1 Title:

Plasmodium knowlesi thioredoxin peroxidase 1 binds to nucleic acids and has RNA
chaperone activity

4

5	Authors: Hassan Hakimi ^{1, 2)} , Keisuke Suganuma ¹⁾ , Miho Usui ¹⁾ , Hirono Masuda-
6	Suganuma ¹⁾ , Jose Ma. M. Angeles ¹⁾ , Masahito Asada ²⁾ , Satoru Kawai ³⁾ , Noboru Inoue ¹⁾
7	and Shin-ichiro Kawazu ¹⁾ *
8	¹⁾ National Research Center for Protozoan Diseases, Obihiro University of Agriculture
9	and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
10	²⁾ Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki
11	University, Nagasaki 852-8523, Japan
12	³⁾ Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu,

- 13 *Tochigi 321-0293, Japan*
- 14

15 *Corresponding author

- 16 Dr. Shin-ichiro Kawazu, D.V.M., Ph.D.
- 17 National Research Center for Protozoan Diseases, Obihiro University of Agriculture and
- 18 Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan

19 E-mail: skawazu@obihiro.ac.jp, Tel.: +81-155-495846, Fax: +81-155-495643

20 Abstract

Malaria parasites are under oxidative attack throughout their life cycle in human 21body and mosquito vector. Therefore, Plasmodium antioxidant defenses are crucial for 2223its survival and being considered as interesting target for antimalarial drug design. Plasmodium knowlesi has emerged recently from its simian host to human in Southeast 24Asia and has been recognized as the fifth *Plasmodium* species that can cause human 25malaria. In this study, we cloned and characterized thioredoxin peroxidase 1 from P. 2627knowlesi (PkTPx-1). PkTPx-1 gene was cloned and recombinant protein was produced by heterologous over-expression in Escherichia coli. The recombinant protein was used 2829for evaluation of enzymatic activity and polyclonal antibody production. Using the recombinant PkTPx-1 protein, its antioxidant activity was confirmed in a mixed 30 function oxidation assay where PkTPx-1 prevented nicking of DNA by hydroxyl 31radicals. PkTPx-1 was able to bind to double strand DNA and RNA and had RNA 3233 chaperone activity in a nucleic acid melting assay indicating new function of PkTPx-1 other than antioxidant activity. Using specific polyclonal antibodies, it was indicated 34that PkTPx-1 is expressed in the cytoplasm of the parasite. Altogether, these results 3536 suggest that PkTPx-1 not only protect the parasite from the adverse effects of reactive oxygen species but also has RNA chaperone activity. 37

- 38 Keywords: Plasmodium knowlesi, thioredoxin peroxidase 1, Nucleic acid binding,
- 39 RNA chaperone

40 **1. Introduction**

All aerobic organisms are exposed to reactive oxygen species (ROS) such as 41superoxide anions, peroxynitrite, hydrogen peroxide and hydroxyl radicals which can 42damage their macromolecules (Rhee et al., 2001). Malaria parasites are highly sensitive 43to oxidative stress but live in a pro-oxidant rich environment containing oxygen and 44 iron, the key perquisite for ROS production (Muller 2004). Plasmodium digests 45hemoglobin as the major source of amino acids into heme which is toxic for the parasite 46 and mostly is sequestered into hemozoin (Becker et al., 2004). An appreciable amount 47of heme escapes from sequestration which constitutes the main source of ROS for the 48parasites and should be degraded by other means to prevent parasite death (Muller 492004). In order to maintain their redox homeostasis, malaria parasites are equipped with 50several antioxidant enzymes including superoxide dismutases and peroxiredoxins (Prxs) 5152(Becker et al., 2004). Since catalase and genuine glutathione peroxidase do not exist in 53Plasmodium, Prxs play a vital role in the reduction of ROS (Kawazu et al., 2008; Kehr et al., 2010) 54

55 Prxs is a ubiquitous family of antioxidant enzymes that are present in organisms 56 from all kingdoms (Rhee et al., 2001). The high expression level (Kawazu et al., 2008) 57 and ubiquitous distribution (Kehr et al., 2010) make Prxs one of the first proteins to

