Co., Ltd., 

Tokyo, Japan). 

2.3. Chromatographic conditions  

Chromatographic separation was achieved on a Cosmosil 5C18-MS II 

column (250 mm × 4.6 mm, 5µm particle size) from Nacalai Tesque INC. 
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(Kyoto, Japan).  Two mobile phases; A: methanol-citrate phosphate buffer  

(pH 5.0; 5.0 mM) (48:52, v/v) and B: methanol-citrate phosphate buffer (pH 

5.0; 5.0 mM) (80:20, v/v) were pumped at a flow rate of 1.0 mL/min in the 

following gradient elution mode: 100 % A (0-22.0 min), 0% B to 100 % B 

linearly (22.0-32.0 min) and 100% B (32.0-40.0 min). The fluorescence detector 

wavelengths were set at 355 nm for emission and 250 nm for excitation. 

Analysis was performed at ambient temperature. 

2.4. Assay procedure for aliphatic aldehydes in human serum 

To 50 µL of human serum, spiked with the targeted aldehydes, 950 µL of 

methanol was added to denature proteins. The mixture was mixed for 30 

seconds then centrifuged at 2200×g for 5 min at 4°C. A 500 µL portion of the 

supernatant was transferred to screw-capped vial followed by 400 µL of 8.0 

mM 2,2'-furil and 150 µL of 3.0 M ammonium acetate. The mixture was heated 

at 90 °C for 30 min then cooled. The solution was evaporated and the residue 

was reconstituted with 100 µL of the mobile phase then mixed for 1 min and 

filtered through 0.45 µm cellulose acetate membrane filter. An aliquot of 20 µL 

was injected into the HPLC system. A blank experiment was carried out 

simultaneously using unspiked serum. For preparation of reagent blank and 

standard mixture chromatograms, the previous procedure was adopted with 

replacing serum with 50 µL of PBS. 

2.5. Clinical samples 

Serum samples from 6 diabetic patients (2 females, 4 males; mean age 

53.2±10.7) and 6 rheumatoid arthritis patients (3 females, 3 males; mean age 

56.7±15.3) in addition to a control group of 6 healthy subjects (2 females, 4 

males; mean age 52.0±7.50) were supplied by Sasebo Chuo Hospital and stored 

at -80 °C until analyzed. The present experiments were approved by the Ethics 
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Committee of the School of Pharmaceutical Sciences, Nagasaki University, and 

performed in accordance with the established guidelines. 

2.6. Statistical analysis 

The data are presented as mean ± standard error (SE) for the number of 

experiments. In order to compare the levels of the four targeted aldehydes in the 

three studied groups (healthy subjects, diabetic, and rheumatoid arthritis 

patients), Kobayashi decision tree [26] was employed. Bartlett's test was used as 

a test for the equality of k variances. It was found that the k sampled 

populations have unequal variances and Steel's Dwass test for comparing all 

pairs was used. All the statistical tests were two-sided at a significant level of 

α=0.05. 

3. Results and discussion 

3.1. Optimization of chromatographic conditions 

Initially, isocratic separation of the four analytes was investigated but this 

was not possible due to the different natures of the analytes since GO, ACR and 

MDA are hydrophilic while, HNE is lipophilic. Hence, the gradient elution 

program described under "Chromatographic conditions" was adopted for 

separation of the analytes within a reasonable time. Different columns were 

tested with mobile phases comprising different organic modifiers and buffers at 

different pH values and ionic strengths. Optimum separation was accomplished 

on C18 column using the mobile phase containing methanol as organic modifier 

and 5.0 mM citrate-phosphate buffer of pH 5.0 as aqueous phase in the gradient 

elution mode described earlier.  

 Typical chromatograms for standard mixture of the four LPRRAs 

derivatives and reagent blank are shown in Fig. 2. Baseline resolution of the 
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four LPRRAs derivatives was achieved with the retention times (tR) of 3.1, 8.0, 

19.8 and 36.9 min for GO, ACR, MDA and HNE, respectively and a total 

chromatographic run was completed with less than 40 min. Blank peaks were 

observed in all chromatograms, this might be attributed to the presence of short 

chain aliphatic aldehydes as impurities either in solvents or reagents, or 

incorporated from the air during the derivatization procedure [27]. Additionally, 

2,2'-furil was reported to react with ammonium acetate in the presence of glacial 

acetic acid, in the absence of any aldehydes, producing trifurylimidazole 

fluorescent product [28]. Meanwhile, when injecting ACR following 

derivatization, two peaks were observed at tR of 8.0 and 24.8 min. This might be 

attributed to presence of ACR dimer as an impurity in standard solution [29] 

which react with 2,2'-furil giving a fluorescent derivative at tR of 24.8 min. 

