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Abstract

Introduction: The aim of the present study was to investigate how the speed of

observed action affects the excitability of the primary motor cortex (M1), as

assessed by the size of motor evoked potentials (MEPs) induced by transcranial

magnetic stimulation (TMS).

Methods: Eighteen healthy subjects watched a video clip of a person catching a

ball, played at three different speeds (normal-, half-, and quarter-speed). MEPs

were induced by TMS when the model’s hand had opened to the widest extent just

before catching the ball (‘‘open’’) and when the model had just caught the ball

(‘‘catch’’). These two events were locked to specific frames of the video clip

(‘‘phases’’), rather than occurring at specific absolute times, so that they could

easily be compared across different speeds. MEPs were recorded from the thenar

(TH) and abductor digiti minimi (ADM) muscles of the right hand.

Results: The MEP amplitudes were higher when the subjects watched the video

clip at low speed than when they watched the clip at normal speed. A repeated-

measures ANOVA, with the factor VIDEO-SPEED, showed significant main effects.

Bonferroni’s post hoc test showed that the following MEP amplitude differences

were significant: TH, normal vs. quarter; ADM, normal vs. half; and ADM, normal vs.

quarter. Paired t-tests showed that the significant MEP amplitude differences

between TMS phases under each speed condition were TH, ‘‘catch’’ higher than

‘‘open’’ at quarter speed; ADM, ‘‘catch’’ higher than ‘‘open’’ at half speed.

Conclusions: These results indicate that the excitability of M1 was higher when the

observed action was played at low speed. Our findings suggest that the action
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observation system became more active when the subjects observed the video clip

at low speed, because the subjects could then recognize the elements of action

and intention in others.

Introduction

Recent years have seen great advances in brain imaging technology, enabling many

researchers to elucidate brain mechanisms that had formerly been treated as black

boxes. Rizzolatti et al. found neurons in area F5 of the monkey premotor cortex,

now called ‘‘mirror neurons’’, that fire both when the monkey performs specific

goal-directed hand actions and when it observes another monkey or an

experimenter performing the same or a similar action [1, 2]. Even with the same

reaching and grasping action, it was revealed that mirror neurons in area F5 of the

monkey premotor cortex are more activated when the monkey recognizes the

underlying motor goals or when it understands the intentions associated with the

actions of the model [3, 4]. Neurons having these characteristics have also been

found in the inferior parietal lobule (area PF) and superior temporal sulcus (STS).

STS is an important component of the perceptual system and the neurons within

the STS have purely visual properties. [5–8]. These three areas were found to be

mutually connected, and the entire neural circuit is called the ‘‘mirror neuron

system’’ (MNS) [9, 10].

Moreover, a ‘‘mirror’’ system similar to that described in the monkey also exists

in humans [11–13]. However, evidence for the existence of such a circuit is

relatively weak [14]. Some studies have investigated neurons with both action-

observation and action-execution properties in humans [15, 16]. However,

limited evidence for these was found. Therefore, we refer to this neural circuit as

the action observation system (AOS) in this paper. Evidence suggest that in the

human brain, action observation recruits a consistent network of cortical areas,

including the inferior frontal gyrus (within Broca’s area; IFG) [17, 18], ventral

premotor cortex (PMv) [19], inferior parietal lobule (IPL) [20], superior temporal

sulcus (STS) (activated only in observation mode) [21], dorsal parietal lobule

(PMd) [22], superior parietal lobule (SPL) [23], and anterior intraparietal area

(AIP) [24].

The AOS is activated both when an action is performed and when the same

action performed by others is observed, and these neurons are thought to be the

basis of action recognition, action understanding, and automatic imitation

[3, 4, 9, 13, 25–28]. Action observation reactivates the same cortical motor areas

that are involved in the performance of the observed actions. Therefore, action

observation shows promise as a potential tool for neurorehabilitation [29–33].

Consistent with the conclusions from AOS studies, transcranial magnetic

stimulation (TMS) studies have shown that the excitability of primary motor

cortex (M1) is enhanced during action observation [34–37]. This can be explained
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by the assumption that the PMv, which is an important node the AOS, and which

has strong connections to M1, exerts an influence on M1 activity during the

observation of actions [38–41]. Moreover, it has been demonstrated that M1

facilitation is modulated by the orientation of visual stimuli [39], the transitive/

intransitive distinction in the observed movements [42], and the laterality of the

observed body part [43].