58	encounter and detoxify hydrogen peroxides in the parasite. These enzymes exert their
59	antioxidant role in the parasites through active site cysteine (Cys), where hydrogen
60	peroxide, peroxinitrite and a wide range of organic hydroperoxides are reduced into
61	water and alcohol (Wood et al., 2003). The redox-active Cys in the active site of the
62	enzyme is conserved and based on the number of Cys involved in catalysis, Prxs are
63	divided into three categories: 1-Cys, typical and atypical 2-Cys (Chae et al., 1999).
64	Apart from the antioxidant activity, Prxs are known as an important mediator in cell
65	signaling though reduction of hydrogen peroxides (Wood et al., 2003) and molecular
66	chaperones (Jang et al., 2004; Castro et al., 2011; Rhee and Woo 2011). The structural
67	flexibility, changing from oligomer to dimer or vice versa and phosphorylation of Prxs
68	are the factors contributing to the functional diversity of Prxs (Wood et al., 2003;
69	Richard et al., 2011). Whether inhibitors targeting parasite Prxs will lead to the
70	parasite's death, that might prove the important role of Prxs in malaria parasites,
71	remains to be determined.

P. knowlesi like *P. falciparum* can cause severe and fatal disease and is being
considered as an emerging human malaria parasite (Kantele and Jokiranta 2011). Better
understanding of basic biology of *P. knowlesi* is crucial for the control of this disease. In
the present study, we characterized *P. knowlesi* thioredoxin peroxidase 1 (PkTPx-1), a

76	member of Prx family. Using recombinant protein, it was shown that PkTPx-1 was able
77	to bind to nucleic acids and may acts as RNA chaperone which are novel functions
78	other than known antioxidant activity for TPx-1.
79	
80	2. Materials and Methods
81	2.1. Cloning of <i>P. knowlesi</i> TPx-1 gene
82	A set of primers was designed (Supplementary Table S1) using PlasmoDB
83	database version 10 (PlasmoDB, 2013) to amplify the complete sequence of the gene
84	coding for TPx-1 of P. knowlesi (PkTPx-1). The PkTPx-1 gene was amplified from
85	genomic DNA of P. knowlesi H strain, ATCC No. 30158 which was extracted by
86	phenol-chloroform technique from the parasite cell pellet. The PCR was done as
87	previously described (Hakimi et al., 2013).
88	
89	2.2. Expression and purification of recombinant PkTPx-1 protein
90	The Escherichia coli cells harboring PkTPx-1/pET-28a plasmid were grown at
91	37°C until the optical density at 600 nm reached 0.6. Expression of the recombinant
92	PkTPx-1 protein (rPkTPx-1) was induced with 1 mM isopropyl thio-\beta-D-galactoside
93	(IPTG) for 4 h at 37°C. rPkTPx-1 was purified using Ni-NTA agarose beads (Qiagen

 $\overline{7}$

94 Inc., Valencia, CA) as described previously (Hakimi et al., 2012)

95

96 2.3. Antioxidant activity of rPkTPx-1
--

97 The antioxidant activity of rPkTPx-1 was assessed by thiol mixed-function 98 oxidation (MFO) assay as described (Sauri et al., 1995). The reaction mixture (50 μ l) 99 containing 40 μ M FeCl₃, 10 mM dithiothreitol (DTT), 20 mM EDTA, 25 mM HEPES, 100 pH 7.0 was pre-incubated with or without rPkTPx-1 (10–400 μ g/ml) at 37°C for 1 h. 101 500 ng of pBluescript plasmid DNA (Stratagene, La Jolla, CA) was added and the 102 reaction mixture was further incubated for 3 h at 37°C. Nicking of the supercoiled 103 plasmids by the MFO assay was evaluated by 0.8% agarose gel electrophoresis.

104

105 2.4. Evaluation of DNA and RNA-binding activity

Different concentrations of rPkTPx-1 and recombinant *P. knowlesi* 1-Cys-Prx (rPf1-Cys-Prx) were incubated with 500 ng of pBluescript plasmid DNA for 30 min room temperature. For DNase protection assay, DNase (Takara, Otsu, Japan) was added to the mixture and incubated for another 30 min at 37°C. The DNA-binding activity and DNase protection of recombinant proteins were evaluated by 0.8% agarose gel electrophoresis and further stained with ethidium bromide.