Nevertheless, this peak did not interfere with the peaks of target analytes 

proving selectivity of the proposed method. 

3.2. Optimization of derivatization conditions 

In order to obtain higher sensitivities, derivatization conditions including 

reagent concentrations, heating temperature and time were optimized using 

standard mixture of the four LPRRAs (5 nmol/mL each) spiked in human 

serum. The influence of 2,2'-furil concentration was investigated over the range 

of 0.4-12.0 mM, where increasing the concentration of the regent produced a 

corresponding increase in the peak areas of the formed derivatives with 

maximum response obtained using 8.0 mM (Fig. 3A). Also, the effect of 

ammonium acetate concentration was studied from 0.5 to 4.0 M. Increasing the 

concentration of ammonium acetate resulted in proportional increase in the peak 

areas of ACR and MDA derivatives with minor effects on the peak areas of GO 

and HNE derivatives. The optimum concentration was found to be 3.0 M 

ammonium acetate giving maximum and constant peak areas for all aldehydes 
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derivatives (Fig. 3B). The effect of heating temperature was also investigated, 

where it was found that increasing the temperature gave rise to corresponding 

increase in the peak areas up to 90 °C after which further increase in the 

temperature resulted in a decrease in the analytical response (Fig. 3C) which 

may be attributed to instability of the reaction product at higher temperatures. 

Thus, 90 °C was used as the optimum heating temperature for performing the 

reaction. The influence of heating time on the derivatization reaction was also 

investigated where; maximum peak areas were obtained upon heating for 30 

min after which a slight decrease of the peak areas was observed (Fig. 3D). 

3.3. Validation Study 

Validation of the proposed method was performed following U.S. 

Guidance for Industry on Bioanalytical Method Validation [30]. Calibration 

curves for the four LPRRAs were constructed in human serum under the 

optimum derivatization and separation conditions. A linear dependence of 

concentration on average peak areas was achieved with correlation coefficients 

ranged from 0.997 to 0.9998. Limit of detection (LOD) were calculated as the 

concentration with a signal-to-noise (S/N) ratio of 3. Calibration ranges, 

regression equations and LOD of the four LPRRAs are summarized in Table 1. 

The proposed method was found to be about 10, 59 and 1.5 times more 

sensitive than the reported GC-flame ionization detection [12] and HPLC-FL 

methods [13,14] for GO, respectively, 2.5 times more sensitive than the 

reported HPLC-FL method [15] for ACR and HPLC-CL method for MDA [18] 

and 1.5 times more sensitive than HPLC-FL [16] for ACR. On the other hand, 

the proposed method showed comparable sensitivity to the reported HPLC-UV 

method [21] for HNE, yet this method involved time consuming and tedious 

extraction procedure. Even though some of the published literature for LPRRAs 

exhibits higher sensitivity than the present method, but they either entail the use 
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of sophisticated very expensive instrumentation [11, 22-24] or instruments that 

are unavailable in many laboratories [20] or the use of a non-selective 

derivatizing agent such as thiobarbituric acid (TBA) that probably yields false 

high results due to likely interference from other TBA-reactive compounds 

including reducing sugars, pyrimidine and prostaglandin endoperoxides [19]. 

2,2'-Furil was proven as a stable derivatization reagent which is relatively safe 

compared with hydrazine reagents and highly selective relative to TBA.  

Accuracy of the proposed method was evaluated by the closeness of 

mean test results obtained by the proposed method to the true concentration of 

the analytes. Serum samples spiked with a standard mixture of aldehydes at 

three different concentrations were analyzed for assessment of accuracy. 

Percentage recoveries were expressed as [(amount found/amount spiked) x100]. 

To evaluate the intra- and inter-day precision of the proposed method; 

five replicates of three sets of human serum samples spiked with standard 

mixture of LPRRAs at three concentration levels were analyzed. It was found 

that % RSD values for intra-day (n = 5) and inter-day (n = 5) precision were 

0.50–5.0 % and 1.1–6.2%, respectively. Results of accuracy and precision 

studies are summarized in Table 2. These results indicate that the proposed 

method enables precise and accurate analysis of the targeted four LPRRAs in 

human serum. 