However, many points concerning the details of modulation of the excitability

of M1 during action observation require clarification. For example, there are

doubts as to whether humans are, in fact, able to observe the details of quick and

complex movements such as a figure skater’s performance. In fact, judges in figure

skating competitions often use slow-motion replay to help in making difficult

evaluations [44]. In humans, the highest visual frequency that can be followed is

16 Hz, or a period of 0.06 s. Anything faster cannot be processed accurately [45].

For these reasons, human observational ability is thought to be limited, and it

would therefore follow that we cannot register the details of quick and complex

movements, casting doubt on the idea that the observation of such movements

will help in re-acquiring them in a rehabilitation context.

Until now, the clinical application of action observation in the field of

rehabilitation has consisted of showing the patient a video modeling the

movement to be acquired. In our opinion, it is important that information

obtained visually by patients demonstrate the elements of the movement to be

acquired, without which it cannot be linked to motor learning. In fact,

Parkinsonian patients respond to action observation only when the model is a

patient with Parkinson’s disease performing the action at a low, ‘‘bradykinetic’’

speed. Patients with PD do not respond to action observation when the action is

performed at a higher speed by a neurologically healthy participant [46]. We

predict that this effect is not specific to patients with PD, and that healthy

participants will likewise respond preferentially to bradykinetic versions of

actions. Therefore, observing the movements of others at low speed has

possibilities for better assisting motor learning, on the assumption that patients

are better able to recognize the elements of a movement. This leads to our

hypothesis that the change in excitability of M1 during action observation will be

different for different speeds of observed motion, for example, low speed versus

normal speed.

The aim of this study was therefore to investigate the effect of the speed of the

action on the enhancement of the excitability of M1 by action observation, as

assessed by the amplitude of TMS-induced motor evoked potentials (MEPs). Any

such effect would have great consequences for the development of novel

neurorehabilitation strategies based on action observation.

Subjects

Eighteen healthy volunteers (11 men and 7 women; mean age, 26.6 ¡ 6.8 years)

were enrolled in this study after providing their written, informed consent. All

subjects were self-reported right-handers. None of the subjects reported
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neurological impairment or contraindications to TMS [47, 48]. The study was

approved by the local ethics committee at the Nagasaki University Graduate

School of Biomedical and Health Sciences. All experimental procedures were

conducted in accordance with the Declaration of Helsinki.

Procedure

1) Experimental set-up

Subjects were seated on a reclining chair 80 cm away from a PC monitor (19-inch,

resolution 1024 6 768 pixels, refresh frequency 60 Hz) and were instructed to

keep both hands in a pronated position on a horizontal board attached to the

chair’s armrest. They were instructed to keep the right forearm as still and relaxed

as possible while paying attention to the visual stimuli presented on the PC

monitor. To ensure passive observation of the video clips, the experimenter’s only

instruction to the subjects was ‘‘You should stay alert while observing a hand,’’

before starting the experiment. Subjects were able to see their own hands.

However, they were instructed to pay attention to the visual stimuli. Therefore,

they sensed their hands in peripheral vision only.

2) Experimental stimuli

To create the stimulus video, a model was filmed from a first person viewpoint

performing a one-handed ball-catching task using his right hand. An actor in the

background threw the ball toward the model’s location. The ball used in the video

(S3C-NEW, Nagase-Kenko, Tokyo) is widely used in softball and is the official

ball of the Japan Softball Association. The ball was #3 size (perimeter 5 30.48 ¡

0.32 cm; weight, 90 ¡ 5 g; diameter, about 9.7 cm) and was colored black for

purposes of distinguishing the ball from the color of the background. The video

was recorded using a digital single-lens reflex camera (D5100, Nikon Corporation,

Japan) and had a duration of 8040 ms (The total number of frames was 202.) The

method of playing the video involved presenting a series of single frames, each

lasting 40 ms, normal speed assumed (resolution 1,920 6 1,080 pixels, color

depth 14 bits, frame rate 25 fps), fast enough to produce an animation effect.