112	In order to evaluate RNA-binding activity, pBluescript plasmid was digested
113	with Sal I and 32 bp biotin labeled ssRNA was produced using the plasmid fragments as
114	template with T7 RNA polymerase (New England BioLabs) in the presence of 2.5 mM
115	Biotin-16-UTP, 5 mM UTP, and 7.5 mM ATP, GTP and CTP. Binding reactions were
116	performed with 1-5 μ g of recombinant proteins, 0.3 ng of biotinylated RNA, 2 μ g tRNA
117	and $1 \times \text{RNA}$ electrophoretic mobility shift assay (REMSA) binding buffer (Thermo
118	Scientific) in a 20 μ l final volume. The reactions were incubated in room temperature
119	for 30 min and further separated by 4% non-denaturing polyacrylamide gel
120	electrophoresis in 4°C. The separated reactants were transferred onto nitrocellulose
121	membrane and biotinylated RNA was detected with streptavidin-horseradish peroxidase
122	conjugate using Chemiluminescent Nucleic Acid Detection Module (Thermo Scientific)
123	according to the manufacturer's instructions.
124	

125 2.5. Evaluation of RNA chaperone activity of PkTPx-1

In vitro nucleic acid melting assay using molecular beacon was conducted to evaluate the RNA chaperone activity of PkTPx-1. The molecular beacon was a 78nucleotide hairpin molecule (Kim et al., 2012) labeled with 6-FAM as flourophore and TAMRA as quencher (Sigma Aldrich). The recombinant proteins were dialyzed in 20

9

mM Tris-Hcl pH: 7.5 and fluorescence measurement was performed in 96-well plate
using Fluoroskan Ascent (Thermo Scientific), with excitation and emission at 485 and
518 nm, respectively.

133

134 2.6. Indirect immunofluorescence microscopy

the cellular localization of PkTPx-1, 135In order to show indirect immunofluorescence microscopy was done using thin smears of P. knowlesi-infected 136RBCs from an experimentally infected male monkey, Macaca fuscata and mouse serum 137138against rPkTPx-1, prepared as previously described (Hakimi et al., 2012). The smears 139were examined by confocal laser-scanning microscopy (TCS-SP5, Leica Microsystem, 140 Wetzlar, Germany). The animal experiments in this study were carried out in compliance with the Guide for Animal Experimentation at the Dokkyo Medical 141 University (Permission number 0656) and the Obihiro University of Agriculture and 142Veterinary Medicine (Permission number 25-74). 143

- 144
- 145 **3. Results and Discussion**

146 PkTPx-1 was cloned and recombinant PkTPx-1 protein (rPkTPx-1) was
147 produced and purified with molecular weight of 21.9 kDa (Fig. 1). The pairwise amino

148	acid sequence alignment using gene and protein analysis software (GENETYX
149	Corporation, Tokyo, Japan) showed 84.6% and 94.4% identity when PkTPx-1 was
150	compared with orthologous protein in <i>P. falciparum</i> (PfTPx-1) and <i>P. vivax</i> (PvTPx-1),
151	respectively (Fig. 2). Moreover, it was 43.5% identical to its closest human orthologue,
152	Prx1. As shown in Fig. 2, PkTPx-1 has two conserved cysteine (Cys), the active site of
153	the enzyme at positions 50 and 170 with the conserved amino acid sequence of FVCP
154	and DVCP, respectively (Wood et al., 2003), proving that it is a typical 2-Cys type Prx.
155	The protein produced a dimer under non-reducing condition which is particularly a
156	homodimer resulting from the inter-subunit disulfide bond (Fig. 1). All Prxs contain a
157	conserved Cys at the N-terminus called peroxidatic Cys (Cys _P) (Rhee et al., 2001).
158	During catalysis, Cys _P is oxidized by ROS to sulfenic acid (Cys-S-OH) (Hall et al.,
159	2009). PkTPx-1, like all other typical 2-Cys Prxs, contains a C-terminal Cys referred as
160	resolving Cys (Cys _R) and reacts with adjacent sulfenic acid subsequently forming an
161	intermolecular disulfide bond (Wood et al., 2002). This bond further could be reduced
162	by a reducing agent such as thioredoxin or glutathione.
163	The antioxidant activity of PkTPx-1 was evaluated by MFO assay. In this assay,
164	FeCl ₃ and DTT generate hydroxyl radicals that cleave DNA (Sauri et al., 1995). In the

absence of rPkTPx-1, the hydroxyl radicals in the system resulted in the nicking of the