3.4. Analysis of serum samples from healthy subjects and patients 

The proposed HPLC-FL method was applied to the determination of the 

four LPRRAs in the sera of healthy and diseased human subjects. Figure 4 

shows typical chromatograms of spiked serum and serum samples from healthy 

control subjects, diabetic and rheumatoid arthritis patients determined by the 

proposed method. Although several peaks that are attributed to the biological 
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components other than the reagent blank were detected in the chromatogram of 

serum samples, the peaks of the studied LPRRAs could be separated and 

detected clearly without any interference.  

The level of the target LPRRAs were compared between control subjects, 

diabetic and rheumatoid arthritis patients using Steel's Dwass test [26] for 

comparing each pair and the results are abridged in Table 3. The statistical tests 

were two-sided at a significant level α = 0.05. The level of the LPRRAs in 

healthy subjects were found to be 1.04±0.060, 1.26±0.28, 15.1±0.52 and 

0.960±0.060 for GO, ACR, MDA and HNE, respectively, and these values 

show good agreement with other previous reports [12, 31-34].  

Statistical analysis revealed the presence of significantly higher 

concentration of GO, ACR, MDA and HNE in diabetic patients as compared to 

healthy controls. The increased level of MDA and HNE in diabetic patients is 

attributed to catalysis of lipoperoxidation by free glucose and glycosylated 

collagen [35]. It had been also demonstrated that oxidation of the glycation 

products can release dicarbonyls such as GO and short chain aldehydes such as 

ACR. This process of glycoxidation takes place when there is an extra amount 

of glucose coupled with high levels of oxidants, and this is the case in diabetes 

[6]. Also, GO may arise from enzymatic and non-enzymatic degradation of 

glucose [36].  

On the other hand, the levels of ACR, MDA and HNE were found to be 

significantly higher in the sera of rheumatoid arthritis patients compared to the 

healthy controls. Meanwhile, there was no significance difference in the 

concentration of GO in the two groups. The elevated levels of MDA and HNE 

in rheumatoid arthritis patients are probably due to high level of ROS produced 

by activated polymorphonuclear cells and injury resulting from ischemia and 

reperfusion in the inflamed joints [37]. Beside oxidative stress and increased 
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lipoperoxidation, the presence of ACR at a significantly higher concentration in 

rheumatic group might be also attributed to the oxidative deamination of 

polyamines [38] which were previously detected in high levels in rheumatic 

patients' urine samples [39].  

Comparing the levels of the four LPRRAs in rheumatic and diabetic 

groups, HNE and MDA were found to be present in significantly higher level in 

rheumatic sera than diabetic sera. Since the main source of these two aldehydes 

is from lipoperoxidation [37, 40], we could conclude that the rates of oxidative 

stress and lipoperoxidation are relatively higher in rheumatic condition than 

hyperglycemic one. On the other hand, the concentrations of GO and ACR were 

found to be significantly higher in serum of diabetic group than in rheumatic 

one. This might be due to the increase of glycation and glycoxidation processes 

in diabetic patients [6, 9].  

It is worth noting that the present work is the first study that explores and 

compares the patterns of the most harmful LPRRAs (GO, ACR, MDA and 

HNE) in these two diseased conditions. However, there are some reports that 

determine these compounds in different biological, environmental or lipid 

matrices [10-24], none of these methods simultaneously determine these 

LPRRAs in human serum. 

4. Conclusion  

We developed a sensitive and accurate HPLC method with fluorescence 

detection for the simultaneous determination of four LPRRAs including GO, 

ACR, MDA and HNE using 2,2'-furil as a sensitive and selective fluorogenic 

derivatizing agent. The proposed method monitors the levels of such aldehydes 

in human serum with the aim of evaluating the oxidative status in healthy 

subjects and in patients suffering from diabetes and rheumatoid arthritis. The 
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proposed method allowed the simultaneous determination of patterns of 

LPRRAs in both healthy and diseased conditions.   
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Table 1: Calibration ranges, regression equations, correlation coefficients and 

detection limits for the target aldehydes in spiked serum 

Compound 
Range, 

nmol/mL 
Regression equation a, n = 3 r b 

LODc, nmol/mL 

(pmol/injection) 