3) Experimental procedure

Prior to the action observation task, the baseline excitability of M1 at rest was

assessed in each subject by acquiring 14 MEPs under control conditions.

Subsequently, the experimenter instructed the subject, ‘‘You should stay alert

while observing a hand,’’ and all subjects then observed the same video clip played

at three different speeds (normal-, half-, and quarter-speed conditions). Fig. 1

shows the experimental design. In this study, TMS was delivered to M1 in the left

hemisphere during observation of the video and the MEP was evoked. Previous

studies have found that MEP amplitude correlates significantly with finger

aperture during grasping movements and peaks when finger aperture is maximal
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[49, 50]. For this reason, the present study adopted this time point, hereinafter

designated as ‘‘open,’’ as a logical alternative to the moment of catch, here

designated as ‘‘catch.’’

The present study employed a 25 fps video clip taken with a digital camera.

Individual frames were converted to jpeg files and shown in succession to obtain

the animation effect. In the normal-speed condition, the presentation time of each

frame was twice the length of the refresh interval used by the PC monitor (refresh

interval 5 16.6 ms). Therefore, in the half-speed condition, the presentation time

of each frame was four times the refresh interval, and in the quarter-speed

condition, the presentation time of each frame was eight times the refresh interval.

The triggering of the TMS pulse was locked to the presentation of one or

another of two specific frames in the movie, one frame showing the ‘‘open’’ time

point and the other showing the ‘‘catch’’ time point. When one of these specially

designated frames was output, the computer controlling the experiment

recognized this and output a trigger pulse at the same instant. This design

guaranteed that TMS relative timing would always be independent of presentation

speed. (In addition, the word ‘‘phase’’ is more accurate than ‘‘time point’’ when

comparing the same event across different speeds, and will be used in what

follows.)

Fig. 2 shows 16 frames from the video clip used in this experiment. There were

two timings of TMS delivery in the experiment. One was the frame inside the

dashed box labeled ‘‘open,’’ and the other was the frame inside the solid box

labeled ‘‘catch.’’ ‘‘Open’’ was at the time the model’s hand had opened to the

widest extent just before catching the ball (162/202 frames), and ‘‘catch’’ was at

the time the model just caught the ball (172/202 frames). ‘‘The individual in this

manuscript has given written informed consent (as outlined in PLOS consent

form) to publish these case details.’’ TMS was delivered once for each video clip,

Figure 1. Experimental stimulation protocol. All subjects watched a video clip showing someone catching
a ball one-handed, played at three different speeds (normal speed, half-normal speed, quarter-normal speed).
In a given showing, TMS is delivered at one or another of two distinctive time points (‘‘open’’ or ‘‘catch’’).
Speed conditions and the time point of TMS delivery were randomized across trials. TMS, transcranial
magnetic stimulation.

doi:10.1371/journal.pone.0114355.g001
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randomly at ‘‘open’’ or ‘‘catch.’’ In each subject, each speed condition was used in

14 trials. Seven of these were trials that used the ‘‘open’’ phase of TMS delivery

and seven used the ‘‘catch’’ phase. The MEP amplitudes were calculated for each

TMS delivery. To ensure that TMS was always delivered at the correct time and

that the experimental design was correctly implemented, we used a computerized

pulse-generation system (Multi Trigger System, Medical Try System, Japan). The

order of speeds (normal, half, or quarter) was randomized by the experimenter,

and the order of timings of TMS delivery (‘‘open’’ or ‘‘catch’’) was randomized by

the Multi Trigger System. Each of the six possible trial conditions (three levels of

speed 6 two levels of phase) was replicated 76 in a subject, for a total of 14 trials

per speed, and a further 14 trials were controls involving TMS and MEP data

collection at intervals of 5 s during a sham trial, giving a total of 56 trials per

subject.

Figure 2. A sequence of stills from the video clip used in the experiment. The person in the background is the pitcher. The frame in the dashed box is at
‘‘open’’ and the frame in the solid box is at ‘‘catch.’’ TMS was triggered at one or another of these two time points in a given showing.

doi:10.1371/journal.pone.0114355.g002
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4) TMS and MEP recording

Surface electromyogram (EMG) activity was recorded in the right thenar muscles

(TH; the muscle serving thumb flexion, activating the ‘‘catch’’ phase) and in the

right abductor digiti minimi muscle (ADM; the muscle serving little finger

abduction, activating the ‘‘open’’ phase) using pairs of 9-mm-diameter Ag-AgCl

surface cup electrodes (SDC112, GE Healthcare, Japan). The two test muscles

chosen were maximally separated anatomically given that they were both intrinsic

muscles of the hand, thereby minimizing crosstalk between recording sites.