166	super-coiled plasmid DNA, changing the running behavior of the DNA in the agarose
167	gel electrophoresis (Fig. 3). However, adding 25μ g/ml and the higher concentrations of
168	rPkTPx-1in the reaction prevented nicking of the DNA, confirming the antioxidant
169	activity of PkTPx-1. Interestingly, PkTPx-1 showed DNA-binding activity in the MFO
170	assay by shifting the mobility of DNA which was previously seen by PvTPx-1 (Hakimi
171	et al., 2012) suggesting this biding activity is a common character of TPx-1 among
172	these malaria parasites. The DNA-binding activity was further evaluated in comparison
173	with P. knowlesi 1-Cys-Prx (Pk1-Cys-Prx) which is another cytoplasmic Prx (Hakimi et
174	al., 2013). As shown in Fig. 4, the DNA-binding of PkTPx-1 was concentration-
175	dependent and shifted the mobility of pBluescript DNA in the gel electrophoresis
176	whereas the Pk1-Cys-Prx did not bind to the DNA. Moreover, PkTPx-1 protected DNA
177	from degradation by DNase (Fig. 4). The DNA-binding activity and protection of DNA
178	from DNase was also seen in human Prx 1 which is also a typical 2-Cys Prx (Kim et al.,
179	2012). It is quite interesting to further study the benefits of this DNA-binding activity
180	for the parasite.

181 To further evaluate nucleic acid-binding activity of PkTPx-1, RNA-binding 182 activity was assayed by performing REMSA using biotinylated ssRNA. Adding 183 rPkTPx-1 shifted the mobility of RNA indicating the RNA-PkTPx-1 interaction,

184	whereas no change was observed when rPk1-Cys-Prx was added (Fig. 5). To investigate
185	the benefits of this nucleic acid-binding for the parasite and possible RNA-chaperone
186	activity, we examined helix-destabilizing activity in nucleic acid melting assay. In this
187	assay, a molecular beacon was used with stem-loop structure and a fluorophore and a
188	quencher at the ends. Because of the proximity of fluorophore and quencher, the
189	fluorescence is efficiently quenched when two parts of the molecular beacon remained
190	annealed to each other. When a protein binds and melts the stem-loop structure,
191	fluorescence is produced. Proteins with RNA chaperone activity assist RNA molecules
192	with folding or opening up misfolded RNA structures under a process without ATP
193	consumption (Semrad 2011). This system has been used to evaluate the RNA chaperone
194	activity of several proteins (Phadtare and Severinov 2005; Kim et al., 2012). Adding
195	rPkTPx-1 to the molecular beacon, a marked increase in fluorescence intensity occurred,
196	indicating rPkTPx-1 melted the secondary structure of molecular beacon while adding
197	rPk1-Cys-Prx did not increase fluorescence intensity (Fig. 5). Similar to PkTPx-1,
198	PfTPx-1 and PvTPx-1 had nucleic acid-binding and RNA chaperone activity (data not
199	shown), suggesting that these functions are common characteristics of Plasmodium
200	TPx-1. Recently it was shown that PfTPx-1 gene-disrupted parasites (knock out) are
201	hypersensitive to heat stress, suggesting a possible chaperone activity for this protein

202	(Kimura et al., 2013). Molecular chaperone activity of 2-Cys Prx is shown before in			
203	yeast where cytosolic yeast cPrx I and II have peroxidase function in lower molecular			
204	weight (MW) forms, while the chaperone function predominates in higher MW			
205	complexes (Jang et al., 2004). PfTPx-1 forms decamers consisting of pentamers of			
206	homodimers (Akerman and Muller 2003) which resemble heat shock proteins with			
207	molecular chaperone activity (Kim et al., 1998). To the best of our knowledge, this is			
208	the first report of nucleic acid-binding and RNA chaperone activity of <i>Plasmodium</i> TPx-			
209	1.			

Immunofluorescence microscopy was performed to determine the cellular localization of PkTPx-1. Figure 6 shows a schizont and two trophozoite of *P. knowlesi* where the nuclei are stained with Hoechst. The presence of green fluorescence around nucleus indicates the cytoplasmic expression of PkTPx-1. Similar expression patterns were seen in PfTPx-1 and PvTPx-1 (Hakimi et al., 2012; Yano et al., 2005).

Taken together, TPx-1 not only acts as antioxidant enzyme to protect *P*. *knowlesi* from oxidative stress but also was able to bind to nucleic acids and had RNAchaperone activity which are novel functions for *Plasmodium* TPx-1. Given that nucleic acid-binding and RNA chaperone activity of PkTPx-1 was not seen in Pk1-Cys-Prx and PkTPx-1 has no nucleic acid-binding motif, these novel functions might be related to

220	unique characteristic of eukaryotic typical 2-Cys-Prx such as dimer and higher
221	molecular weight oligomer formation which should be studied is future.
222	

223 Acknowledgements

- 224 This work was supported by a Grant-in-Aid for Scientific Research (23390098)
- 225 from the Japan Society for the Promotion of Sciences.