GO 0.100–5.00 Y= 3.10 x 105 +  8.40 x 105 X 0.997 0.030 (0.60) 

ACR 0.200–10.0 Y= 11.5 x 105 +  6.50 x 105 X 0.999 0.060 (1.2) 

MDA 0.200-40.0 Y= 62.2 x 105 + 10.3 x 105 X 0.999 0.050 (1.0) 

HNE 0.400–10.0 Y= -6.20 x 105 +  16.9 x 105 X 0.9998 0.11 (2.2) 
a Y= peak area, X= sample concentration (nmol/mL). 
b Correlation coefficient. 
c S/N= 3. 
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Table 2: Accuracy and precision of the proposed method for the determination 

of BAL in the spiked enzymatic reaction mixtures.  
 

Aldehyde 

Spiked 

amount 

(nmol/mL) 

Intra-day (n = 5) Inter-day (n = 5) 

Found 
Accuracy  

(%) 

Precision 

(% RSD) 
Found 

Accuracy  

(%) 

Precision 

(% RSD) 

GO 0.200 0.191 95.5 4.60 0.193 96.5 4.10 

2.00 1.91 95.5 5.00 1.91 95.5 5.30 

5.00 4.91 98.2 1.70 4.90 98.0 4.10 

ACR 0.500 0.498 99.6 0.500 0.516 103 6.20 

5.00 4.91 98.2 1.80 4.91 98.2 2.00 

10.0 9.88 98.8 1.10 9.92 99.2 1.20 

MDA 0.500 0.481 96.2 3.90 0.494 98.8 2.10 

15.0 14.8 98.7 1.70 14.8 98.7 1.40 

30.0 29.8 99.3 0.900 29.7 99.0 1.10 

HNE 1.00 0.993 99.3 1.50 0.962 96.2 3.60 

5.00 4.88 97.6 2.50 4.92 98.4 1.50 

10.0 9.92 99.2 0.900 9.73 97.3 3.90 
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Table 3: Statistical analysis of the results for determination of the target 

aldehydes in healthy, diabetic and rheumatic patients' sera. 

 

Groups 

(n=6) 
Parameters 

LPRRAs data 

GO ACR MDA HNE 

Control Range (nmol/mL) 0.900-1.26 0.660-2.18 13.4-16.6 0.780-1.14 

Mean ± SE 1.04±0.060 1.26 ±0.28 15.1±0.52 0.960±0.060 

Diabetic 

Patients 
Range (nmol/mL) 1.68-4.04 4.60-9.29 21.1-30.5 1.19-1.36 

Mean ± SE 2.75 ±0.34 6.35 ±0.71 25.6±1.8 1.27±0.030 

Rheumatic 

Patients 

Range (nmol/mL) 0.700-2.06 2.29-3.71 35.2-39.6 1.37-2.47 

Mean ± SE 1.34 ±0.18 2.92 ±0.20 36.95±0.62 1.78±0.17 

Statistical 

analysis  

Bartlett (p) 0.00400a 0.0178a 0.0328a 0.00180a 

Control  vs 

Diabetic 

(p)b 0.0141a 0.0141a 0.0141a 0.0141a 

Control  vs 

Rheumatic 

(p)b 0.281c 0.0141a 0.0141a 0.0141a 

Diabetic vs 

Rheumatic 

(p)b 0.0349a 0.0141a 0.0141a 0.0141a 

 

a P < 0.05. 
b Steel's Dwass test. 
c Non-significant. 

 
 

 

  

 

 

22 



Figure Captions: 

Fig.1. The reaction scheme for fluorogenic derivatization of target aldehydes 

with 2,2'-furil. 

Fig.2. Representative chromatograms of (A) reagent blank, (B) standard 

mixture of the studied aldehydes (5 nmol/mL each), where:  

1=GO, 2=ACR, 3=MDA, 4=HNE, * acrolein dimer. 

Fig.3. Effects of (A) 2.2'-furil concentration, (B) ammonium acetate 

concentration, (C) reaction temperature and (D) reaction time on the 

relative peak area of the studied aldehydes derivatives (5.0 nmol/mL) 

Fig.4. Chromatograms of (A) healthy human serum, (B) human serum spiked 

with a standard mixture of the studied aldehydes (5.0 nmol/mL each), 

(C) diabetic patient serum, and (D) rheumatoid arthritis patient serum; 

where peaks 1-4, * as in Fig.2. 
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