Surface EMG signals were amplified with a bandwidth of 5–3000 Hz by using a

digital signal processor (Neuropack sigma MEB-5504, Nihon Kohden, Japan), and

were input to a computer for off-line analysis using an A/D converter

(PowerLab16/30, AD Instruments, Australia).

At the beginning of the experiment, the optimal TMS coil position for evoking

MEPs in both the right TH and the right ADM, called the ‘‘hotspot,’’ was found.

TMS was delivered to the left M1 ‘‘hotspot,’’ marked with a pen on a swimming

cap covering the scalps of the subjects. TMS employed a 70-mm figure-of-eight

coil connected to a magnetic stimulator (Magstim200, Magstim, UK). The coil

was placed tangentially to the scalp with its handle pointing backward and rotated

approximately 45˚away from the mid-sagittal line. Care was taken to maintain the

same coil position relative to the scalp throughout the experiment. The resting

motor threshold was defined as the lowest stimulus intensity that evoked an MEP

at least 50 mV in amplitude in the right TH and ADM in five out of 10 trials. The

test stimulus intensity was set at 110%–130% of the resting motor threshold and

produced a .50-mV MEP with a success rate that ranged from 48% to 82%

(mean, 62.0%). The mean size of the control MEP for the TH and ADM were

approximately 0.5–1.0 mV. Throughout the experiments, the subjects were

instructed to avoid inadvertent movements that could raise the EMG background.

For each muscle in each trial, the 20 ms period preceding TMS triggering was

checked for background EMG activity.

Data Analysis

If background EMG was found, the data from both muscles in the trial were

rejected. MEP amplitude (peak-to-peak) was measured over each muscle in every

trial. MEP amplitude was expressed as percentage of the mean amplitude under

control conditions.

The data were analyzed using a repeated-measures one-way ANOVA (video

speed normal, half, and quarter) and paired t-tests. Bonferroni’s post hoc test for

multiple comparisons was used for further analyses. In all analyses, the p level for

statistical significance was set at ,0.05. All analyses were performed using

statistical analysis software (SPSS version 19.0, IBM, USA).
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Results

1) Typical MEP waveforms

Typical MEP waveforms over the right TH and ADM, recorded from one

representative subject, are shown in Fig. 3. There was a tendency for the MEP

amplitudes in both muscles to be higher under task conditions than under control

conditions. There was also a tendency for the MEP amplitudes in both muscles to

be higher under low-speed conditions than under normal-speed conditions.

2) The mean MEP amplitude under each speed condition

The mean MEP amplitude as a percent of control (¡SE) induced in the right TH

and ADM in response to single-pulse TMS are shown for each muscle in Fig. 4. A

one-way repeated measures analysis of variance was performed and a significant

main effect of SPEED was found (three speeds: normal speed, one-half normal

speed, and one-quarter normal speed). Significant main effects of SPEED were

found in both muscles (TH, F 5 10.885, p 5 0.001; ADM, F 5 8.689, p 5 0.003).

Among the three speeds, Bonferroni’s post hoc test detected significant differences

(shown in Fig. 4) in the TH between normal and quarter speed (p 5 0.025), in the

ADM between normal and half (p 5 0.023), and in the ADM between normal and

quarter speed (p 5 0.005).

3) The mean MEP amplitude under the difference of timing

The mean MEP amplitude as a percent of control (¡SE) induced in the right TH

and ADM in response to single-pulse TMS with different timings are shown in

Fig. 5 for each speed condition. To compare the difference of mean MEP

amplitudes between timings (‘‘open’’ vs. ‘‘catch’’) under each speed condition, the

data were analyzed by paired t-tests. The MEP amplitude over the TH was

significantly higher at the timing of ‘‘catch’’ than at the timing of ‘‘open’’ under

the one-quarter normal speed condition (p ,0.05). Moreover, the amplitude over

the ADM was significantly higher at the timing of ‘‘catch’’ than at the timing of

‘‘open’’ in the half speed condition (p ,0.01).