226 **References**

- 227 Akerman SE, Muller S (2003) 2-Cys peroxiredoxin PfTrx-Px1 is involved in the
- antioxidant defence of *Plasmodium falciparum*. Mol Biochem Parasitol 130: 75-81.
- 229 doi:10.1016/S0166-6851(03)00161-0
- 230 Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004)
- 231 Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int
- 232 J Parasitol 34(2):163-89. doi:10.1016/j.ijpara.2003.09.011
- 233 Castro H, Teixeira F, Romao S, Santos M, Cruz T, Florido M, Appelberg R, Oliveira P,
- 234 Ferreira-da-Silva F, Tomas AM (2011) Leishmania mitochondrial peroxiredoxin plays a
- 235 crucial peroxidase-unrelated role during infection: insight into its novel chaperone
- activity. PLoSPathog 7(10):e1002325. doi: 10.1371/journal.ppat.1002325
- 237 Chae HZ, Kang SW, Rhee SG (1999) Isoforms of mammalian peroxiredoxin that
- 238 reduce peroxides in presence of thioredoxin. Methods Enzymol 300:219-26. doi:
- 239 10.1016/S0076-6879(99)00128-7
- 240 Hakimi H, Asada M, Angeles JMM, Inoue N, Kawazu S (2012) Cloning and
- characterization of *Plasmodium vivax* thioredoxin peroxidase-1. Parasitol Res 111:525-
- 242 529. doi: 10.1007/s00436-012-2864-3.
- 243 Hakimi H, Asada M, Angeles JMM, Kawai S, Inoue N, Kawazu S (2013) Plasmodium

- vivax and P. knowlesi: cloning, expression and functional analysis of 1-Cys
 peroxiredoxin. Exp Parasitol 133:101-105. doi: 10.1016/j.exppara.2012.10.018.
- Hall A, Karplus PA, Poole LB (2009) Typical 2-Cys peroxiredoxins structures,
- 247 mechanisms and functions. FEBS J 276(9):2469-2477. doi: 10.1111/j.1742248 4658.2009.06985.x
- Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC,
- 250 Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee
- 251 SY (2004) Two enzymes in one; two yeast peroxiredoxin display oxidative stress-252 dependent switching from a peroxidase to a molecular chaperone function.
- 253 Cell 117:625-635. doi:10.1016/j.cell.2004.05.002
- 254 Kantele A, Jokiranta TS (2011) Review of cases with the emerging fifth human malaria
- 255 parasite, *Plasmodium knowlesi*. Clin Infect Dis 52:1356-1362. doi: 10.1093/cid/cir180.
- 256 Kawazu S, Komaki-Yasuda K, Oku H, Kano S (2008) Peroxiredoxins in malaria
- parasites: parasitologic aspects. Parasitol Int 57(1):1-7. doi:10.1016/j.parint.2007.08.001
- 258 Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K (2010) Compartmentation of
- 259 redox metabolism in malaria parasites. PLoS Pathog 6(12):e1001242. doi:
- 260 10.1371/journal.ppat.1001242

- 261 Kim JH, Lee JM, Lee HN, Kim EK, Ha B, Ahn SM, Jang HH, Lee SY (2012) RNA-
- 262 binding properties and RNA chaperone activity of human peroxiredoxin 1. Biochem
- 263 Biophys Res Commun 425:730-4. doi: 10.1016/j.bbrc.2012.07.142.
- Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat shock protein. Nature
 394:595-599. doi:10.1038/29106
- 266 Kimura R, Komaki-Yasuda K, Kawazu S, Kano S (2013) 2-Cys peroxiredoxin of
- 267 *Plasmodium falciparum* is involved in resistance to heat stress of the parasite. Parasitol
- 268 Int 62:137-143. doi: 10.1016/j.parint.2012.11.005.
- 269 Muller S (2004) Redox and antioxidant systems of the malaria parasite *Plasmodium*
- 270 *falciparum*. Mol Microbiol 53(5):1291-1305. doi: 10.1111/j.1365-2958.2004.04257.x
- 271 Phadtare S, Severinov K (2005) Nucleic acid melting by *Escherichia coli* CspE. Nucleic
- 272 Acids Res 33:5583-5590. doi: 10.1093/nar/gki859
- 273 Rhee SG, Kang SW, Chang TS, Jeong W, Kim K (2001) Peroxiredoxin, a novel family
- of peroxidases. IUBMB Life 52:35-41. doi: 10.1080/15216540252774748
- 275 Rhee SG, Woo HA (2011) Multiple functions of peroxiredoxins: peroxidases, sensors
- and regulators of the intracellular messenger H₂O₂, and protein chaperones. Antioxid
- 277 Redox Signal 15:781-794. doi:10.1089/ars.2010.3393.