Discussion

1) Differences in excitability of the primary motor cortex under

different speed conditions

In the present study, we turned our attention to the issues raised for action-

observation research by rapid movement. We investigated the effect of the speed

of the action on the action-observation enhancement of M1 excitability, as

assessed by the amplitude of TMS-induced motor evoked potentials (MEPs).

Some studies have shown that the excitability of M1 is enhanced by the social

features characterizing an observed action. These studies suggest that the

excitability of M1 is modulated by the participant’s understanding of the social

M1 Excitability Increases More Strongly with Slow Speed Presentation

PLOS ONE | DOI:10.1371/journal.pone.0114355 December 5, 2014 8 / 16



intention and context implied by the observed action [51–53]. In the present

study, the experimental action video clearly presented someone catching a ball

thrown by someone in front of him/her. Therefore, it was possible to understand

the context and intention. For this reason, the excitability of M1 would have been

enhanced by viewing the video according to these studies, which was indeed

found.

MEP amplitude was found to be significantly different between the different

speed conditions. The MEP amplitude was higher when subjects observed an

action played at low speed relative to the normal-speed condition. For this reason,

the present study revealed a positive effect of our manipulations of the viewed

action speed on the excitability of M1 during passive observation of another’s

actions.

Some studies suggest that the changing excitability of M1 may be mediated by

PMv mirror neurons modulating the activity of the motor cortical output [54].

Previous studies have found, using f-MRI, that the PMv, PMd, and IPL are

particularly involved in the subject’s ability to understand motor-related

components of observed actions, and one author suggested that AOS activation is

dynamically modulated by those aspects of actions that the subject is required to

recognize [55]. For these reasons, we suggested that in action observation, the

AOS would be activated by a reduction of the replay speed of a video clip of rapid

movement because the subject would be able to register the elements of the action

more easily.

Earlier TMS studies of action observation suggested that the parts of the

viewer’s M1 that control the particular muscles that the observed person activates

Figure 3. Typical MEP waveforms over the right TH and ADM as recorded from one representative
subject. MEP amplitude is higher when the subject watches the video clip under low-speed conditions
compared to watching the same clip played at normal speed. MEP, motor evoked potential; TH, thenar
muscles; ADM, abductor digiti minimi muscle.

doi:10.1371/journal.pone.0114355.g003
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are facilitated [12, 56]. The changes in M1 excitability were strongly muscle-

specific; observation of an action that involves a particular muscle elicits a

stronger response in the corresponding muscle of the observer than would

observation of an action that does not use the muscle [38, 57–59]. Moreover, the

change of M1 excitability was also phase-specific; it followed the kinematic profile

of the observed movement [49, 50].

MEPs recorded over TH showed a tendency to greater amplitude at the timing

of ‘‘catch’’ than at the timing of ‘‘open’’ under all speed conditions. Moreover, the

amplitude difference reached significance under the quarter speed condition.

From the TH results, we conclude that the excitability of M1 was modulated in a

muscle-specific and phase-specific manner under the low speed conditions.

However, the ADM data showed that the excitability of the corresponding part

of M1 was significantly higher at the timing of ‘‘catch’’ than at the timing of

‘‘open’’ in the half speed condition. However, there was no clear trend as in the

Figure 4. Mean MEP amplitude over the right TH and ADM under each speed condition. Values are
expressed as percentage of the control-condition amplitude (n 5 18). To reveal the effect of speed, A one-way
repeated measures analysis of variance was performed Asterisks indicate significant differences between
speed conditions (*, p ,0.05; **, p ,0.01). Vertical bars indicate ¡ standard error.

doi:10.1371/journal.pone.0114355.g004
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TH data. Initially, we conducted the experiment under the assumption that ADM

only participated in producing the ‘‘open’’ state. However, in practice, ADM also

plays a role in metacarpophalangeal joint flexion in the little finger during

‘‘catch,’’ because of the resemblance of the latter state to a whole-hand grasp. For

these reasons, we found the excitability of M1 to be similarly increased at both

time points at the cortical representation of this muscle.

Figure 5. Mean MEP amplitude over the right TH and ADM under each speed condition in response to
TMS. Values are expressed as percentage of the control-condition amplitude (n 5 18). To compare the
difference in mean MEP amplitudes between the two TMS timings (‘‘open’’ vs. ‘‘catch’’) under each speed
condition, the data were analyzed with paired t-tests. Asterisks indicate significant differences between speed
conditions (*, p ,0.05; **, p ,0.01). Vertical bars indicate ¡ standard error.

doi:10.1371/journal.pone.0114355.g005
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To summarize, our findings suggest that the excitability of M1 is facilitated by

playing the video at a low speed, and we could recognize anatomical and phase

elements of the movement at low speed that could not be recognized at normal

speed, indicating that the AOS was strongly activated by slowing the presentation.

However, because of deficiencies in the selection of test muscles and because of

the use of only two TMS timings, the present study was incomplete and revealed

only that the excitability of M1 was modulated in a muscle- and phase-specific

manner. Therefore, a future reinvestigation with more attention to selection of the

test muscles is needed. This study has only investigated speed reductions down to

the one-quarter-normal speed condition. We were concerned that if the video

playback speed were slowed down excessively, the subjects might have difficulty

sustaining attention. Therefore, further studies are now needed to determine the

optimal reproduction speed for activating the AOS during action observation.

2) Limitations

A previous study suggests that measurements of corticospinal excitability by TMS

during action observation may be an excellent paradigm for probing the AOS

[60]. However, the method used in that study could only probe the AOS indirectly

and could not explore the functional roles of other cortical areas in which mirror

neurons have been found, such as the PMv or AIP. Several current studies aim to

explore the individual effects of various neural networks involved in the AOS

during action observation directly, by means of the bifocal twin-coil TMS method.

The bifocal twin-coil method is a conditioning-test TMS paradigm in which a test

stimulus is applied over M1 at different delays after a conditioning stimulus is

delivered over another cortical area [61–63]. The main result of a study that

investigated the excitability of the connections linking AIP and PMv with M1, was

that the excitabilities were not changed at rest, but they were facilitated in a

muscle-specific way during action observation [63, 64]. In these reports, activation

of the AOS during action observation has been shown to induce specific

neurophysiological changes in some of the corticocortical connections of the

human motor system, such as anterior intraparietal area-primary motor cortex

(AIP-M1) and ventral premotor cortex-primary motor cortex (PMv-M1). This

reinforces the idea that increased excitability of the motor cortex during action

observation is mediated by activation of the AOS. There is a need for further study

of the effect of the speed of the viewed action on the AOS, using the bifocal twin-

coil TMS protocol, f-MRI protocol, or other methods.

In our study, we investigated M1 excitability during action observation only

under normal versus slower-than-normal conditions. The reason we did not

compare normal and faster-than-normal conditions was that the present study

focused simply on activating the AOS during observation of what are seen as

quick movements under natural conditions. The components of rapid motions

such as a figure skating jump are more recognizable under slow-replay conditions.

A previous study has suggested that the AOS is more modulated when the subject

recognizes an aspect of the observed movement. Moreover, if we propose to apply
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action observation to a motor learning or rehabilitation paradigm, it makes no

sense to incorporate artificially high-speed conditions. For these reasons, the

present study did not investigate such high-speed conditions. However, if we want

to reveal more about the relationship between the speed of movement and

activation of the AOS, we will need to conduct a comprehensive examination with

the addition of a faster-than-normal condition.

3) Summary and conclusions

Action observation reactivates the same cortical motor areas that are involved in

the performance of the observed actions. Therefore, action observation has

received considerable attention in the field of rehabilitation. Moreover, some

studies have reported a therapeutic effect of action observation in randomized

clinical trials in recent years [65, 66]. Although more study will be needed in the

future, the present work reveals that activation of the AOS during observation of

rapid movement is better under low-speed playback. For this reason, our findings

lead us to recommend that, in the field of rehabilitation, if the patient is being

asked to observe rapid movement, it should be shown in slow motion. Finally, we

believe that the present study’s findings could be relevant to extending the power

of action-observation approaches to rehabilitation of stroke patients.
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