- 278 Richard D, Bartfai R, Volz J, Ralph SA, Muller S, Stunnenberg HG, Cowman AF
- 279 (2011) A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria
- 280 parasite Plasmodium falciparum. J Biol Chem 286(13): 11746-11755.
- 281 doi:10.1074/jbc.M110.198499
- 282 Sauri H, Butterfield L, Kim A, Shau H (1995) Antioxidant function of recombinant
- human natural killer enhancing factor. Biochem Biophys Res Commun 208: 964-969.
- 284 doi:10.1006/bbrc.1995.1428
- 285 Semrad K (2011) Proteins with RNA chaperone activity: a world of diverse proteins
- with a common task-impediment of RNA misfolding. Biochem Res Int 532908: 1-11.
- 287 doi: 10.1155/2011/532908
- 288 Wood ZA, Poole LB, Hantgan RR, Karplus PA: Dimers to doughnuts (2002) Redox-
- sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41:5493-5504.
- 290 doi: 10.1021/bi012173m
- 291 Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and
- regulation of peroxiredoxins. Trends Biochem Sci 28(1): 32-40. doi:10.1016/S09680004(02)00003-8
- 294 Yano K, Komaki-Yasuda K, Kobayashi T, Takemae H, Kita K, Kano S, Kawazu S
- 295 (2005) Expression of mRNAs and proteins for peroxiredoxins in Plasmodium

296 falciparum erythrocytic stage. Parasitol Int 54:35-41. doi: 10.1016/j.parint.2004.08.005

297 Figure legends

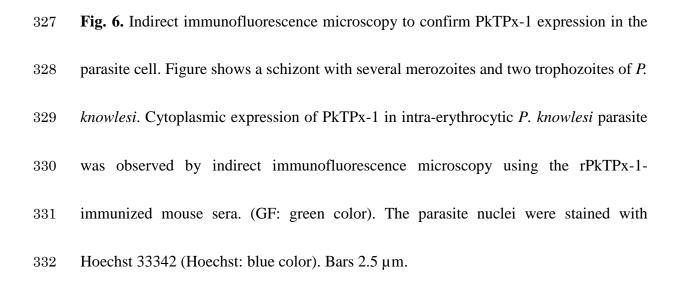
Fig. 1. Recombinant PkTPx-1 protein (rPkTPx-1) expression and purification verified

- by SDS-PAGE. (A) rPkTPx-1 was expressed in *E. coli*. M, Protein marker. Lane 1 is *E*.
- 300 *coli* culture before adding IPTG, lane 2 is 4h after adding IPTG and lane 3 is purified
- rPkTPx-1. (B) Lane 1 is rPkTPx-1 under reducing condition (with 2-mercapto ethanol)
- and lane 2 is rPkTPx-1 under non-reducing condition (without 2-mercapto ethanol).

303

Fig. 2. Deduced aminoacid sequence alignment of PkTPx-1, PfTPx-1 and PvTPx-1. Asterisks indicate the conserved cysteine residues and the identical residues among the three sequences are boxed.

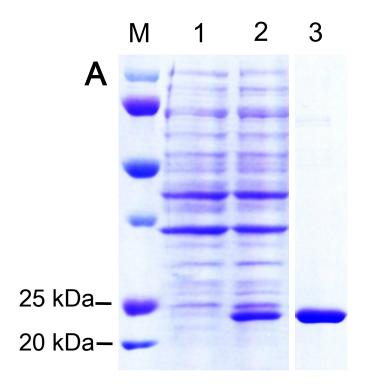
307

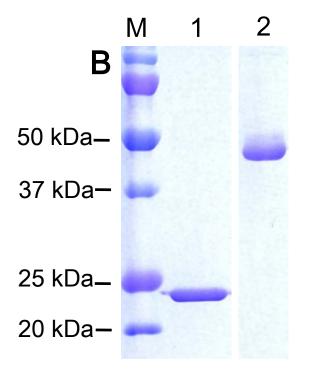

Fig. 3. Mixed-function oxidation (MFO) assay to evaluate rPkTPx-1 antioxidant activity. Prevention of nicking the plasmid DNA was evaluated by MFO assay. M, 1 kbp DNA marker; lane 1, pBluescript plasmid DNA and FeCl₃; lane 2, pBluescript plasmid DNA and DTT; lane 3, pBluescript plasmid DNA, FeCl₃ and DTT; lanes 4-8, pBluescript plasmid DNA, FeCl₃, DTT and 400, 200, 100, 25 and 10µg/ml of rPkTPx-1, respectively. The nicked form (NF), supercoiled form (SF) and rPkTPx-1-DNA complex are indicated on the right.

315

Fig. 4. DNA-binding activity of rPkTPx-1. (A) rPkTPx-1 and rPk1-Cys-Prx were incubated with pBluescript plasmid DNA and the rPrx-DNA complexes were evaluated using agarose gel shift assay. (B) DNA protection activity of rPkTPx-1. The mixture of recombinant proteins and DNA was treated with DNase and analyzed by gel shift assay.

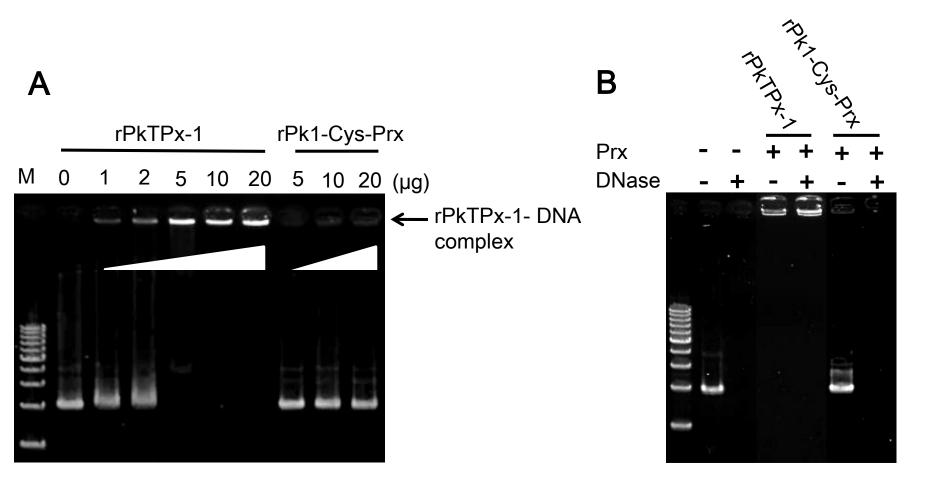
Fig.5. RNA-binding and RNA chaperone activity of rPkTPx-1. (A) RNA-binding activity of PkTPx-1 evaluated by RNA electrophoretic mobility shift assay. (B) Nucleic acid melting activity of rPkTPx-1. rPkTPx-1, rPk1-Cys-Prx or buffer alone (control) was added to the reaction in presence of molecular beacon and fluorescence was monitored. The excitation and emission wavelength were 485 and 518 nm, respectively.

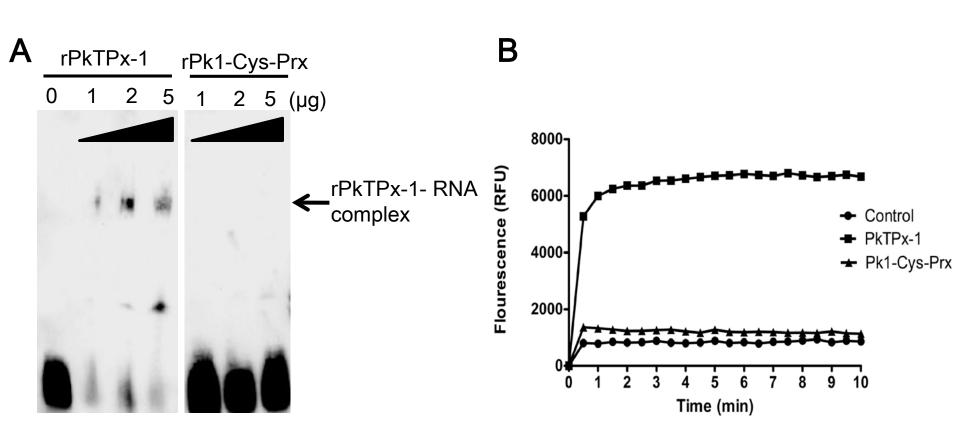

326

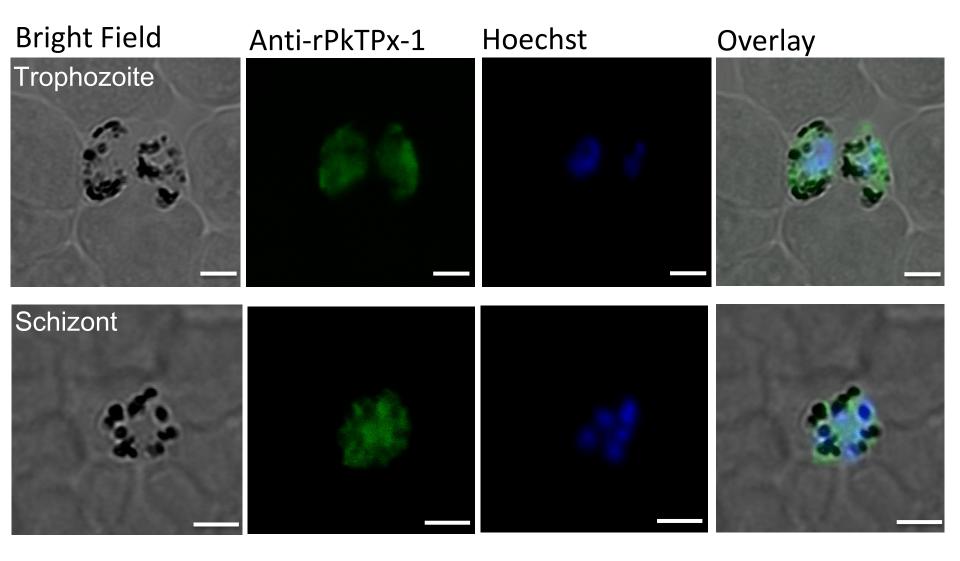


333

334 Supplementary information


- 335 **Table S1.** Primers for amplification of *P. knowlesi* TPx-1 (PkTPx-1). Start and stop
- 336 codons are underlined and restriction sites are italicized.





PkTPx-1 PfTPx-1 PvTPx-1	1 1 1	* MVTYVGKEAPFFRAEAVFGDNSFGEVNLSQFIGKKYVLLYFYPLDFTFVCPSEIIALDKA MASYVGREAPYFKAEAVFADNTFGEVNLHDFIGKKYVLLYFYPLDFTFVCPSEIIALDKA MPTYVGKEAPFFKAEAVFGDNSFGEVNLTQFIGKKYVLLYFYPLDFTFVCPSEIIALDKA	60
PkTPx-1	61	LDAFHERNVELLGCSVDSKYTHLAWKKTPREKGGIGNIKHTLLSDISKSISRDYNVLFDD	
PfTPx-1	61	LDAFKERNVELIGCSVDSKYTHLAWKKTPLTKGGIGNIQHTLISDITKSISRSYNVLFGD	
PvTPx-1	61	LDAFHERNVELLGCSVDSKYTHLAWKKTPLAKGGIGNIKHTLLSDITKSISKDYNVLFDD	
PkTPx-1	121	SVSLRAFVLIDKNGIVQHLLVNNLALGRSVDEILRIIDALQHHEKYGDVCPANWKKGKVS	
PfTPx-1	121	SVSLRAFVLIDKQGVVQHLLVNNLAIGRSVEEVLRIIDAVQHHEQHGDVCPANWKKGKVA	
PvTPx-1	121	SVSLRAFVLIDMNGIVQHLLVNNLAIGRSVDEILRIIDAIQHHEKYGDVCPANWQKGKVS	
PkTPx-1	181	MKPSEEGVAQYLSTL	195
PfTPx-1	181	MKPSEEGVSEYLSKL	195
PvTPx-1	181	MKPSEEGVAQYLSTL	195

8 2 3 5 6 Μ 1 4 7 rPkTPx-1- DNA complex ← NF ← SF

Hakimi et al. Supplementary table S1

Gene	PlasmoDB ID	Primers
	PKH_126740	F: 5'- CAT <u>ATG</u> GTGACATACGTAGGAAAAGAAGC -3' (Nde I)
PkTPx-1		R: 5'- <i>GAATTC<u>TTA</u>TAATGTGGACAAATATTGCGC-3' (EcoR</i> I)